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Abstract
Prunus mongolicaMaxim, which is widely established in the Gobi Desert, shows extreme

tolerance to drought. However, there is a lack of available transcriptomic resources for this

species related to its response to water deficiency. To investigate the mechanisms that

allow P.mongolica to maintain growth in extremely arid environments, the response of

P.mongolica seedlings to drought stress was analyzed using morphological, physiological,

biochemical and high-throughput sequencing approaches. We generated 28,713,735 and

26,650,133 raw reads from no-stress control and drought-stressed P.mongolica seedlings,
respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp.

Compared with the no-stress control, 3,365 transcripts were differentially expressed in the

drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25%

(1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a de-

creasing tendency under drought stress, but the changes in the levels of hormones (auxins,

cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlarge-

ment and division; these changes were effective for promoting P.mongolica survival in
Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due

to their importance in plant resistance to drought stress. We found that all of the plasma

membrane intrinsic protein transcripts were down-regulated in the drought-stressed treat-

ment, whereas drought did not affect the expression of nodulin intrinsic protein or small

basic intrinsic protein transcripts in P.mongolica seedlings. In addition, activation of iron su-

peroxide dismutase transcription and enhanced transcription of manganese superoxide dis-

mutase were observed in P.mongolica to promote tolerance of drought stress. This study

identified drought response genes in P.mongolica seedlings. Our results provide a signifi-

cant contribution to the understanding of how P.mongolica responds to drought stress at

the transcriptome level, which may help to elucidate molecular mechanisms associated

with the drought response of almond plants.
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Introduction
Most terrestrial ecosystems in nature are rain fed, and drought poses a major limitation to pro-
ductivity in these ecosystems. Recurrent dry periods and scattered rainfall patterns have re-
sulted in water shortages and the consequent loss of or damage to crop production in
sufficiently rain-fed areas [1]. In addition, increased atmospheric CO2 concentrations may in-
crease in the severity of drought conditions of some arid and semi-arid regions [2]. Atmospher-
ic CO2 concentrations rose from 280 to 368 ppm during the 20th century and may rise
to> 700 ppm by the end of the 21st century (IPCC, 2007). Elevated CO2 concentration leads
to the increase of global mean temperature, reduces the rainfall and increases the evaporation
especially in arid and semi-arid regions [3,4]. According to a recent estimation, the economic
losses caused by drought may be as high as $80 billion per year worldwide, which may be due
not only to the lack of water causing a decreased yield potential but also to the timing and dura-
tion of drought stress events in relation to plant phenological processes [5]. Droughts are ex-
pected to continue becoming longer and more severe in some regions. However, high relative
yields of certain genotypes have been documented following exposure to drought stress [6].
Thus, it is important to reveal the unique molecular and biochemical mechanisms associated
with drought tolerance in some extreme plants, such as desert plants.

Mongolian almond (Prunus mongolicaMaxim, Fig 1) is distributed widely in the Gobi Des-
ert of the Mongolian plateau. This species is an ancient relict flora that has been recorded as a
rare plant on the China Plant Red List and adopted as a state key conservation species [7].
While P.mongolica grows well in water- and nutrient-limited desert areas and plays an impor-
tant role in the local economy and ecological environment, no studies have been reported in-
vestigating the mechanisms (particularly the molecular mechanisms) underlying the drought
tolerance of this shrub.

The drought stress response in plants is followed by morphological and biochemical
changes, such as a deeper root system, closure of stomata, shedding of older leaves [8],
strengthening of reactive oxygen species (ROS) scavenging mechanisms and increases in the
accumulation of osmoregulation substances [9]. These changes are effective for allowing sur-
vival under drought conditions. The mechanisms underlying the response to drought stress
can be measured at many different levels, from the whole plant to the molecular level. Because

Fig 1. P.mongolica seedling, before (a) and after (b) the drought-stressed treatment.

doi:10.1371/journal.pone.0124442.g001
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stress responses are controlled by the plant genome, recent efforts have focused on the molecu-
lar response of the plants to drought stress [10]. The development of next-generation, high-
throughput sequencing technologies has provided a significant and low-cost way to generate
genome/transcriptome resources for non-model organisms at large scales [11]. Transcriptome
research conducted in Agave deserti [12], Boehmeria nivea [13], Chenopodium quinoa [14],
Manihot esculenta [8], Paulownia australis [15], Populus euphratica [16] and Pseudotsuga
menziesii [17] has been used to successfully identify differentially expressed genes, implicating
several biosynthetic pathways that assist in the overall tolerance to drought stress. For Prunus
plants, Alimohammadi et al (2013) [18] identified the water-deficit resistance genes in wild al-
mond (P. scoparia) using cDNA-AFLP technology, the drought stress-responsive miRNAs in
peach (P. persica) [19] and the freezing stress-responsive genes in P. dulcis [20] were analyzed
by the high-throughput sequencing technology.

In this study, we characterized the seedling transcriptome of P.mongolica during the re-
sponse to drought stress. A core set of stress-related transcripts were determined, together with
morphological changes (growth status), physiological process and biochemical functions, to
provide a comprehensive analysis of drought acclimation in this species. The acquired infor-
mation may provide new insights into the molecular mechanisms underlying P.mongolica’s re-
sponse to drought stress.

