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Abstract: IKAROS, encoded by the IKZF1 gene, is a DNA-binding protein that functions as a
tumor suppressor in T cell acute lymphoblastic leukemia (T-ALL). Recent studies have identified
IKAROS’s novel function in the epigenetic regulation of gene expression in T-ALL and uncovered
many genes that are likely to be directly regulated by IKAROS. Here, we report the transcriptional
regulation of two genes, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta
(PIK3CD) and phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE), by IKAROS
in T-ALL. PIK3CD encodes the protein p110δ subunit of phosphoinositide 3-kinase (PI3K). The
PI3K/AKT pathway is frequently dysregulated in cancers, including T-ALL. IKAROS binds to
the promoter regions of PIK3CD and PIKFYVE and reduces their transcription in primary T-ALL.
Functional analysis demonstrates that IKAROS functions as a transcriptional repressor of both
PIK3CD and PIKFYVE. Protein kinase CK2 (CK2) is a pro-oncogenic kinase that is overexpressed
in T-ALL. CK2 phosphorylates IKAROS, impairs IKAROS’s DNA-binding ability, and functions as
a repressor of PIK3CD and PIKFYVE. CK2 inhibition results in increased IKAROS binding to the
promoters of PIK3CD and PIKFYVE and the transcriptional repression of both these genes. Overall,
the presented data demonstrate for the first time that in T-ALL, CK2 hyperactivity contributes to
PI3K signaling pathway upregulation, at least in part, through impaired IKAROS transcriptional
regulation of PIK3CD and PIKFYVE. Targeting CK2 restores IKAROS’s regulatory effects on the PI3K
oncogenic signaling pathway.

Keywords: IKAROS; protein kinase CK2; T cell acute lymphoblastic leukemia; PI3K; transcrip-
tional regulation

1. Introduction

IKAROS is a zinc finger protein encoded by the IKZF1 gene. IKAROS binds to DNA
and functions as a transcriptional regulator of its target genes via chromatin remodeling [1].
IKAROS-knockout mice develop T cell malignancy with 100% penetrance [2]. Inactivation
of IKAROS by a recurrent genetic alteration in the IKZF1 gene is seen in nearly 4–5% of
adult and pediatric T- cell Acute Lymphoblastic Leukemia (T-ALL) and is associated with
poor outcome [3–6]. Early T cell precursor (ETP) leukemia is a distinct subtype of T-ALL,
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with a worse outcome, in which nearly 11% of cases show IKZF1 alterations. IKAROS plays
a central role in hematopoiesis, lymphoid development, and T cell differentiation [7,8].
Recently published studies have established IKAROS as a global epigenetic regulator
of gene expression in T-ALL [9,10]. Global epigenomic analyses in T-ALL have shown
that IKAROS functions as a tumor suppressor by widespread sequence-specific DNA
binding to regulatory elements of its target genes and recruitment of histone-remodeling
complexes, thereby repressing or activating gene transcription [10,11]. We used published
genomic data to identify possible IKAROS target genes. IKAROS-mediated transcriptional
regulation of oncogenic signaling pathways in T-ALL is not entirely understood. Here we
present the identification and validation of several genes of the phosphoinositide 3-kinase
(PI3K) pathway that are likely to be directly regulated by IKAROS.

