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Abstract

Since the feed cost is a major determinant of profitability in poultry industry, how to improve
feed efficiency through genetic selection is an intriguing subject for breeders and producers.
As a more suitable indicator assessing feed efficiency, residual feed intake (RFI) is defined
as the difference between observed and expected feed intake based on maintenance and
growth. However, the genetic mechanisms responsible for RFI in chickens are still less well
appreciated. In this study, we investigated the duodenal transcriptome architecture of
extreme RFI phenotypes in the six brown-egg dwarf hens (three per group) using RNA
sequencing technology. Among all mapped reads, an average of 75.62% fell into annotated
exons, 5.50% were located in introns, and the remaining 18.88% were assigned to inter-
genic regions. In total, we identified 41 promising candidate genes by differential expression
analysis between the low and high RFI groups. Furthermore, gqRT-PCR assays were
designed for 10 randomly chosen genes, and nine (90.00%) were successfully validated.
Functional annotation analyses revealed that these significant genes belong to several spe-
cific biological functions related to digestibility, metabolism and biosynthesis processes as
well as energy homeostasis. We also predicted 253 intergenic coding transcripts, and these
transcripts were mainly involved in fundamental biological regulation and metabolism pro-
cesses. Our findings provided a pioneering exploration of biological basis underlying diver-
gent RFI using RNA-Seq, which pinpoints promising candidate genes of functional
relevance, is helpful to guide future breeding strategies to optimize feed efficiency and
assists in improving the current gene annotation in chickens.

Introduction

Chicken meat and egg products continue to be an important source of nutrition for most peo-
ple around the world. In the past decades, many yield-related traits in chickens have been
greatly improved to meet the ever-increasing global demand [1, 2]. Currently, certain traits
such as daily weight gain, total egg number and age at first egg have come close to their
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selection limits in nature due to long-term artificial selection. Meanwhile, feed prices would
likely contribute to a substantial increase although feed has accounted for more than 60% of
the total production cost [3, 4]. The increasing cost with no further increase in production kept
pressure for us to investigate how to improve feed efficiency. In this sense, breeding more effi-
cient chickens would mean big savings and enhance the profitability for breeders and
producers.

Two major assessment criteria for feed efficiency are feed conversion ratio (FCR) and resid-
ual feed intake (RFI), respectively. FCR is defined as the amount of feed consumed per unit of
egg weight for layers, and is not a desirable measurement for several statistical and biological
reasons [4-6]. Thus, an alternative concept RFI was proposed and calculated as the difference
between observed feed intake and the expected feed requirement based on maintenance and
growth [5, 7, 8]. RFI may be a more suitable strategy evaluating feed efficiency due to its pheno-
typic independence in relation to growth and production traits used in its estimation [3]. It
should be noted that RFI shows moderate to high heritability, indicating that genetic improve-
ment could be accelerated by exploring associated genes and markers to be used in molecular
breeding. Furthermore, several previous studies demonstrated that selection for low RFI (supe-
rior feed efficiency) may lead to lower the production cost and environmental nitrogen pollu-
tion in chickens and other livestock [9-11]. Therefore, pursuing the potential functional genes
and genetic markers underlying RFI is an intriguing issue.

Currently, several previous studies have unveiled some candidate quantitative trait loci
(QTL) involved in RFI through association and linkage analyses [12-15], but these genetic evi-
dence is still not enough. Furthermore, all these work started from the genome-scale perspec-
tive. Considering that divergent RFI performances should result from different expression
levels of related genes, so monitoring the transcriptome changes in chickens with extreme RFI
would offer a new opportunity to decipher its underlying mechanisms. In recent years, RNA
sequencing (RNA-Seq) technology has emerged as a powerful and revolutionary approach to
quantify gene expression levels and survey detailed transcriptome profiling at unprecedented
resolution and sensitivity [16, 17]. Compared with microarray platform, RNA-Seq has several
clear advantages such as a wider dynamic range of expression levels, higher accuracy and
reproducibility, lower background noise and ability to detect novel transcripts [16, 18, 19].
Moreover, RNA-Seq method has attracted considerable interest and received great success con-
cerning many economic traits in livestock [20-24]. Hence, applying RNA-Seq to dig out
involved functional genes would serve as a great complement to traditional genomic methods.

In order to identify causal genes modulating RFI performance and get a closer insight in
transcriptome architecture in chickens, we conducted a global transcriptome profiling includ-
ing differential expression analysis, novel transcript prediction and functional annotation
based on high-quality RNA-Seq data from duodenal epithelial tissues. Our findings will allow a
better understanding of the underlying mechanisms implicated in RFI, contribute to breeding
more efficient chickens by genetic improvement and help to optimize the current chicken gene
model.