Materials and Methods

Seedling cultivation and water stress treatments
The original seeds used in this study were collected from the wild P.mongolica which distribut-
ed in the Tengger Desert, Inner Mongolia, Northwest China (103°200 E, 39°140 N) on August
10, 2012. After their endocarp being removed by physical damage, the seeds were surface-steril-
ized with 10% H2O2 for 30 min and washed with sterilized water. Then they were germinated
at 27°C in Petri dishes (diameter = 9 cm). The germinated seeds were transplanted into plastic
pots (1 seedling per pot, cylindrical pots: 12×8×15 cm) containing 550 g of sterilized vermicu-
lite (121°C, 90 min) and watered weekly with 150 mL of Hoagland’s solution for 45 days before
being subjected to stress treatment in an experimental greenhouse under controlled environ-
mental conditions (irradiation: 16.8 klx; day/night cycle: 14/10 h; temperature: 25/20°C).

In total, 72 uniform 45-day-old P.mongolica seedlings, including 36 controls and 36 water-
deprived plants, were used to determine all parameters nondestructively throughout the exper-
iment. The controls (WW) were watered daily to field capacity, with a 48.7% soil volumetric
water content being recorded (measured using a Field Scout TDR 300 Soil Moisture Meter,
Spectrum Technologies, USA). The drought stress treatment (DS) was implemented to simu-
late a gradual soil drying process, which was similar to a natural drought event. This treatment
began on March 10, 2013 and was extended for 15 days without irrigation. The soil volumetric
water content was 6.3% after drought stress.

All of the P.mongolica seedlings were harvested after being cultured in the greenhouse for a
total of 60 days. Twelve seedlings from each treatment were thoroughly washed with sterile
water. Rapid freezing was performed by submerging the samples in liquid nitrogen, followed
by storage at -80°C until RNA extraction and high-throughput sequencing. The other 24 seed-
lings from each treatment were collected to assess growth and physiological and biochemical
parameters as described below.

Growth, physiological and biochemical measurements
To evaluate the growth status of P.mongolica seedlings under drought conditions, growth-re-
lated parameters were determined in 24 seedlings from each treatment at the initial stage of
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water stress and at the final harvesting time, including the leaf number, length and width. After
drought stress, the contents of auxin, abscisic acid and cytokinins were quantified via enzyme-
linked immunosorbent assay (ELISA) [21] according to the manufacturer’s protocol, and total
superoxide dismutase (SOD) (EC 1.15.1.1) activity was assessed according to the method de-
scribed by Alvarez et al. (2009) [22].

All physiological measurements were performed daily at 11:00 during the process of
drought stress. The net photosynthetic rate (Pn), stomatal conductance (Gs) and leaf water po-
tential (LWP) were determined to identify the physiological adjustment of P.mongolica to the
water stress treatment. Gs and Pn were measured using a LICOR-6400 portable photosynthesis
system (LI-COR Inc., USA). The LWP (ψleaf) was measured on the abaxial leaf surface in intact
plants using a PSYPROWater Potential System (WESCOR Inc., USA).

All data obtained from the growth, physiological and biochemical measurements were sub-
jected to one-way ANOVA at each harvesting time using SAS software (SAS Institute Inc.,
USA). The different treatment types were compared via Duncan’s multiple range tests at a 5%
significance level (n = 12).

RNA extraction, mRNA library construction and sequencing
Total RNA was prepared using TRIzol (Invitrogen) from a mixture of 12 seedlings from each
treatment. RNA integrity was analyzed using an Agilent bioanalyzer (Agilent Technologies
2000). mRNAs were purified with oligo (dT) magnetic beads, then fragmented and used to syn-
thesize cDNA following the TruSeq RNA Sample Preparation v2 Guide (Illumina). Sequencing
adaptors were ligated to cDNA fragments through PCR amplification. Raw sequencing data
were generated using the Illumina HiSeq 2000 system (Illumina, USA) and the sequencing pro-
cedure was performed by CapitalBio Corporation (China). The raw data presented in this pub-
lication were deposited in the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/sra/)
and are accessible using the following SRA accession number: SRP049799 (experiment acces-
sion numbers SRX759607 for the DS treatment and SRX759609 for the WW treatment).

Processing and assembly of sequencing reads
The raw data were processed before assembly. Low-quality reads were excluded according to
their compliance with the following standards: (1) from the beginning base of each read, the qual-
ity value of each base cannot be less than 10—this base and the following bases were removed if
the quality value was less than 10; and (2) the length of reads (2 reads of paired-end sequencing)
must be greater than 30 bp after filtering. A de novo assembly method [23] was applied due to the
lack of available genome information for P.mongolica. The obtained clean reads (Q20, calculate
by CASAVA 1.8.2) were assembled with assembly software (trinityrnaseq-r2013-02-25) to con-
struct unique consensus sequences [24]. The trimmed Solexa transcriptome reads were mapped
onto the unique consensus sequences using Bowtie2 (Bowtie parameter: –v3—all—best—strata)
[25]. A Perl script was written to process the mapping results and generate transcripts.