In cancer, including T-ALL, the PI3K pathway is often dysregulated [12–15]. Here,
we report IKAROS-mediated transcriptional regulation of two PI3K pathway genes, phos-
phatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD) and phospho-
inositide kinase, FYVE-type zinc finger containing (PIKFYVE). PIK3CD encodes the protein
p110δ isoform of the catalytic subunit of PI3K [16]. Class IA PI3Ks are heterodimers consist-
ing of a catalytic subunit (p110) and a regulatory subunit (p85). Three different genes can
encode each subunit. Following activation by growth factors or ligand binding to receptor
tyrosine kinases, PI3Ks phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) to
generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) [17]. PIP3 plays a key role by
recruiting pleckstrin homology (PH) domain-containing proteins such as AKT (also known
as Protein Kinase B) and phosphoinositide-dependent kinase 1 (PDK1) to the plasma
membrane. These events activate the signaling cascade to promote cell growth, survival,
and proliferation [18]. Class I PI3K plays a central role in mediating receptor tyrosine
kinase-induced AKT signaling and is often activated in cancers, including T-ALL [18]. Tar-
geting the PI3K-AKT pathway in hematological malignancies shows promising results [19].
PIKFYVE encodes an enzyme that phosphorylates the D-5 position in phosphotidylinositol
and phosphatidylinositol-3-phosphate (PI3P) to form PtdIns5P and PtdIns 3,5 biphosphate
(PI(3,5)P2). PIKFYVE lipid kinase plays an important role in regulating endomembrane
homeostasis and forming endosome carrier vesicles from early endosomes. PIKFYVE-
mediated regulation of endosomal PI3P and PI(3,5)P2 levels controls Toll-like receptor
(TLR) signaling [20]. Inhibition of PIKFYVE kinase using small molecules shows efficacy
in treating autoimmune diseases, inflammatory disorders, viral infections and cancer [21]
(Figure 1A).

Protein kinase CK2 (CK2) is a pro-oncogenic kinase overexpressed in many cancers,
including T-ALL [22,23]. CK2 is a ubiquitous and constitutively active serine–threonine
kinase [24]. CK2 exists as a tetramer with two catalytic subunits (CK2α and CK2α’) and
two regulatory subunits (β). CK2 is essential for vital cellular processes and embryonic
development [25,26]. CK2 overexpression in B cell and T cell lineage acute lymphoblastic
leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia
(CML), myeloproliferative neoplasm (MPN), and acute myeloid leukemia (AML) promotes
cell survival and imparts resistance to apoptosis via several mechanisms [23,27]. Targeting
CK2 using pharmacological inhibitors selectively renders tumor cells highly dependent on
its activity susceptible to cell death [28]. A potent and selective, ATP-competitive, small-
molecule CK2 inhibitor known as 5-(3-chlorophenyl) amino) benzo [c] naphthyridine-
8-carboxylic acid (CX-4945) has shown favorable tolerability and a toxicity profile in
cancer patients [29–31]. CX-4945 (silmitasertib) is currently in a phase I/II clinical trial
for patients with recurrent medulloblastoma (NCT03904862) and advanced basal cell
carcinoma (NCT03897036). CK2-driven post-translational modification of transcription
factors and tumor suppressors, such as phosphatase and tensin homolog (PTEN), P53,
IKAROS, and promyelocytic leukemia protein (PML) [19,32,33], often results in impaired
transcriptional activity. This leads to the overactivation of oncogenic signaling pathways
that are typically kept in check by tumor suppressors. CK2 inhibitors, including CX-4945,
show efficacy in preclinical models of T-ALL [32].
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A. Schematic of PIK3CD and PIKFYVE in PI3K pathway

PIP2

pp

p

pppp85

PIP3PI3K

PIK3CD

catalytic regulatory 
Akt

activationIKAROS

p110δ

PDK1

Cell membrane

PIKFYVE PI(3,5)P2

p

EV

EV

EV

PI3P

DNA

p-CK2a /Vinculin:          1.00            15.90           95.15           6.08

CK2a /Vinculin:              1.00              54.55   587.11          22.42

CK2a
(42kDa)

MNC CEM MOLT4p-CK2
(72kDa)

T-ALL#1

Ikaros
(65kDa)

Vinculin
(150kDa)