Materials and Methods
Ethics statement

The whole protocols and procedures involving animals were performed in accordance with the
Guidelines for the Care and Use of Experimental Animals established by the Ministry of Agri-
culture of China (Beijing, China). All animal work was approved by the Animal Welfare Com-
mittee of China Agricultural University (permit number: SYXK 2007-0023). Before tissue
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sampling, birds were humanely sacrificed by cervical dislocation. All efforts were made to mini-
mize their suffering.

Sample selection and tissue harvest

A pure line of brown-egg dwarf layers (DW), maintained and selected mainly for egg produc-
tion for over 10 years in the Poultry Genetic Resource and Breeding Experimental Unit of
China Agricultural University [25], was used in this study. At 28 wk of age, a total of 252 hens
were randomly selected and transferred to individual cages with intelligent system for record-
ing individual feed intake (FI) and egg mass production (EM). These hens were kept under the
16L:8D light regimen and raised in the same environment with feed and water ad libitum. The
FI and EM were measured at two independent stages in which the first one was from 32 to 44
wk of age and the second was from 57 to 60 wk of age. The individual body weight (BW) was
surveyed at the start and end of each stage to calculate the mean BW (MBW), metabolic BW
(MBW®”) and daily BW gain (BWG). The residual feed intake (RFI) index was estimated with
the model as follows:

RFI = FI — (b, + b,MBW’" + b,BWG + b,EMD)

where RFI = residual feed intake, FI = daily feed intake, MBW®7> = metabolic body weight,
BWG = daily body weight gain, EMD = daily egg mass (adjusted for abnormal eggs), by = the
intercept, and by, by, b; = partial regression coefficients. The RFI estimates for each stage were
calculated with the linear model fit function (Im) implemented in R.

We preferred those samples with extreme RFI phenotypes in a consistent pattern at two
experimental stages, considering that the desired birds should show stable performances in
both the early and late periods. The average RFI rank in two stages was used to prioritize sam-
ples because the mean was subject to outliers or extreme values. At the end of the whole experi-
mental period (61 wk of age), we selected six samples consisting of two groups (three biological
replicates per group) to represent two distinct RFI performances. In particular, besides that FI
and RFI were significantly lower in the low RFI group, almost all phenotypes in both groups
were similar. Table 1 details the measurements of RFI and its component traits at the two
stages. The heritability estimates of RFI in this population are close to 0.30, though the larger
sample size should be required to increase the reliability. For RNA isolation, duodenal epithe-
lial tissues as a major part of the digestive system were harvested immediately from postmor-
tem samples, frozen in liquid nitrogen and then stored at -80°C until further processing.

Table 1. Descriptive statistics of feed efficiency and relevant traits.

Trait

Low
Fl 84.42 +8.77
MBW 1336.43 + 193.30
BWG 1.69 £ 0.79
EMD 40.59 + 4.06
RFI -7.83+£0.79
FCR 2.08 £ 0.01

First stage (32 to 44 wk of age)

Second stage (57 to 60 wk of age)

High Low High
99.92 + 4.46 88.36 + 6.88 120.56 + 7.11
1270.10 £ 112.71 1394.42 + 147.62 1401.03 £ 192.30
1.20 + 0.58 0.38 £ 0.94 0.89 +2.03
43.27 £0.28 42.54 + 3.03 42.80 +2.92
7.98 £2.77 -11.77 £ 0.66 19.20 £ 4.13
2.31£0.10 2.01 £0.03 2.72 £ 0.03

Abbreviations: FI = daily feed intake; MBW = mean body weight; BWG = daily body weight gain; EMD = daily egg mass; RFI = residual feed intake;

FCR = feed conversion ratio.

doi:10.1371/journal.pone.0136765.1001
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RNA extraction, library preparation and sequencing

Total RNA was isolated using TRIzol reagent (Invitrogen, USA) after grinding the frozen duo-
denal sample into fine powder under liquid nitrogen environment. The quality and quantity of
RNA were monitored by 1% agarose gels, NanoPhotometer spectrophotometer (Implen, CA,
USA) and Qubit 2.0 Flurometer (Life Technologies, CA, USA). For the eligible samples, the
RNA integrity number (RIN, a score from 0 to 10) was accessed using Agilent Bioanalyzer
2100 system (Agilent Technologies, CA, USA). Only RNA samples with RIN larger than seven
were used for cDNA library construction. For each sample, library with about 200 bp insert
size was prepared with TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA), and
then was subjected to 2 x 100 bp paired-end (PE100) sequencing on a HiSeq 2000 instrument
(Illumina). All six samples were sequenced on one lane. The raw sequence data from this article
is publicly available in the NCBI Short Reads Archive (SRA) with accession number
SRP055561 (BioProject number: PRINA276492). The experiment accessions for the six chick-
ens are SRX892810-SRX892815.