Functional annotation and classification
The obtained transcripts were compared with the NCBI non-redundant nucleotide database
(NT, by Jan 2013) and the non-redundant protein database (NR, Nov, 2014) using BLASTN
[26] and BLASTX [26], respectively, with the same E-value cutoff of�e-5. Transcripts were
identified based on comparison of sequence similarity against SWISS-PROT (downloaded
from the European Bioinformatics Institute: ftp://ftp.ebi.ac.uk/pub/databases/swissprot/ by
Jan, 2013) using BLAST [26] at E-values�e-10. Transcripts were assigned functional annota-
tion through comparison of sequence similarity against the Clusters of Orthologous Groups of
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proteins database (COG, http://www.ncbi.nlm.nih.gov/COG/) [27,28] with BLAST [26] at E-
values�e-10, and a Perl script was written to assign functional classes to the transcripts. The
transcripts were first compared with the Kyoto Encyclopedia of Genes and Genomes database
(KEGG, http://www.genome.jp/kegg/, release 58) [29] using BLASTX [26] at E- values�e-10. A
Perl script was employed to retrieve KEGG Orthology (KO) information from the BLAST re-
sults and subsequently establish pathway associations between the transcripts and database.
InterPro domains [30] were annotated with InterProScan [31] Release 27.0, and functional as-
signments were mapped onto the gene ontology (GO, http://beta.geneontology.org) [32];
WEGO (http://wego.genomics.org.cn/) [33] was used for GO classification and to draw the
GO tree.

Detection of differentially expressed transcripts
Similar to the credibility interval approaches reported for the analysis of SAGE [34] data, we
employed IDEG6 [35] to identify transcripts showing statistically significant differences in rela-
tive abundance (gene expression levels were calculated using the transcript read number per
million (TPM) method [36]) between the two libraries. The ratio was used to determine the dif-
ferentially expressed transcripts. Transcripts exhibiting ratio values above 2.0 were regarded as
up-regulated transcripts, while transcripts presenting values below 0.5 were regarded as down-
regulated transcripts [16].

ratio ¼ transcript TPMðDSÞ þ 1

transcript TPMðWWÞ þ 1
ð1Þ

Note: 1 is added to the TPM value to prevent the inability to perform the calculations when
the TPM value is equal to 0.

Quantitative real-time PCR
Quantitative real-time PCR (qRT-PCR) was performed to validate the results obtained from
high-throughput sequencing. New RNA was isolated using TRIzol (Invitrogen) from a mixture
of 12 seedlings from each treatment, purified with absolute alcohol and treated with DNase
(EN0521, Thermo). The RNA was reverse-transcribed using the RevertAid First-Strand cDNA
synthesis Kit (K1621, Thermo) following the manufacturer’s instructions. Quantitative reverse
transcription PCR (qRT-PCR) was performed using the LightCycler 480 real-time PCR system
(Roche). The reaction mixture (25 μL) contained 2× Maxima SYBR Green qPCRMaster Mix
(12.5 μL), 1 μM each of the forward and reverse primers (1 μL, the primers are listed in S1
Table), 2 μL of template cDNA and 9.5 μL of nuclease-free water. PCR amplification was con-
ducted under the following conditions: 95°C for 10 min, followed by 40 cycles at 95°C for 15 s
and 60°C for 60 s. Three independent biological replicates for each sample and three technical
replicates of each biological replicate were analyzed in the quantitative real-time PCR analysis.
The gene expression of the selected transcripts was normalized against an internal reference
gene, glyceraldehyde-3-phosphate dehydrogenase [37] (GAPDH) (comp67082_c0_seq1). Rela-
tive transcript expression was calculated using the 2-ΔΔCt method [38].

Results and Discussion

RNA-seq of P.mongolica transcriptome
A total of 28,713,735 and 26,650,133 raw reads were generated from the WW and DS P.mon-
golica seedlings, respectively. After removing low-quality reads, a total of 26,851,249 clean
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reads were obtained for the WW treatment and 24,826,653 clean reads were obtained for the
DS treatment. To generate more complete and representative information about the P.mongo-
lica transcriptome, all of the clean reads from both libraries were mapped to transcripts. A total
of 67,352 transcripts were obtained, ranging from 0.2 to 2.5 kb, with an average length 874.44
bp (Fig 2). Compared with previous studies [11,16,17] conducted using the 454 platform, both
our results and the results of other studies [39,40] employing the same Solexa platforms show
that Solexa sequencing technology can generate more clean reads mapped to transcripts and
can be widely applied in non-model plant transcriptome sequencing. In addition, 63,613 tran-
scripts were assembled in the DS library, which was a greater number than in the WW library,
with 62,107 transcripts. Our results were consistent with previous conclusions indicating an ac-
tivated transcriptome in plants in response to drought stress [17,41].