Ikaros/Vinculin:       1.00          12.66          78.75           6.81

B. CK2 and pCK2 protein level are high in T-ALL

p-Ikaros

C.  Ikaros is highly phosphorylated  in
leukemia cells compared to MNC

 CX-4945
   5 mM

p-Ik/Ik:          1.0       15.46      1.06

MNC Vehicle

Ikaros

D. CX-4945 decreases phospho-Ikaros

p-Ik

MNC CEM MOLT4

ALL- 1

p-Ik

ALL-2 ALL-4 ALL-5ALL-3 MNC

Figure 1. CK2 is overexpressed in T-ALL compared to normal mononuclear cells. (A) Schematic showing PIK3CD and
PIKFYVE genes in the PI3K pathway. (B) Baseline protein levels of CK2α, pCK2, and IKAROS in the T cell leukemia cell
panel (CCRF-CEM, MOLT4, and primary T-ALL cells (labeled T-ALL#1)) were measured by Western blot and compared to
peripheral blood mononuclear cells (MNCs). The protein level is graphed relative to vinculin as a loading control. (C) Radio-
immunoblot showing phospho-IKAROS in a leukemia cell panel (CCRF-CEM, MOLT4, and primary T-ALL cells (labeled
ALL#1-5)) compared to MNCs. (D) Radio-immunoblot showing a decrease in the phospho-IKAROS level following CX-4945
treatment. MOLT4 cells were treated with 10 µM of CX-4945 for 24 h. EV, endosomal vesicle; PIK3CD, phosphatidylinositol
4,5-bisphosphate 3-kinase catalytic subunit delta; and PIKFYVE, phosphoinositide kinase, FYVE-type zinc finger containing;
PI3K, phosphoinositide 3-kinase; P, phospho; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-
trisphosphate; PDK1, phosphoinositide-dependent kinase; PI3P, phosphatidylinositol-3-phosphate; PI(3,5)P2, phosphotydile
inositol 3,5-biphosphate.
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CK2-mediated phosphorylation of IKAROS impairs its DNA binding and disrupts
IKAROS’s function as a repressor or activator of transcription [34,35]. In B-cell ALL,
inhibition of CK2 restores IKAROS’s DNA binding and transcriptional regulation of target
genes [36,37]. However, the role of IKAROS in transcriptional regulation of signaling
networks in T-ALL is not entirely understood. A recent study revealed that IKAROS
functions as a global epigenomic regulator in T-ALL. Here, we report that in T-ALL with
high CK2 expression, IKAROS is significantly phosphorylated. We show that IKAROS
regulates essential genes in the PI3K pathway. Inhibition of CK2 in T-ALL restores the
DNA-binding ability of the IKAROS tumor suppressor and restores IKAROS’s ability to
repress PI3K pathway genes.

2. Results
2.1. CK2 Expression Increases in T-ALL and Correlates with an Elevated Level of
Phosphorylated IKAROS

We examined protein levels of CK2α and phospho-CK2α in a panel of T-ALL cells
using Western blot. As shown in previous studies [22,32,38], we found increased expression
of the CK2α protein in T cell leukemia cells compared to normal peripheral blood mononu-
clear cells (MNCs) (Figure 1B). Phosphorylated IKAROS (p-IKAROS) was measured in
CEM, MOLT4, and primary T-ALL cells using radio-immunoblot. CK2α expression corre-
lated with increased phosphorylated IKAROS in T-ALL cells (Figure 1C). We used MOLT4,
CEM, and T-ALL#1 cells for our study based on increased CK2α expression.

2.2. CK2 Inhibitor CX-4945 Decreases Phosphorylated IKAROS in T-ALL

In B cell ALL, phosphorylation of IKAROS by CK2 impairs IKAROS DNA bind-
ing, pericentromeric localization, ubiquitination, and IKAROS protein degradation. Tar-
geting CK2 using pharmacological inhibitors decreases IKAROS’s phosphorylation and
restores the DNA-binding ability of IKAROS [36]. We subjected T-ALL cells with high
baseline p-IKAROS to the CK2 inhibitor CX-4945 at IC50 (inhibitory concentration) for
48 h. Radiolabeling of cells using P32 followed by IKAROS immunoprecipitation and
radio-immunoblot showed that CX-4945 treatment decreases phosphorylated IKAROS in
MOLT4 cells (Figure 1D).