Differential expression analysis

For ensuring high-quality data, we removed low-quality reads and reads containing adapter
contamination or at least 10 Ns from raw data (FASTQ format) using in-house Perl scripts.
Prior to downstream analyses, the overall quality of clean data was further examined using
FastQC v0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The Galgal4 ref-
erence assembly (FASTA format) and annotated gene model (GTF format) were downloaded
from Ensembl database (ftp://ftp.ensembl.org/pub/release-76/). For each library, we estimated
the actual insert size distribution after indexing the reference genome using the Bowtie2 v2.2.3
with default parameters [26]. After that, the mean read insert size and corresponding standard
deviation (SD) as well as 10 maximum multiple hits (—max-multihits = 10) were used for
TopHat2 v2.0.12, to improve the accuracy of reads mapping and expression analysis [27, 28].
All other parameters were set to the default values. The distribution of mapped reads over
exons, introns and intergenic regions was determined using the BEDTools suite [29].

Based on resulting alignment and Ensembl annotation files, gene-level read counts were
enumerated using HTSeq v0.6.1 Python tool with the default “union” mode [30]. To enhance
the statistical power for identifying differentially expressed genes (DEGs), we removed those
genes with weak expression levels using the HTSFilter package [31]. The DESeq2 package [32]
was employed to distinguish DEGs between the low and high RFI groups. DESeq?2 first used
empirical Bayes shrinkage method to estimate dispersions and fold changes by modeling read
counts as following a Negative Binominal distribution. And then the Wald test P-value was
inferred to evaluate the statistical significance. The derived P-values were adjusted for multiple
testing using Benjamini-Hochberg method [33], in order to control the false discovery rate
(FDR) due to numerous tested genes in a typical RNA-Seq dataset. Finally, the DEGs were
declared at a significant level of |log, (fold change)| > 0.585, raw P-value < 0.01 and
FDR < 0.05. After that, we downloaded the latest chicken QTL database (http://www.
animalgenome.org/cgi-bin/QTLdb/GG/index, Release 26) [34], and compared putative DEGs
with the reported QTLs associated with feed efficiency traits (FI, FCR and RFI). It should be
note that the three traits should share similar genetic basis due to the strong genetic correla-
tions among them.

Quantitative RT-PCR confirmations

To confirm our differential expression results, we conducted quantitative reverse transcription
PCR (qRT-PCR) assays for 10 randomly selected DEGs in the same RNA samples used for
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RNA-Seq. The total RNA was used for first-strand cDNA synthesis using EasyScript cDNA
Synthesis Super Mix kit (TransGen Biotech, Beijing, China) according to standard procedures.
The full cDNA sequence for each gene was downloaded from NCBI database, and correspond-
ing primers were designed using Primer5.0 software. Prior to qRT-PCR validation, we accessed
the primer quality using an 8-point standard curve in triplicate to ensure the similar amplifica-
tion efficiencies between target and control primers. All qRT-PCR reactions were conducted in
triplicate on the ABI Prism 7500 sequence detection system (Applied Biosystems group) using
SYBR green chemistry. The thermal cycle conditions were as follows: 1 cycle of pre-incubation
at 50°C for 2 min and 95°C for 10 min, 40 cycles of amplification (95°C for 10 s and 60°C for 1
min). Relative gene expressions of DEGs were calculated using the 27" method, with the
housekeeping gene GAPDH serving as internal control. To compare with the sequencing-based
results, we converted the mean 2*“* value for each group to fold change by dividing it by the
mean value for the control. For evaluating the concordance between predicted and observed
expression levels of DEGs, regression analysis was conducted with the linear model fit function
(Im) implemented in R.

Prediction and characterization of intergenic transcripts

To investigate and classify the novel transcript patterns, we performed a global transcriptome
profiling. The aligned reads were assembled into transcripts based on reference-guided assem-
bly strategy implemented in Cufflinks suite v2.2.1 [35, 36]. The resulting individual annotation
file was compared with the Ensembl annotation model using the Cuffcompare option to cap-
ture both native and novel transcripts. For analyzing those unknown intergenic transcripts
(“u”-labeled transcripts), Cuffmerge was first used to merge the assemblies from all samples.
And then the merged transcript assembly was regard as input for Cuffdiff2 to estimate tran-
script abundances. Due to the potential presence of the assembly artifacts, unspliced pre-
mRNAs and possible DNA contamination, we only kept transcripts with total length between
200 bp and 20 kb and harboring at least two exons. In addition, all transcripts with fragments
per kilobase of exon per million mapped reads (FPKM) > 1 and its 95% confidence interval
lower boundary > 0 were included to eliminate lowly expressed transcripts which were gener-
ally considered to be transcriptional noise. Finally, only transcripts located at least 500 bp away
from any known genes remained considering that these sequences might be extended exons of
known genes. The sequences of eligible transcripts were subsequently extracted by gffread and
ted to Coding Potential Calculator (CPC) to predict their coding potential [37]. To ensure high
level of reliability, the transcript with CPC score > 1 was classified as protein-coding candidate,
and < -1 was non-coding.