General features of the transcriptome of P.mongolica
The general features of the transcriptome of P.mongolicamay yield potential information to
understand the drought adaption of this shrub. The results for the 67,352 transcripts when
matched with 7 databases are presented in Table 1. In total, 55,126 (81.8%) transcripts showed
matches with the Nr database, 32,716 (48.6%) with the SwissProt database, and 29,719 (44.1%)
with the InterPro database. Of the 55,126 transcripts displaying the best hits in the Nr database,

Fig 2. Size distribution of the total P.mongolica transcripts.

doi:10.1371/journal.pone.0124442.g002

Table 1. Summary of P.mongolica transcripts matchedwith the Nt (non-redundant nucleotide), Nr (non-redundant protein), SwissProt, COG (Clus-
ters of Orthologous Groups of proteins), KEGG (Kyoto Encyclopedia of Genes and Genomes), InterPro and GO (Gene Ontology) databases.

Database Transcript annotation No. (Percentage) E cut off Database version

Nt 47320 (70.3%) 1.00×e-5 201301

Nr 55126 (81.8%) 1.00×e-5 201411

SwissProt 32716 (48.6%) 1.00×e-10 201301

COG 21176 (31.4%) 1.00×e-10 No version

KEGG 47306 (70.2%) 1.00×e-10 Release 58

InterPro 29719 (44.1%) — InterProScan 4.8

GO 24553 (36.5%) — V36

Total 67357 (100%) — —

doi:10.1371/journal.pone.0124442.t001
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41,656 (75.6%) transcripts corresponded to known plant’s protein sequences, with 28,069,
2,236, 5,205, 3,238, 1,109, 1,027 and 772 transcripts matching sequences from P. persica, other
Prunus plants (P. nume, P. dulcis and P. avium), Vitis vinifera, Populus trichocarpa, Glycine
max,Malus spp. andMedicago truncatula, respectively (Fig 3). This result indicated that P.
mongolica’s transcripts have a high level (50.9%) of annotation similarity with peach. When
adding the same genus plants, including P. nume, P. dulcis and P. avium, this level will arise to
55.0%. In addition, we note that only 28,927 protein annotations appeared in the high quality
draft genome of peach [42], but 28,069 transcripts properly hits peach protein sequence, ac-
counted for 97.0% of peach protein sequences has been annotated. This could show high accu-
racy of our assembly and could reflect the presence of high similarity between Mongolian
almond and peach genomes. The high level of homology between peach and almond plants as
well as other Prunus genomes has been also reported in the previous reports [20,43,44]. These
similarities could indicate that the quality of our assembly is good enough to proceed to the
next steps of analysis.

For an overview of the transcripts that matched the COG database, see S2 Table. Detailed
information, including the protein name in COG, BLAST E-value, function ID, COG ID, COG
class definition and functional categories (first level and second level), is provided in S3 Table.
Among the 21,176 transcripts, nearly one-third were annotated as function unknown or had
only a general function prediction. Proteins with uncharacterized functions form a large part
of many of the currently available biological databases [45], and this situation even exists in
model plant species. The function of the proteins encoded by approximately 13% of the Arabi-
dopsis thaliana genome is classified as completely unknown, and the functions of>30% of
Arabidopsis proteins are poorly characterized [46] (http://www.arabidopsis.org/). However,
many of these genes of unknown function have been demonstrated to play a key role in the re-
sponse of plants to abiotic stresses [47]. The transcripts of unknown function found in P.mon-
golicamight also play an important role in the response of P.mongolica to drought stress, and
we will aim to elucidate the roles of these uncharacterized transcripts in our future research.

All of the transcripts were assigned a GO classification (Fig 4). In total, 31,357 transcripts
significantly matched GO terms in the molecular function category; 23,093 in the cellular com-
ponent category; and 36,684 in the biological process category. Among standard molecular

Fig 3. The distribution of the top BLAST hits for the total P.mongolica transcripts.

doi:10.1371/journal.pone.0124442.g003
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functions, 12 types of functions were covered in our data. Among these functions, binding
(13,917) and catalytic activity (12,324) were the most dominant categories. This result coin-
cides with the previous conclusion that binding and catalytic activity operate universally at the
transcriptome level [16,48]. Pathway-based analysis helps to further elucidate the roles that
genes play in different biological functions. KEGG can assign different transcripts to different
biochemical pathways using EC (enzyme commission) members. Overall, this analysis revealed
the transcripts showed similarities to sequences in the KEGG database and assigned the tran-
scripts to 232 different pathways (see S4 Table).

General analysis of differentially expressed transcripts
To identify transcripts that are critical in the drought stress response, we analyzed the differen-
tially expressed transcripts (DETs) between the DS and WW treatments. At a significance level
of 0.01 (P value) and an absolute Log2(ratio)�1, we identified 3,365 reliable DETs, including
1,876 up-regulated transcripts and 1,489 down-regulated transcripts, in the DS treatment com-
pared with the WW treatment.