2.3. IKAROS Binds to the Promoters of PIK3CD and PIKFYVE in T-ALL Cells

IKAROS is a critical tumor suppressor in T-ALL [39]. Deleting one copy of IKAROS
(haplo-knockout mice) gives rise to T-ALL that is 100% transmitted to the next generation
of mice [2]. Recently, Ding et al. described global epigenomic regulation by IKAROS
in DN3 cells following IKAROS reintroduction. Using chromatin immunoprecipitation
followed by next-generation sequencing (ChIP-seq), the authors identified firm binding
peaks of IKAROS in the promoter region of several target genes. Introduction of IKAROS
into IKAROS-null T-ALL cells (double-negative CD4-, CD8-, and DN3 cells) results in T
cell differentiation and decreased proliferation. We analyzed publicly available ChIP-seq
data (Gene Expression Omnibus database with accession no. GSE126391) showing global
IKAROS DNA occupancy in DN3 (IKAROS-null T-ALL) following IKAROS introduction.
The results showed increased IKAROS-binding peaks at regulatory elements of PIK3CD
and PIKFYVE, defined as transcription start site ± 3 kilobases (Figure 2A,B). We identified
5642 prospective genes regulated by IKAROS, including PIKFYVE and PIK3CD. The
IKAROS consensus-binding site was noted as GGAA and GGGA. PIK3CD and PIKFYVE
were selected for further analysis as they are important members of the PI3K pathway and
showed a significant increase in IKAROS DNA occupancy, suggesting that IKAROS may
regulate the transcription of these genes. The PIK3CD gene encodes the delta isoform of
the catalytic subunit p110 of the PI3K enzyme (Figure 1D). The PIKFYVE gene encodes
a protein that functions as a lipid kinase essential for endosome vesicle formation and
intracellular signal transmission (Figure 1D). IKAROS binding to the promoter of PIK3CD
and PIKFYVE was further confirmed by quantitative chromatin immunoprecipitation
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(qChIP) in human T-ALL cell lines MOLT4 and CEM and primary T-ALL cells labeled T-
ALL#1 (Figure 2C,D). Human embryonic kidney (HEK) 293T cells were used as a negative
control since they do not contain IKAROS and do not show increased DNA binding.

Figure 2. IKAROS binds to the promoter regions of PIK3CD and PIKFYVE. Chromatin immunoprecipitation (ChIP)
followed by next-generation sequencing (ChIP-seq) and analysis of genome-wide occupancy of IKAROS was performed on
DN3 cells (IKAROS-null T-ALL cells) following IKAROS re-introduction. IKAROS global DNA binding was analyzed on
days 1, 2, and 3 following IKAROS introduction. (A) ChIP-seq signal map for IKAROS binding to the PIK3CD promoter
region on day 1. (B) ChIP-seq signal map for IKAROS binding to the PIKFYVE promoter region on day 1. The y-axis
represents a log 2 fold change enrichment of IKAROS binding (** p < 0.01). CEM, MOLT4, and T-ALL#1 cells were treated
with 10 µM of CX-4945 for 24 h. IKAROS binding to the PIK3CD (C) and PIKFYVE (D) promoter region was confirmed
using qChIP assay in vehicle- and CX-4945-treated cells. Results are mean +/– SD of triplicates representative of one of
three independent experiments.

2.4. IKAROS Negatively Regulates Transcription of PIK3CD and PIKFYVE Genes

We used a luciferase reporter assay to determine whether IKAROS binding to the
PIK3CD and PIKFYVE promoter region alters gene expression. We performed transient
co-transfection of the PIK3CD or PIKFYVE promoter region fused with the reporter gene
and IKZF1 in HEK 293T cells. The results showed that IKAROS represses the promoter
activity of PIK3CD and PIKFYVE compared to the negative control (Figure 3A). These
results demonstrated that IKAROS can repress transcription by directly binding to the
promoters of PIK3CD and PIKFYVE genes.