Functional enrichment and annotation analyses

To gain insight into the biological functions of DEGs, the enriched Gene Ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined using
GOSeq R package designed to correct for gene length bias [38]. The functional group with
adjusted P-value < 0.05 and at least two DEGs in the background terms was considered signifi-
cantly overrepresented. In addition, we performed functional annotation for these putative
coding transcripts using Blast2GO v2.8.0 tool based on similarity searches and existing annota-
tion associations [39]. These sequences were first blasted against the NCBI non-redundant
database using BLASTX option with an E-value threshold of 0.001 and a maximum of 20 hits.
The output in XML format was mapped to GO database and assigned to different functional
categories. Subsequently, InterProScan annotation, ANNEX modification and GO-Slim
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Table 2. Summary statistics for sequence quality and alignment information of six samples.

Statistic DW1 Dw2 DwW3 DW4 DW5 DW6
Group Low Low Low High High High

Raw reads 80,258,102 86,305,796 101,028,434 81,602,282 88,785,322 75,829,126
Clean reads 75,513,580 81,073,172 95,231,110 77,507,042 83,282,532 71,345,656
Q20 (%) 96.62 96.57 96.53 96.69 96.49 96.70

Q30 (%) 90.06 90.02 89.84 90.11 89.76 90.30

GC content (%) 49.31 48.70 48.99 48.60 48.98 48.35
Total mapped reads 64,983,672 70,550,893 83,756,195 67,730,446 72,506,607 62,959,041
Unique mapped reads 61,806,076 66,466,874 79,010,564 64,942,605 68,247,434 59,232,077
Multiple mapped reads 3,177,596 4,084,019 4,745,631 2,787,841 4,259,173 3,726,964
Spliced mapped reads 16,046,950 14,852,291 18,975,442 12,296,897 14,147,055 16,682,423
Mapping rate (%) 86.06 87.02 87.95 87.39 87.06 88.25
Insert size (SD) 200 (57) 211 (55) 201 (57) 189 (51) 196 (54) 198 (57)

Q20 and Q30 represent the proportion of bases with a Phred quality score greater than 20 and 30, respectively.

doi:10.1371/journal.pone.0136765.t002

reduction were conducted to refine the functional annotations. All steps were carried out at the
default settings recommended by Blast2GO.

Results
Overall assessment for mapping statistics

The RNA-Seq of six duodenal epithelial samples yielded around 513.8 million of raw 100-bp
paired-end reads. After quality filtering, each sample remained approximately 8.1 gigabases
(Gb) high-quality sequence data, ranging from 7.1 to 9.5 Gb. Using TopHat2 aligner, more
than 86.06% of clean reads per sample were mapped back to the Galgal4 assembly. Almost
94.08-95.88% reads were aligned in a unique manner, while 4.12-5.92% as multiple-mapped
reads. The detailed information of data quality and mapping statistics is presented in Table 2.
Among all mapped reads, the vast majority of which (73.79-78.20%) fell into annotated exons,
16.27-20.59% was within the large intergenic territory, and only 4.85-5.98% was located in
introns (Fig 1).

Differential expression profiling

As a preliminary, we used HTSeq to determine the number of aligned reads per gene across all
samples. According to the defined counting criterion, 75.13-77.79% of mapped reads were suc-
cessfully matched to known gene model, and the remaining 22.21-24.87% were classified as
“ambiguous” (reads which assigned to multiple genomic features) or “no feature” (reads which
could not be assigned to any genomic feature). For enhancing the statistical power, weakly
expressed genes were first filtered out according to derived Jaccard similarity index from
HTSFilter package. Finally, those genes with normalized expression levels less than proposed
threshold 6.473 in all six samples were removed, resulting in a total of 13,235 (77.36%) genes to
be fed to DESeq2 for subsequent differential analysis.