Based on the GO annotations obtained using WEGO, the 3,365 reliable DETs were sub-
jected to functional enrichment analysis. The GO functional categories of the up- and down-
regulated transcripts, including biological processes, molecular functions and cellular compo-
nents, are presented in Fig 5. The GO classification results showed that the up-regulated tran-
scripts were mainly involved in the binding, catalytic activity, cellular process, metabolic
process, molecular transducer activity, translation regulator activity, envelope, death and devel-
opmental process categories, whereas the exclusively down-regulated transcripts displayed
functions in the binding, catalytic activity, cellular process, metabolic process, membrane-en-
closed lumen, nutrient reservoir activity and macromolecular complex categories.

The bottom leaves of the DS seedlings became brown and curled up, and 3.33 older leaves
were shed per seedling on average (see Table 2) under drought stress. In the sequencing data,
up-regulated transcripts with GO terms involved in death and developmental processes only
appeared under the DS treatment. These two results indicate that a portion of the plant cells
were dying and that the plants accelerated the developmental process to address drought stress

Fig 4. GO classification of the total P.mongolica transcripts.

doi:10.1371/journal.pone.0124442.g004
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[49] after an extended period without irrigation. Our findings were consistent with studies on
Populus simonii [50] and Camellia sinensis [51].

The DETs were also matched with KEGG, and the top 20 KEGG pathways are shown in
Table 3. Various significant pathways were observed to be related to P.mongolica drought tol-
erance, involving transcription factors, plant hormone signal transduction, starch and sucrose
metabolism and cysteine and methionine metabolism. Transcription factors are major players
in drought stress signaling, and some constitute major hubs in these signaling webs [52]. For
adaptation to an environment showing a water deficit, transcription factors regulate the expres-
sion of special genes [53], and the zinc finger structure of transcription factors is composed of a
polypeptide chain enriched in cysteine [54]. Thus, cysteine and methionine metabolism were
increased in the P.mongolica’s transcriptome.

Validation of data reliability by qRT-PCR
To verify the RNA-seq data, we selected 20 DETs for validation using qRT-PCR. Although the
fold changes obtained through qRT-PCR displayed some deviations compared with those ob-
tained from high-throughput sequencing (Fig 6), most qRT-PCR-tested transcripts showed a
concordant direction of change for both RNA-seq and qRT-PCR. Generally, the qRT-PCR
analysis confirmed the transcript expression pattern detected through RNA-seq, indicating
that our results were reliable.

Fig 5. GO classification of the DETs found in P.mongolica.

doi:10.1371/journal.pone.0124442.g005

Table 2. The growth status of well-watered (WW) and drought-stressed (DS) P.mongolica seedlings on March 10th and March 25th, 2013.

Treatment Leaf length (cm, 3/10/
2013)

Leaf width (cm, 3/10/
2013)

Leaf length (cm, 3/25/
2013)

Leaf width (cm, 3/25/
2013)

Number of leaves
shed

WW 3.28±0.16a 1.31±0.08a 3.78±0.23a 1.52±0.21ab 0.17±0.16b

DS 3.26±0.22a 1.33±0.15a 3.37±0.19b 1.37±0.16b 3.33±1.33a

Different letters in the same column indicate a significant difference between the WW and DS treatments: Duncan’s multiple range tests at the 5% level

(n = 12). The presented data are the means of 12 replicates, and the standard errors of the means are shown.

doi:10.1371/journal.pone.0124442.t002

Mongolian Almond Transcriptomic Response to Drought Stress

PLOS ONE | DOI:10.1371/journal.pone.0124442 April 20, 2015 9 / 19



P.mongolica photosynthesis under drought conditions
The Pn and Gs of the WW and DS seedlings are shown in Fig 7. The direction of the change in
stomatal conductance is the most important limiting factor for plant photosynthesis [55]. In
the present study, when the P.mongolica seedlings were subjected extended drought condi-
tions, the Pn and Gs showed the same decreasing tendencies observed in plants grown under
water deficit conditions (on the 4th day since the last watering); hence, our results support the
above conclusion regarding the change in stomatal conductance.

The core metabolism of plants consists of photosynthesis, which provides the energy and
basic metabolic substrates for the other major metabolic pathways [56]. Thus, transcripts an-
notated with GO terms related to the membrane-enclosed lumen, nutrient reservoir activity
and macromolecular complexes were down-regulated in the DS treatment (see Fig 5). Among
the top 20 KEGG pathways of the DETs, most of the transcripts in the two energy metabolism
categories, including photosynthesis proteins (ko00194, S1 Fig) and antenna proteins
(ko00196, S2 Fig), were down-regulated, indicating that photosystem I (PSI), photosystem II
(PSII) and the light-harvesting chlorophyll protein complex (LHC) also inhibited the photo-
synthesis of P.mongolica under the drought condition, similar to the findings of a previous
study in wheat [57].

The balance of plant hormones and DETs in hormone signal transduction
Three types of plant hormones (auxins, abscisic acid (ABA) and cytokinins), were measured to
evaluate the hormone balance of P.mongolica under drought conditions. Compared with the
WW seedlings, the ABA content increased significantly under drought conditions, whereas the

Table 3. Top 20 KEGG pathways of differentially expressed transcripts (DETs).