Further, we performed functional analysis using IKAROS-overexpressed and IKAROS-
silenced T-ALL cells to determine the functional importance of IKAROS binding to DNA
at the promoters of PIK3CD and PIKFYVE. IKAROS was overexpressed in MOLT4 and
CEM cells by transduction of a retrovirus expressing wild-type IKZF1 and an empty vector
as a control (Figure 3B). Overexpression of IKAROS in MOLT4 and CEM cells decreased
the messenger RNA levels of PIK3CD and PIKFYVE (Figure 3C). IKAROS was silenced by
treating MOLT4 and CEM cells with IKZF1 shRNA (Figure 3D). We used T-ALL cells treated
with scrambled shRNA (short hairpin control- shCTL) as a control. IKAROS knockdown
resulted in increased mRNA levels of PIK3CD and PIKFYVE (Figure 3E). These results
establish the role of IKAROS as a transcriptional repressor of PIK3CD and PIKFYVE.
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Figure 3. IKAROS represses PIK3CD and PIKFYVE gene transcription in T-ALL. Luciferase reporter assay was per-
formed on HEK 293T cells transfected with the IKZF1 plasmid (pcDNA 3.1-IK) or a control vector (pcDNA3.1). The
result in (A) shows repression of the PIK3CD and PIKFYVE luciferase promoter construct by the IKAROS-expressing
vector pcDNA3.1-IK in comparison to the pcDNA3.1 empty vector control in HEK 293T cells. (B) CEM and MOLT4 cells
were transduced to express IKZF1 (MIG-IK) or with an empty vector (MIG-CTL). Relative mRNA expression of IKAROS
following transduction. (C) mRNA level of PIK3CD and PIKFYVE in IKAROS-overexpressed (left panel) MOLT4 and (right
panel) CEM cells assessed using qRT-PCR. (D) MOLT4 and CEM cells were treated with IKZF1 shRNA (shIK) or scrambled
shRNA control (shCTL). The relative expression of IKZF1 (left panel) assessed by qRT-PCR. (E) mRNA level of PIK3CD and
PIKFYVE in MOLT4 (left panel) and CEM (right panel) cells. Results are mean ± SD of triplicates representative of one of
three independent experiments. The p-value summaries are as follows: p < 0.01 (**); p < 0.001 (***).

2.5. Inhibition of CK2 Restores IKAROS DNA-Binding and Transcriptional Repression of PIK3CD
and PIKFYVE

Phosphorylation severely hampers IKAROS’s ability to bind DNA and regulate the
transcription of genes [35]. CK2 phosphorylates IKAROS at several serine–threonine
sites. In T-ALL, overexpression of CK2 correlates with increased phosphorylation of
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IKAROS. Treatment with CX-4945 restored IKAROS binding to the promoters of PIK3CD
and PIKFYVE genes, as shown in the qChIP assay (Figure 4A,B). We achieved molecular
inhibition of CK2α by knockdown with short hairpin RNA (shRNA) directed against
the CK2α catalytic subunit (CSNK2A1) (Figure 4C). CK2 inhibition decreased the mRNA
expression of PIK3CD and PIKFYVE (Figure 4D). Treatment of MOLT4 and CEM cells with
CX-4945 also decreased the mRNA level of PIK3CD and PIKFYVE (Figure 4E) and the
protein level of downstream targets of PI3K-AKT (Figure 4F). These results suggested that
inhibition of CK2 restores IKAROS binding to DNA and IKAROS-mediated repression of
PIK3CD and PIKFYVE genes.

2.6. IKAROS Regulates PIK3CD and PIKFYVE Gene Expression via Chromatin Remodeling

Transcriptional regulation of target genes by IKAROS often involves chromatin re-
modeling [11]. Chemical modifications, such as methylation and acetylation of the histone
proteins present in chromatin, influence gene expression by changing the accessibility of
chromatin to transcription. A specific modification (acetylation or methylation) of a specific
histone protein is called a histone mark. The H3K9Ac histone mark is the acetylation of
lysine 9 (K9) of the H3 histone protein. The H3K27me3 histone mark is the methylation
of lysine 27 (K27) of the H3 histone. H3K9 acetylation (H3K9Ac) is a marker of open and
active chromatin. H3K27 tri-methylation (H3K27me3) is a marker of closed and repressive
chromatin. Enrichment of H3K27me3 and loss of H3K9Ac represent a repressive chromatin
signature [40]. The mechanism through which IKAROS represses the transcription of
PIK3CD and PIKFYVE is likely chromatin remodeling. To determine that, we performed
serial qChIP assays to determine chromatin signature changes following CX-4945 treatment
of T-ALL cells. CX-4945 treatment of MOLT4 and CEM cells resulted in enrichment of
H3K27me3 (Figure 5A,C) and loss of H3K9ac (Figure 5B,D) histone modification markers
at the promoters of PIK3CD and PIKFYVE genes compared to the negative control. The
results suggest that IKAROS represses the transcription of PIK3CD and PIKFYVE genes by
inducing the formation of repressive chromatin at the promoters of these genes.