In total, we detected 41 significant differentially expressed genes (DEGs) in response to
divergent RFI based on aforementioned cutoffs. Of these putative genes, 21 were down-regu-
lated in the low RFI group and the other 20 were up-regulated in the same group (Table 3, Fig
2). Moreover, we found that only five DEGs are located in seven previously reported QTL
regions associated with feed efficiency traits (Table 3). To validate the accuracy of our
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Fig 1. The percentage of reads mapped to exonic, intronic and intergenic regions.

doi:10.1371/journal.pone.0136765.9001

predictions, 10 DEGs were randomly selected for qRT-PCR assays using the same RNA sam-
ples used for RNA-Seq. Primer sequences and validation results are listed in S1 Table. The
comparative results of the fold changes predicted by RNA-Seq and qRT-PCR were displayed in
Fig 3. For 10 chosen DEGs, nine showed the concordant expression patterns between RNA-Seq
and qRT-PCR results (Fig 3A). After excluding the only one gene with opposite expression
level, the computational and experimental fold changes in our study also showed a strong posi-
tive correlation with R* = 0.9449 (Fig 3B).

Functional annotation of differential expressed genes

To investigate the associated functional categories of the 41 most significant genes, enriched
GO terms and pathways were determined by the GOSeq package. It should be note that no one
GO term or pathway remained statistically significant after Benjamini-Hochberg correction,
likely due to incomplete gene annotation information in chickens. Therefore, we kept catego-
ries with an unadjusted threshold of P-values < 0.05 and at least two DEGs in the background
terms to assess the potential functions. Finally, we identified 17 plausible GO terms which are
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Table 3. Detailed information of differentially expressed genes responsible for divergent RFI.

Ensembl gene ID? Gene name Chr Log2 FC (Low / High) P-value FDR Reported QTL (ID)
ENSGALG00000007596 - 12 1.79 3.30E-09 4.29E-05
ENSGALG00000000498 ACE 27 0.83 9.51E-08 0.000619
ENSGALG00000007028 - 4 -1.65 3.10E-07 0.001344
ENSGALG00000005065 PLA2G4A 8 -0.78 1.53E-06 0.004961
ENSGALGO00000009341 CRAMP1L 14 -1.00 5.10E-06 0.007383
ENSGALG00000009372 PHC3 9 -1.02 7.95E-06 0.007383
ENSGALG00000013738 OPTN 1 0.72 6.01E-06 0.007383
ENSGALG00000016400 RSAD2 3 1.09 7.61E-06 0.007383
ENSGALG00000019211 MAEL 1 1.38 3.62E-06 0.007383 FCR QTL (1821)
ENSGALG00000020488 Cllorf24 5 0.71 7.77E-06 0.007383
ENSGALG00000021040 HAGHL 14 1.02 4.88E-06 0.007383
ENSGALG00000021262 GHITM 6 0.66 6.44E-06 0.007383
ENSGALG00000021274 - 17 1.01 7.21E-06 0.007383
ENSGALG00000009560 MSMO1 4 0.63 8.90E-06 0.007719 FCR QTL (6688), RFI QTL (6689)
ENSGALG00000006558 WDR60 2 -1.01 1.09E-05 0.008112 FI QTL (1870)
ENSGALG00000014281 N4BP2 4 -1.22 1.15E-05 0.008112
ENSGALG00000015192 GZMM 28 -1.45 1.19E-05 0.008112
ENSGALG00000027166 ART7B 1 1.06 1.18E-05 0.008112
ENSGALG00000002042 KNOP1 14 -0.83 1.94E-05 0.012594
ENSGALG00000026299 C3orf52 1 0.91 2.57E-05 0.015886
ENSGALG00000002643 SELP 8 -0.69 2.82E-05 0.016463
ENSGALG00000015353 BBX 1 -0.95 2.91E-05 0.016463
ENSGALG00000009006 - 2 0.60 3.05E-05 0.016505
ENSGALG00000003972 FAXDC2 13 0.92 4.55E-05 0.022748
ENSGALG00000005441 NFIB z -0.94 4.76E-05 0.022906
ENSGALGO00000007996 ANKRD44 7 -0.94 5.33E-05 0.024778
ENSGALG00000005453 PLCG2 11 -0.96 5.56E-05 0.024925 FCR QTL (6734)
ENSGALG00000003719 CHD9 11 -1.12 6.82E-05 0.028419
ENSGALG00000010311 NAV3 1 -0.88 6.74E-05 0.028419 RFI QTL (6674), FCR QTL (6675)
ENSGALG00000021235 NPY6R 13 1.11 6.99E-05 0.028419
ENSGALG00000007412 MPZL2 24 1.03 8.06E-05 0.031747
ENSGALG00000006818 KMT2A 24 -1.17 8.89E-05 0.033025
ENSGALG00000011227 CDS1 4 0.64 0.000101 0.035376
ENSGALG00000011805 - 4 0.73 9.81E-05 0.035376
ENSGALG00000009791 PROX1 3 -1.10 0.000111 0.036161
ENSGALG00000017283 CCND2 1 -1.15 0.00011 0.036161
ENSGALG00000017204 SESN3 1 -1.33 0.000128 0.040612
ENSGALGO00000013846 KIAA1244 3 -1.23 0.000134 0.041432
ENSGALG00000023925 - 6 0.81 0.000148 0.044899
ENSGALG00000014700 DHX29 z -0.98 0.000157 0.045423
ENSGALG00000020679 PLEKHS1 6 0.81 0.000155 0.045423