KEGG pathway A (B) Percentage (%) Up/Down

ko00194: Metabolism; Energy metabolism; Photosynthesis proteins 168 (35) 20.8 1/34

ko04110: Cellular processes; Cell growth and death; Cell cycle 224 (32) 14.3 8/24

ko03032: Genetic information processing; Replication and repair; DNA replication proteins 315 (29) 9.2 6/23

ko03036: Genetic information processing; Replication and repair; Chromosome 711 (27) 3.8 8/19

ko03000: Genetic information processing; Transcription; Transcription factors 362 (25) 6.9 16/9

ko04111: Cellular processes; Cell growth and death; Cell cycle-yeast 194 (24) 12.4 7/17

ko04075: Environmental information processing; Signal transduction; Plant hormone signal transduction 225 (23) 10.2 13/10

ko04121: Genetic information processing; Folding, sorting and degradation; Ubiquitin system 585 (22) 3.8 18/4

ko03110: Genetic information processing; Folding, sorting and degradation; Chaperones and folding catalysts 575 (22) 3.8 15/7

ko00230: Metabolism; Nucleotide metabolism; Purine metabolism 430 (21) 4.9 13/8

ko00500: Metabolism; Carbohydrate metabolism; Starch and sucrose metabolism 301 (21) 7.0 12/9

ko04113: Cellular processes; Cell growth and death; Meiosis-yeast 148 (20) 13.5 8/12

ko00040: Metabolism; Carbohydrate metabolism; Pentose and glucuronate interconversions 122 (20) 16.4 7/13

ko00196: Metabolism; Energy metabolism; Photosynthesis-antenna proteins 57 (20) 35.1 0/20

ko00010: Metabolism; Carbohydrate metabolism; Glycolysis/ Gluconeogenesis 361 (18) 5.0 9/9

ko00680: Metabolism; Energy metabolism; Methane metabolism 243 (18) 7.4 9/9

ko01003: Metabolism; Glycan biosynthesis and metabolism; Glycosyltransferases 307 (17) 5.5 8/9

ko04812: Cellular Processes; Cell motility; Cytoskeleton proteins 256 (16) 6.3 0/16

ko00270: Metabolism; Amino acid metabolism; Cysteine and methionine metabolism 235 (16) 6.8 12/4

ko04114: Cellular processes; Cell growth and death; Oocyte meiosis 214 (16) 7.5 8/8

A is the number of total transcripts matched with the pathway; B is the number of total DETs matched with the pathway; Up is the number of up-regulated

DETs; Down is the number of down-regulated DETs.

doi:10.1371/journal.pone.0124442.t003
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Fig 6. Histogram presentation of the Lg(Fold) of 20 DETs. Black column represents the Lg(fold change
(DS/WW)) in transcript expression measured through RNA-seq. Red column is the Lg(fold change (DS/WW))
in transcript expression measured through qRT-PCR. The internal reference gene is glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (comp67082_c0_seq1). A is oxygen-evolving ehancer protein
(comp47289_c0_seq1); B is function unknown protein (comp47789_c0_seq1); C is function unknown protein
(comp56650_c0_seq1); D is function unknown protein (comp57915_c0_seq1); E is exopolyphosphatase
(comp60350_c0_seq1); F is late embryogenesis abundant protein (comp60402_c0_seq1); G is chlorophyll
a-b binding protein (comp61248_c0_seq1); H is RSI-1 protein precursor (comp61258_c0_seq1); I is
temperature-induced lipocalin (comp62739_c0_seq1); J is protease (comp64242_c0_seq1); K is chlorophyll
A/B binding protein (comp63546_c2_seq1); L is heat-shock protein (comp64264_c0_seq1); M is L-ascorbate
oxidase (comp65578_c0_seq1); N is function unknown protein (comp67288_c0_seq3); O is light-harvesting
complex I protein (comp67308_c0_seq2); P is thaumatin-like protein (comp67881_c0_seq1); Q is BAC insert
containing Ma gene (comp68903_c0_seq1); R is dehydration-responsive protein (comp69940_c0_seq1); S
is thaumatin-like protein (comp70848_c0_seq2); T is serine/threonine-protein kinase (comp73635_c0_seq2).

doi:10.1371/journal.pone.0124442.g006

Fig 7. Net photosynthetic rate (Pn) and stomatal conductance (Gs) of well-watered (WW) and drought-
stressed (DS) P.mongolica seedlings.

doi:10.1371/journal.pone.0124442.g007
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contents of auxin and cytokinin decreased significantly (Fig 8). The immediate cause of leaf
shedding was the increased ABA contents [58]; the DS seedlings shed 3.3 old leaves over the
15-day period on average (see Table 2).