2.7. CX-4945-Induced Repression of PI3K Pathway Genes Is Mediated via IKAROS

CK2 is a promiscuous kinase with many substrates, IKAROS being one of them [41].
To test whether IKAROS is essential for CK2 inhibitor-mediated repression of genes, we
treated MOLT4 and CEM cells containing IKAROS shRNA with CX-4945. The mRNA
level of PIK3CD and PIKFYVE was measured using qPCR. The results showed that CX-
4945 treatment failed to decrease the mRNA level of PIK3CD and PIKFYVE in IKAROS
shRNA-treated cells (Figure 5E). These results showed that the CK2-mediated regulation
of PIK3CD and PIKFYVE gene expression is IKAROS-dependent.
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Figure 4. CK2 inhibition restores IKAROS DNA binding and repression of PIK3CD and PIKFYVE. MOLT4, CEM, and
T-ALL#1 cells were treated with 10 µM of CX-4945 for 24 h. IKAROS binding to the (A) PIK3CD and (B) PIKFYVE promoter
region was confirmed using qChIP assay in vehicle- and CX-4945-treated cells. Results are mean ± SD of triplicates
representative of one of three independent experiments. Molecular inhibition of CK2α in CEM and MOLT4 cells was
achieved using shRNA. Two of four shRNAs showed a significant and similar decrease in CK2α. qRT-PCR shows the
mRNA level of (C) CK2α and (D) PIK3CD and PIKFYVE in CK2-silenced MOLT4 (left panel) and CEM (right panel) cells.
CEM and MOLT4 cells were treated with 10 and 20 µM of CX-4945 for 48 h, and T-ALL#1 primary leukemia cells were
treated with 10 µM of CX-4945 for 12 h. mRNA and protein were extracted. (E) The mRNA level of PIK3CD and PIKFYVE
was measured in CX-4945-treated CEM, MOLT4, and T-ALL#1 cells. (F) AKT and phosphorylated-AKT (p-AKT) protein
levels were measured by Western blot. The protein level is expressed relative to vinculin. The p-value summaries are as
follows: p ≤ 0.05 (*); p < 0.01 (**).
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Figure 5. IKAROS regulates the expression of PIK3CD and PIKFYVE by repressive chromatin formation. The qChIP
assay showed enrichment of histone markers at PIK3CD (A,C) and PIKFYVE (B,D) promoters. The qChIP assay was
performed using MOLT4 (A,B) and CEM (C,D) cells (treated with 10 µM of CX-4945 for 48 h) to determine the fold
enrichment of histone markers H3K27me3 and H3K4me3 at PIK3Cd and PIKFYVE promoters compared to control cells.
(E) MOLT4 and CEM cells were treated with IKZF1 shRNA (shIK) or scrambled shRNA control (shCTL). IKAROS-
knockdown CEM and MOLT4 cells were then treated with 5 µM of CX-4945 for 48 h. Changes in PIK3CD and PIKFYVE
gene expression were measured using qPCR. The p-value summaries are as follows: p < 0.01 (**).
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3. Discussion

Several studies have established IKAROS tumor suppressor activity in T-ALL [7,8,42].
However, a detailed evaluation of IKAROS target genes and signaling networks regulated
by IKAROS and CK2 in T-ALL is lacking. Meta-analyses of published ChIP-seq data of
the IKAROS-null T-ALL cell line (DN3) following IKAROS reintroduction showed that
IKAROS binds to many gene regulatory elements, potentially regulating their expression.

We found that phosphorylated IKAROS is higher in T cell leukemia cells compared
to normal mononuclear cells. CK2 protein expression increased in most T cell leukemia
samples tested, and increased CK2 correlated with phosphorylated IKAROS. In addition to
genetic inactivation, post-translational modification of IKAROS by CK2-mediated phospho-
rylation can lead to IKAROS’s functional inactivation [35,43]. The IKAROS transcription
factor’s regulatory functions depend on its ability to localize to pericentromeric heterochro-
matin and bind to DNA [44,45]. These processes are impaired following phosphorylation
by CK2 [36]. In T-ALL, we showed that increased CK2 levels correlate with high levels of
phosphorylated IKAROS. Using T-ALL cell lines and primary T-ALL cells, we showed that
IKAROS binds to the regulatory elements of two genes from the PI3K pathway, PIK3CD
and PIKFYVE, and represses their expression via direct binding as well as the formation of
a repressive chromatin signature at the promoter region (Figure 6).