Abbreviations: Chr = chromosome; FC = fold change; FDR = false discovery rate; FCR = feed conversion ratio; RFI = residual feed intake; Fl = feed
intake.
8ldentification of the gene according to Ensembl genes database 76

doi:10.1371/journal.pone.0136765.t003
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doi:10.1371/journal.pone.0136765.9002

mainly involved in organic acid biosynthetic process, carboxylic acid biosynthetic process,
small molecule biosynthetic process, carboxylic acid metabolic process, single-organism bio-
synthetic process and lipid metabolic process (S2 Table). The KEGG pathway analysis revealed
six overrepresented pathways, including steroid biosynthesis, p53 signaling pathway, glycero-
phospholipid metabolism, VEGF signaling pathway, phosphatidylinositol signaling system and
metabolic pathways (S3 Table).

Landscape of intergenic transcripts

Considering that a high percentage (18.88%) of total mapped reads were assigned to intergenic
regions, identifying and characterizing these unknown transcripts would be beneficial to
improve current gene model. A total of 36,513-39,527 transcripts per sample were assembled
from Cufflinks software, of which 43.09-46.72% were predicted to have a complete match with
the annotated intron chain, 25.27-27.68% were potentially novel isoforms of known genes and
15.67-17.21% may involve the novel intergenic transcripts. A summary about transcripts clas-
sified into different classes is shown in Table 4. To survey the architecture of intergenic-
expressed regions, all six samples were merged using Cuffmerge command, resulting in a total
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doi:10.1371/journal.pone.0136765.9003
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Table 4. Summary of transcripts assembled (TA) with Cufflinks in each sample.

Class code® DW1? DW3 DW4 DW5 DW6
TA % TA % TA % TA % TA % TA %

= 16,979 46.10 17,074 44.69 17,060 46.72 17,034 43.09 17,016 45.37 16,971 45.35
c 4 0.01 3 0.01 3 0.01 4 0.01 5 0.01 4 0.01
e 751 2.04 881 2.31 751 2.06 805 2.04 739 1.97 604 1.61
i 1,609 437 2,215 5.80 1,811 4.96 3,711 9.39 2,241 5.98 2,338 6.25
j 10,196 27.68 9,934 26.00 9,537 26.12 9,989 25.27 10,054 26.81 10,031 26.81
o 393 1.07 346 0.91 343 0.94 341 0.86 363 0.97 411 1.10
p 972 2.64 996 2.61 881 2.41 1,044 2.64 1,025 2.73 1,009 2.70
s 0 0.00 0 0.00 0 0.00 2 0.01 1 0.00 1 0.00
u 5,771 15.67 6,575 17.21 5,951 16.30 6,391 16.17 5,899 15.73 5,884 15.72
X 155 0.42 179 0.47 176 0.48 206 0.52 161 0.43 169 0.45
Total 36,830 100.00 38203  100.00 36,513 10000 39,527 100.00 37,504 100.00 37,422  100.00

aDW1 to DW3 correspond to chickens of the low residual feed intake group, while DW4 to DW6 correspond to chickens of the high residual feed intake
group

bClass codes described by Cuffcompare: " = " Complete match of intron chain, "c " Contained in the reference annotation, "e" Possible pre-mRNA
fragment, "i " An single exon transcript falling entirely within a reference intron, "j " New isoform, "0" Unknown, generic overlap with reference, "p" Possible
polymerase run-on fragment, “s” An intron of the transfrag overlaps a reference intron on the opposite strand, "u" Unknown, intergenic transcript, “x”
Exonic overlap with reference on the opposite strand.

doi:10.1371/journal.pone.0136765.t004

of 9,796 non-redundant and novel intergenic transcripts. After strict quality assurance proce-
dures, a total of 472 qualified transcripts were included into the downstream analyses. Accord-
ing to the putative CPC scores of analyzed transcripts, 38 were predicted as transcripts with no
coding ability and 253 were classified as protein-coding transcripts. It should be note that a
majority of coding transcripts (156 out of 253, 61.66%) were located in those unknown contigs
while 38.34% were assigned to anchored chromosomes.