Based on the enzymes reported by Davies [59], the most homologous transcripts involved
in plant hormone signal transduction pathways in P.mongolica were examined in our RNA-
seq data (ko04075, S3 Fig). The transcription of type 2C protein phosphate (PP2C), which is
one of the most important genes involved in ABA signal transduction and is negatively regulat-
ed in the plant drought response [60], was up-regulated in the DS treatment. In contrast, the
expression levels of AUX1, AUX/IAA, Gretchen Hagen 3 (GH3), small auxin up RNA (SAUR)
and histidine-aspartate phosphorelays (AHP) were decreased; these transcripts are involved
auxin and cytokinin signal transduction. As a direct result of the changes in these 6 transcripts,
the stomata closed, and the enlargement and division of plant cells were inhibited. These results
were verified by the lower values obtained for the leaf length, leaf width (Table 2) and Gs (Fig
7) of the DS seedlings. Generally, large leaves use more water. Thus, in water-limited environ-
ments, large leaves may be disadvantageous as long as reproductive success is not completely
dependent on vegetative biomass [61,62]. Hence, the smaller shoots of P.mongolica observed
during vegetative stages may reduce water use, which may be a factor related to the survival of
this shrub in the Gobi Desert.

The leaf water potential and DETs in the aquaporin gene family
The water potential of P.mongolica leaves showed significant differences between the WW and
DS seedlings (Fig 9). The control seedlings exhibited a stable, higher leaf water potential
(LWP). In contrast, the plants grown under water-limited conditions displayed a decreased
LWP as the drought strengthened compared with their early drought response, whereas the DS
seedlings maintained a stable, lower LWP over the last 5 days. Aquaporins [63] are closely re-
lated to the maintenance of the water potential; thus, we investigated the related DETs in the
aquaporin gene family.

Aquaporin proteins facilitate osmosis by forming water-specific pores as an alternative to
water diffusion through the lipid bilayer, thus increasing the water permeability of the mem-
brane under drought condition [64]. Phylogenetic analysis has revealed that aquaporin genes
can be largely divided into at least six different subfamilies [65]: plasma membrane intrinsic
proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin intrinsic proteins (NIPs), small

Fig 8. Auxin, abscisic acid (ABA) and cytokinin contents of well-watered (WW) and drought-stressed
(DS) P.mongolica seedlings. Different letters associated with same hormone indicate a significant
difference between the WW and DS treatments: Duncan’s multiple range tests at the 5% level (n = 12).

doi:10.1371/journal.pone.0124442.g008
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basic intrinsic proteins (SIPs), hybrid intrinsic proteins (HIPs) and unrecognized X intrinsic
proteins (XIPs). Aquaporins influence plant drought resistance, but to the best of our knowl-
edge, no comprehensive analysis of all of the aquaporin genes of a given plant species has been
reported thus far.

In total, 42 transcripts belonging to five aquaporin subfamilies (excluding HIPs) were found
in our RNA-seq data (S5 Table). We identified 16 possible PIP transcripts through BLAST [26]
analysis; only one PIP transcript was significantly down-regulated at the p�0.01 level, but the
ratios of these transcripts were generally lower than 1 (except for some low-abundance
(TPM�10) transcripts). A previous study indicated that decreasing PIP expression reduces cel-
lular water loss under drought conditions [66]. Thus, P.mongolicamay adopt the same strategy
to address water deficiency. PIP gene expression is regulated by the abscisic acid (ABA) con-
centration in plants during drought stress [67], and all of the identified PIPs were down-regu-
lated in the DS treatment, which may be a result of the change in hormone (ABA) signal
transduction in P.mongolica seedlings.

Pou et al. (2013) [66] examined the role of aquaporins in regulating leaf hydraulic conduc-
tance in Vitis vinifera and found that water stress increased the expression of VvTIP1;1 but de-
creased the expression of VvTIP2;1. Additionally, the expression of VvTIP2;1 was shown to be
highly correlated with stomatal conductance, and the expression of P.mongolica TIP tran-
scripts observed in the present work is in agreement with this previous study. In addition, the
changes in TIP expression in the vacuoles of plant guard cells activate the coupled ion channel,
resulting in ion outflow, cell shrinkage and stomatal closure [68]. Cell shrinkage and stomatal
closure were also shown to result from hormone signal transduction in P.mongolica (see S3
Fig), which suggested that TIP transcript expression may be regulated by plant hormone
signal transduction.

In addition, NOD-26, SIP1 and most NIPs [69] and SIPs [70] transport small molecules
such as glycerol, urea, boric acid and silicon but show poor permeability to water. In the P.
mongolica transcriptome, most of the calculated NIP and SIP ratios ranged form 0.573 to
1.292; the ratios of PmNIP9 (comp70470_c0_seq1) and PmNIP10 (comp70470_c0_seq2) were
0.352 and 0.354, respectively, but these two transcripts are low-abundance transcripts. In P.
mongolica, the present results showed no obvious changes in NIP and SIP expression under
drought conditions.

Fig 9. The leaf water potential (LWP) of well-watered (WW) and drought-stressed (DS) P.mongolica
seedlings.

doi:10.1371/journal.pone.0124442.g009
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Total SOD activities and DETs in the SOD gene family
In total, 177 transcripts involved in antioxidant activity were defined in the RNA-seq data.
These defined functions suggested that reactive oxygen species (ROS) were generated as a re-
sult of environmental stress, and an effective ROS scavenging and signaling system may exist
in P.mongolica to address drought stress. SOD is a core enzyme in the ROS scavenging system.
It is well known that SOD may be divided and grouped into four types of categories: manga-
nese superoxide dismutase (Mn-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), iron
superoxide dismutase (Fe-SOD) and nickel superoxide dismutase (Ni-SOD); these divisions
correspond to the metallic ion in the prosthetic group [71]. Ni-SOD has only been found in mi-
croorganisms to date [72]. We observed that total SOD activity in the DS treatment was 129%
higher than in the WW treatment. Hence, the question arises of what contributions the three
types of SOD (Mn-SOD, Cu/Zn-SOD and Fe-SOD) make to increasing total SOD activity in
drought-stressed P.mongolica seedlings.