Figure 6. Model illustration of regulation of PI3K pathway genes PIK3CD and PIKFYVE in T-ALL by CK2 and IKAROS.

Inhibition of CK2 restored IKAROS binding to DNA at the promoters of PIK3CD
and PIKFYVE and further resulted in the repression of PIK3CD and PIKFYVE expression.
Our results revealed a novel mechanism of regulation of PI3K pathway genes by CK2
and IKAROS (Figure 6). Further studies are required to uncover other signaling networks
and oncogenic signaling pathways regulated by IKAROS and CK2 in T-ALL. A clear
understanding of the crosstalk between IKAROS and CK2 will aid in developing more
effective combination therapies for the treatment of T-ALL.

The CK2 inhibitor CX-4945 has shown promising preclinical activity as a single agent
and in combination with chemotherapy agents in T-ALL murine models [22,32]. The
mechanism of action of CK2 inhibitors in T-ALL is not entirely understood. Data are
lacking regarding the efficacy of CK2 inhibitors in patients with T-ALL, with and without
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IKZF1 deletions. Therefore, the applicability/usefulness of CK2 inhibitors in T-ALL patients
should be further investigated, as the degree of response could be dependent on IKZF1
deletion and PI3K pathway alterations. These results reveal a potential novel mechanism of
action of CX-4945 in T-ALL via restoration of IKAROS-mediated repression of PI3K genes
PIK3CD and PIKFYVE.

4. Materials and Methods
4.1. Cells and Cell Culture

HEK 293T, CEM, and MOLT4 cells were obtained from the American Type Culture
Collection (ATCC). De-dentified patient samples were provided by Loma Linda University
(Loma Linda, CA), Penn State College of Medicine (Department of Pediatrics Developmen-
tal Therapeutics and Preclinical Core (DTPC)), and Penn State Cancer Institute collected
under an approved material transfer agreement (MTA) and after approval from institutional
review board (IRB). CEM, MOLT4, and primary T-ALL cells were cultured or maintained
in RPMI 1640 medium (Corning) supplemented with 10% fetal bovine serum (Hyclone)
and incubated at 37 ◦C in a humidified atmosphere of 5% carbon dioxide. HEK 293T cells
were cultured in Dulbecco’s Modified Eagle Medium -DMEM (CellGro) supplemented
with 10% fetal bovine serum (FBS).

4.2. Reagents

CK2 inhibitor CX-4945 sodium salt was purchased from MedChem Express (Mon-
mouth Junction, NJ, USA).

4.3. Meta-Analysis

IKAROS binding at PIK3CD and PIKFYVE promoters in DN3 T-ALL cells following
expression of IKAROS was determined by analyzing genome-wide IKAROS ChIP-seq data
made previously available by Y. Ding and S. Dovat in the Gene Expression Omnibus (GEO)
database (accession no. GSE126391).

4.4. In Vitro Phospho-IKAROS Labeling

CEM, MOLT4, and primary T-ALL cells were incubated with 0.5 mCi/mL [32P] of
orthophosphate (PerkinElmer, Waltham, MA, USA) in phosphate-free RPMI 1640 medium
for 6 h. MOLT4 cells were treated with 10 µM of CX-4945 for 48 h before incubating with
orthophosphate. Nuclear protein was extracted, and IKAROS was immuno-precipitated
using the Dynabead Protein G Immunoprecipitation Kit (Thermo Fisher Scientific) accord-
ing to the manufacturer’s protocol. As described previously [35], IKAROS was eluted,
separated by SDS-PAGE, transferred to a membrane, and imaged by radiography.