Potential functional roles for coding transcripts

The list of all 253 coding transcripts arising from intergenic regions was analyzed using Blas-
t2GO tools to provide insight into their potential biological functions. Out of these transcripts,
163 could be assigned at least one GO term, generating a total of 1,375 GO classifications (54
Table). All these transcripts were grouped into 30 GO functional categories at level 2, which
were distributed under the three main categories of biological process (BP, 16), molecular func-
tion (MF, 8), and cellular components (CC, 6) (Fig 4). Within the BP category, cellular process
(17.08%) was the most dominant group, followed by metabolic process (14.59%) and single-
organism process (12.99%). Two sub-categories of binding (42.02%) and catalytic activity
(32.45%) were enriched in MF group. Regarding CC category, there were three highly repre-
sented clusters including cell (34.47%), organelle (29.35%) and macromolecular complex
(19.11%) compared to other three sub-categories.

Discussion

Recently, the increasing feed costs urge us to breed more efficient chickens through genetic
improvement for profit maximization. Despite that several QTLs associated with RFI as a mea-
sure of feed efficiency have been identified, further refined exploration at the gene level is still
required. To elucidate the genetic architecture underlying RFI, we provided a pioneering and
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Fig 4. Histogram presentation of gene ontology (GO) term for putative coding transcripts. The GO terms were classified into different categories at
level 2.

doi:10.1371/journal.pone.0136765.g004

comprehensive transcriptome profiling based on six chickens with extreme RFI performances.
Our findings not only unearth many promising candidate genes implicated in RFI, but also
gain new insight into their biological effects on feed efficiency. Evaluation of genetic merit
based on functional genes would accelerate the genetic improvement of efficient chickens in
the foreseeable future. In addition, assessing the global transcriptome landscape and annotating
novel intergenic transcripts would assist in discovering new gene structures and improve cur-
rent gene models.

The current RNA-Seq work provided greater sequence depth and obtained higher propor-
tions of mapped reads than several previous chicken transcriptome studies ranging from 64.00
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to 85.00% [40-43]. The high-quality sequences and superior mapping rates enabled the accu-
racy and reliability of further differential expression analysis. Despite that we enhanced the
detection power of DEGs recommended by a previous study [28], the number (n = 41) of
DEGs was still not high. The value is very close to a recent chicken RNA-Seq result (n = 40)
[24], but is lower than another RNA-Seq experiment in chickens (n = 164) [40]. Firstly, the
experimental population is a pure line of brown-egg dwarf layers with lower genetic variation
at a global level. The similar genetic basis between two divergent conditions may cause concor-
dant expression signals for most genes, and reduce the number of DEGs occurring at random
[24]. Moreover, the number of DEGs was also greatly influenced by different detection algo-
rithms and biological replicates [44-46]. Compared with QuasiSeq and DESeq used in the two
aforementioned papers, DESeq2 (successor of DESeq) method provides greater inferential
power in a typical RNA-Seq experiment with small replicate numbers [32, 45, 47].

Currently, the chicken QTL database deposited only 37 QTL regions associated with feed
efficiency traits [34], and most of these QTLs suffered from wide confidence intervals covering
dozens of genes or variants. This study is the first report for identification of functional deter-
minants involved in RFI at the gene level by RNA-Seq in chickens. However, of particular
interest is the poor concordance between DEGs and reported QTLs, which is in agreement
with a previous study in chicken [48]. This outcome suggested that feed efficiency traits may be
controlled by diverse QTLs or genes in different breeds, and pursuing the genetic evidence of
feed efficiency by multiple methods and different populations is extremely essential.

To confirm the putative results from RNA-Seq, we randomly selected a subset of DEGs for
qRT-PCR assays. Overall, there was excellent agreement and high concordance between the
computational and experimental results, which was similar to some previous results in animals
[23, 24, 40] and revealed good detection sensitivity and accuracy. After functional enrichment
analyses, most GO terms and KEGG pathways were mainly involved in small molecule biosyn-
thetic and metabolism processes. The results were also in accordance with several previous
studies in cattle and pigs [6, 49, 50], and indicated that all identified DEGs may play important
roles in controlling RFI through affecting digestive and metabolic processes [51]. It should be
noted that negative genetic correlations between digestive efficiency and three feed efficiency
traits (RFL, FI and FCR) were found [48], suggesting that the stronger digestive and metabolic
abilities could lead to greater nutrient availability and compensate the lower feed intake in the
more efficient chickens.

Generally, the difference in RFI performance between individual chickens attributes to five
major biological processes including feed intake, digestibility and associated energy costs,
metabolism and stress, physical activity and thermoregulation [51, 52], meaning that putative
genes involved in these processes could be regarded as promising candidates associated with
RFI. Considering that it is too redundant to discuss all genes and several genes do not have
clear function in chickens, we only select five representative genes with potential functional evi-
dence in feed efficiency.