In total, 50 transcripts were predicted to show SOD activity, but most of them were low-
abundance transcripts. The expression of 10 high-abundance transcripts is presented in Fig 10.
The Cu/Zn-SOD ratios were lower than 1, which indicates that drought inhibited the expres-
sion of the Cu/Zn-SOD gene in P.mongolica. However, the expression of the Fe-SOD and Mn-
SOD transcripts was up-regulated at this time; in particular, 3 transcripts (A, D and J) were sig-
nificantly up-regulated in the DS treatment. In addition, we noted that many low-abundance
Fe-SOD transcripts were only induced in the DS library (data not shown).

Bhoomika et al. (2013) [73] indicated that the presence and elevated activity of Fe-SOD en-
hance the activities of Mn-SOD in aluminum-tolerant Oryza sativa, and Signorelli et al. (2013)
[74] found that drought induces the accumulation of Fe-SOD and Mn-SOD to high levels, but
not Cu/Zn-SOD in Lotus (Lotus corniculatus). Based on the above two studies and our results,
we can deduce that P.mongolica activates Fe-SOD genes and enhances the expression of Mn-
SOD genes to increase total SOD activity under drought stress conditions.

Fig 10. Histogram presentation of the ratios of 10 high-abundance SOD transcripts. Fold a represents
the fold change (DS/WW) in transcript expression measured through RNA-seq. Fold b is the fold change (DS/
WW) in transcript expression measured through qRT-PCR. A is comp65789_c0_seq1; B is
comp65789_c0_seq2; C is comp65789_c0_seq3; D is comp65789_c0_seq4; E is comp61947_c0_seq1; F is
comp63868_c0_seq1; G is comp68247_c0_seq1; H is comp70463_c0_seq1; I is comp63735_c0_seq1; J is
comp70328_c0_seq1.

doi:10.1371/journal.pone.0124442.g010
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Conclusions
Mongolian almond (P.momgolica) is widely established in the Gobi Desert and shows extreme
tolerance to drought. To investigate the mechanisms that allow P.mongolica to maintain
growth in extremely arid environments, the response of P.mongolica seedlings to drought
stress was analyzed using morphological, physiological, biochemical and high-throughput se-
quencing approaches. Compared with the no-stressed control, 3,365 transcripts were differen-
tially expressed in drought-stressed P.momgolica seedlings, including 1,876 up-regulated
transcripts and 1,489 down-regulated transcripts. After being treated with drought stress, the
photosynthesis response showed a decreasing tendency, but the changes in the levels of hor-
mones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased
cell enlargement and division; these changes were effective for promoting P.mongolica survival
in the Gobi Desert. Then the aquaporin and superoxide dismutase gene families were analyzed,
it is found that all of the plasma membrane intrinsic protein transcripts were down-regulated
in the drought-stressed treatment, whereas drought did not affect the expression of nodulin in-
trinsic protein or small basic intrinsic protein transcripts in P.mongolica seedlings. In addition,
activation of iron superoxide dismutase transcription and enhanced transcription of manga-
nese superoxide dismutase were observed in P.mongolica to promote tolerance of drought
stress. This study identified drought response genes in P.mongolica seedlings. Our results pro-
vide a significant contribution to the understanding of how P.mongolica responds to drought
stress at the transcriptome level, which may help to elucidate the molecular mechanisms asso-
ciated with the drought response of almond plants.

Supporting Information
S1 Fig. Differentially expressed transcripts among photosynthesis proteins (ko00194). A
green box represents a down-regulated transcript in the DS treatment.
(TIF)

S2 Fig. Differentially expressed transcripts among photosynthesis antenna proteins
(ko00196). A green box represents a down-regulated transcript in the DS treatment.
(TIF)

S3 Fig. Differentially expressed transcripts among plant hormone signal transduction
pathways (ko04075). A red box represents an up-regulated transcript in the DS treatment. A
green box represents a down-regulated transcript in the DS treatment.
(TIF)

S1 Table. Primer pairs used for qRT-PCR.
(XLSX)

S2 Table. Overview of the total transcripts matched with the COG database.
(XLSX)

S3 Table. Detailed information for the total transcripts matched with the COG database.
(XLSX)

S4 Table. KEGG classification of the total transcripts.
(XLSX)

S5 Table. Expression of transcripts from the P.mongolica aquaporin gene family. Folda:
Fold change (DS/WW) in transcript expression measured through RNA-seq. Foldb: Fold
change (DS/WW) in transcript expression measured through qRT-PCR. “—” indicates not
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