4.5. Quantitative Chromatin Immunoprecipitation (qChIP)

qChIP assays for IKAROS binding in T-ALL cells and qChIP assays for H3K4me3,
H3K9me3, and H3K9ac histones were performed, as described previously [36]. The qChIP
primers used to link immuno-precipitated DNA to the promoter were as follows:

PIK3CD: F5′-TCCCCGGCAATCATAGCA-3′; R5′-CTGGGTTTTTTATTTTTTCCATCT-3′

PIKFYVE: F5′-CCTAATCTCGGCCAAAAGATCA-3′; R5′-TCAGATGCTCAGGCA
GAAGGA-3′

4.6. Quantitative RT-PCR

RNA isolation, cDNA generation, and qPCR were performed, as described previ-
ously [36]. The primers used in this study were as follows:

18s RNA: GTAACCCGTTGAACCCCATT (sense)
CSNK2A1 (CK2): AGCGATGGGAACGCTTTG (sense) and AAGGCCTCAGGGCT-

GACAA (antisense)
IKZF1: GGCGCGGTGCTCCTCCT (sense) and TCCGACACGCCCTACGACA (antisense)
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PIK3CD: TTCAGCTTCCCCGATTGC (sense) and CAGCTCATCGTCCGTCAGTTT
(antisense)

PIKFYVE: CACAAGGGCACAAGCTATAGCA (sense) and ACAATCCAGCCAAC
GTCCAT (antisense)

4.7. Western Blot

CEM and MOLT4 cells were treated with 5 or 10 µM of CX-4945 or DMSO control
for up to 48 h, T-ALL#1 cells were treated with CX-4945 for 24 h, and whole-cell lysate
was collected. Protein was quantified using the Bradford assay and used for Western blot
analysis and immunoblot. Western blots were performed using anti-CK2α (Cat# sc-373894)
and AKT (Cat# sc-5298) from Santa Cruz Biotechnology (Dallas, TX, USA), p-CK2 (Cat#
8738) and p-A (Ser473) (CST Cat# 4058) from Cell Signaling Technology (Danvers, MA,
USA), IKAROS (Cat# 66966-1-Ig) from Proteintech (Rosemont, IL, USA), or vinculin (Cat#
700062) from Thermo Fisher Scientific, as described previously [36].

4.8. IKZF1 (IKAROS) and CSNKI2A1 (CK2α) Knockdown

We used a neon transfection system and pGP-V-RS shRNA plasmids (Origene) for
IKAROS (IKZF1) and CK2α (CSNK2A1) knockdown in CEM and MOLT4 cells, as described
previously [36]. We confirmed IKAROS and CK2α using qRT-PCR and Western blot.

4.9. Retroviral Transduction

Transduction of CEM and MOLT4 cells with retroviruses produced by transient
transfection using pMIG-CTL or pMIG-IKZF1 was performed, as described previously [36].
Green fluorescent protein (GFP)+ cells were sorted using a FACS Aria SORP (Becton
Dickinson) instrument. Sorted cells were further cultured using the above conditions. The
construction of expression plasmids was as described previously [36].

4.10. Luciferase Reporter Assay

PIK3CD or PIKFYVE promoter-driven luciferase reporter (150 ng) activity was as-
sessed in CEM and MOLT4 cells co-transfected with the expression plasmid for IKAROS
(pcDNA3.1 IKAROS −150 ng) using Lipofectamine 2000 (Invitrogen). The pcDNA3.1
plasmid was co-transfected as a control of transfection efficiency. After 24 h transfection,
luciferase assays were performed, as described previously [36]. Luciferase activities were
calculated as a fold change relative to vector-only cells and normalized to pcDNA3.1
vector readings.

4.11. Statistical Analysis

We performed statistical analysis using Graph Pad Prism 9. The p-value summaries are
as follows: p > 0.05 (ns); p ≤ 0.05 (*); p < 0.01 (**); p < 0.001 (***); p < 0.0001 (****). Statistical
analysis for column graphs used multiple two-tailed t-tests using the Holm–Sidak method,
with α = 0.05. qChIP values where the signal was more than twofold greater than the
background anti-immunoglobulin G (anti-IgG) level were analyzed. Graphed data are
presented as mean values, with bars representing the standard deviation (mean ± SD) of
at least three technical replicates and at least two independent experiments.
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