As the most significant gene archived in the NCBI database, angiotensin I converting
enzyme (peptidyl-dipeptidase A) 1 (ACE) has been reported to be a key element of the renin-
angiotensin system (RAS) which can influence body energy homeostasis, fat accumulation and
glucose tolerance [53, 54]. Particularly, ACE gene plays an important role in converting the
inactive decapeptide angiotensin I (Angl) into the bioactive octapeptide angiotensin II (Ang
IT). Some previous results have demonstrated that infusion of Ang II could lead to reduced feed
intake and body weight in rats [55-57]. In agreement with these studies, low RFI chickens con-
sumed an average of 25 g less feed than their counterparts ranked as high RFI in the present
work. In addition, another study revealed that homozygous ACE knockout mice had higher
energy expenditure related to increased fatty acid metabolism in the liver compared with wild-

PLOS ONE | DOI:10.1371/journal.pone.0136765 September 29, 2015 13/19



@’PLOS ‘ ONE

Global Transcriptome Profiling for Feed Efficiency

type mice [58]. This result meant that less energy was used for growth and production in the
same feed intake, which would result in higher RFI. Therefore, we speculated that the increased
expression of ACE gene in the low RFI group may optimize the feed efficiency by reducing feed
intake and/or energy expenditure.

Some biological pathways like lipid metabolism and cholesterol biosynthesis were identified
to be associated with RFI [50, 59]. A previous study suggested that the gene encoding the radi-
cal S-adenosyl methionine domain containing 2 (RSAD2) could serve as a modulator of lipid
content and affect the lipid to protein ratio in the liver [60]. The high expression level of
RSAD2 was always found in the tissue with the lower fat deposition. Additionally, some results
supported that several body fat traits together with serum leptin concentration were positively
related to RFI performance [51, 61]. The up-regulation of RSADZ in the low RFI group may
lead to decreased feed intake, high energy utilization and few energy costs by modulating fatty
acid and leptin metabolism. Furthermore, another two significantly differential genes, cytosolic
calcium-dependent phospholipase A2, group IVA (PLA2G4A) and fatty acid hydroxylase
domain containing 2 (FAXDC2), were suggested to be implicated in lipid metabolism, steroid
biosynthesis and metabolic pathways [62, 63]. The expression alterations of the two genes may
cause the difference in the digestive and metabolic abilities between the low and high RFI
groups.

Oxidative stress response is also an important factor influencing RFI, because the procedure
may be an energy-demanding process. Two previous studies indicated that high RFI individu-
als were susceptible to stress [64, 65]. As a member of the sestrin family, sestrin 3 gene (SESN3)
is involved in the maintenance of physiological concentrations of reactive oxygen species, and
participates in the oxidative stress pathway [66, 67]. Lower respond to environmental stressors
may need fewer energy costs and show better feeding behavior, resulting higher feed efficiency.
Opverall, RFI performance is a complex physiological process and variation in RFI may repre-
sent numerous intrinsic factors. Although we have identified 41 promising candidate genes,
further investigation by increasing sample size and integrating different algorithms is critical to
elucidate the biological mechanisms behind RFL.

It should be noted that an average of 18.88% matched reads were mapped to intergenic
areas, suggesting that the current gene annotation in the chicken genome still needs to be fur-
ther improved to determine the structures and functions of novel genes [68]. During transcript
assembly and coding potential prediction, we employed stringent quality management to
exclude likely false positives, resulting in fewer transcripts compared with a previous study
[42]. In fact, the 38 putative non-coding transcripts could be regarded as long intergenic non-
coding RNA (lincRNA) based on our quality control procedure. The fewer lincRNAs may be
due to the fact that our RNA-Seq libraries are based on poly(A)+ mRNAs selection protocol. In
this sense, only the lincRNAs with poly(A) tails could be identified while a number of tran-
scripts are known to lack a classical poly(A) tail [69]. Hence, to detect and characterize all
IncRNAs in detail, the specific library preparation procedure with rRNA depletion to enrich
for non-rRNAs must be required [70]. Most protein-coding transcripts were located in
unknown genomic contigs, suggesting that these genomic sequences may contain more novel
genes and need further annotation [68, 71]. The Blast2GO results demonstrated that a majority
of coding transcripts were responsible for fundamental biological regulation and metabolism
processes.

Conclusions

In summary, we conducted a comprehensive differential expression analysis and characterized
global trancriptome architectures based on high-quality RNA-Seq data, and subsequently
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performed functional annotation for these putative associated genes and protein-coding tran-
scripts. We identified a total of 41 differentially expressed genes associated with RFI. These
promising genes play a critical role in digestibility, metabolism, stress response and energy
homeostasis, hence resulting in divergent RFI performances. Among 10 randomly chosen
genes, nine were successfully validated. We also discovered 253 intergenic coding transcripts,
which may be from some unannotated genes. Our findings lay the foundation for comprehen-
sive understanding of RFI, are beneficial to direct future breeding schemes improving feed effi-
ciency and assist in optimizing the current gene models.
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