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A B S T R A C T

The increasing appreciation for the crucial roles of RNAs in infectious and non-infectious human diseases makes
them attractive therapeutic targets. Coding and non-coding RNAs frequently fold into complex conformations
which, if effectively targeted, offer opportunities to therapeutically modulate numerous cellular processes, in-
cluding those linked to undruggable protein targets. Despite the considerable skepticism as to whether RNAs can
be targeted with small molecule therapeutics, overwhelming evidence suggests the challenges we are currently
facing are not outside the realm of possibility. In this review, we highlight the most recent advances in molecular
techniques that have sparked a revolution in understanding the RNA structure-to-function relationship. We bring
attention to the application of these modern techniques to identify druggable RNA targets and to assess small
molecule binding specificity. Finally, we discuss novel screening methodologies that support RNA drug discovery
and present examples of therapeutically valuable RNA targets.

1. Introduction

Recent advances in the field of RNA biology has led to the discovery
of a plethora of coding and non-coding (nc) transcripts with novel
modes of action,1 new types of RNA epitranscriptomic modifications,2,3

and an unforeseen diversity of mechanisms that lead to the production
of RNAs.4 These discoveries prompted the parallel development of
modern molecular techniques that provide in-depth insights to the RNA
structure and function.5–7 Biophysical characterization of RNA motifs
with X-ray crystallography,8 nuclear magnetic resonance,9 and cryo-
electron microscopy10 has yielded a solid foundation for understanding
the chemical and structural basis of RNA functions at atomic resolution.
However, experimental requirements of these methodologies often re-
strict their throughput and suitability for studying conformationally
heterogeneous RNAs. In addition, the isolation of RNA motifs from full-
length transcript, or the removal of RNAs from their cellular context,
may introduce biases in the final conformation. The development of
RNA-centric deep-sequencing probing techniques opened up the pos-
sibility for the global assessment of RNA structures at a single nucleo-
tide resolution, and in various biological contexts.11–13 In addition,
techniques that address RNA interactions with effector molecules14–18

prompted the comprehension that a myriad of molecular pathways
involve regulatory RNAs while also facilitating the development of high
affinity ligands to interfere with these processes. These innovations
created a new paradigm in the field of biomedicine, where RNA is
viewed as a novel and largely unexplored drug target.

2. RNA as a drug target

The vast diversity of RNAs expanding beyond coding transcripts to
several classes of ncRNAs that vary in length, biogenesis, polarity, and
putative functions, increases the repertoire of druggable targets.19,20

Here, specific RNA properties contribute to its attractive, yet challen-
ging makeup as a target molecule. RNA can form complex three-di-
mensional structures through canonical Watson-Crick base pairing and
complex tertiary interactions that are mediated by non-canonical
bonds. Such structures can be as intricate and stable as those formed by
proteins and can recognize small-molecule ligands, other nucleic acids,
and/or proteins with high affinity and specificity.21–24

At the same time, the highly dynamic conformation and repetitive
character of its surface presents difficulties for drug design.25,26 In ad-
dition, many putative small molecule-binding pockets in RNA are much
more polar and solvent exposed than binding sites on proteins, com-
plicating ligand design efforts. Compounding these issues, most target
RNAs are expressed at low levels, with the exception of ribosomal
(rRNA) and transfer (tRNA) RNAs, which constitute 80–90% and
10–15% of total cellular RNA, respectively.27 Other abundant RNAs,
such as messenger (mRNA), small nuclear (snRNA), and small nucleolar
(snoRNA) are present at levels that are about 1–2 orders of magnitude
lower than rRNA and tRNA. Certain small RNAs, such as micro
(miRNA) and piwi (piRNAs) can be present at very high levels; how-
ever, this appears to be cell type dependent. One should keep in mind
that if the RNA has catalytic activity or if it acts as a scaffold to regulate
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chromosomal architecture, as it is the case for many long non-coding
(lncRNAs), the RNA may not need to be present at very high levels to be
able to perform its task. RNA stability is another detrimental aspect that
needs to be considered. For example, long non-coding RNAs (lncRNA)
have, on average, shorter half-life (median 3.5 h) than messenger RNAs
(mRNAs, median 3.5 h).28 Yet, the intergenic, cis-antisense, as well as
spliced lncRNAs with cytoplasmic localization tend to challenge that
rule.

Efforts to therapeutically harness RNAs began as soon as they were
discovered, even though their functionality was not well understood.
Early RNA targeting approaches relied on the application of ami-
noglycosides - potent molecules that bind to bacterial rRNA through
electrostatic interactions with, at best, modest selectivity and systemic
toxicity.29,30 Despite their rather unattractive physical, chemical,
pharmacological and synthetic characteristics, they remain a pillar of
antibacterial treatment. Studies of RNA riboswitch regulatory elements
that bind diverse metabolites and regulate gene expression primarily in
bacteria further showed that small metabolites can be recognized by
RNA with remarkable specificity.31,32 These discoveries were followed
by the development of small molecule screens against functionally de-
fined viral RNA motifs, such as Human immunodeficiency virus-1 (HIV-
1) transactivating response element (TAR) RNA and its interacting
trans-activator of transcription (Tat) protein,33 HIV-1 Rev response
element (RRE) and Rev protein,34 and Hepatitis C virus (HCV) internal
ribosome entry site (IRES).10,35 These studies established that RNA is a
legitimate target of small molecules and that ligands can indeed bind
discrete binding pockets in RNA, cementing the applicability of small-
molecule treatment to target RNAs.

As compared to antisense oligonucleotide-based (ASO) strategies,
which pose significant limitations as pharmaceutical agents,36 small
molecules offer the unique possibility to target particular RNA struc-
tural elements. The chemical and biophysical tunability of small mo-
lecules, in addition to their overall superior cellular and tissue perme-
ability, make them an appealing alternative.37 In addition, by
recognizing specific hallmarks of RNA fold, small molecules can be
utilized as RNA structural probes to yield information on RNA con-
formation. For example, methidiumpropyl-EDTA (MPE) has been ap-
plied as a through-space cleavage reagent for structural interrogation of
the folding transition of HIV-1 RRE2 substructures.35

Despite the spectacular advances in the RNA biology, experts in the
field are still faced with a long list of considerations. Overall, three
major components are required to support the development of effica-
cious RNA-based small molecule therapeutics: (1) the identification of
therapeutically valuable RNA target, (2) the development of a screening
method that will establish drug-like molecules against target RNA, and
(3) the identification of RNA motifs that accommodate ligand binding
with high affinity and specificity. In this review, we will discuss the
modern RNA-centric techniques that can be harnessed to elucidate RNA
structure-to-function relationship and their potential application to
evaluate small molecule specificity. We will shed light on RNA prop-
erties e.g. stability, level of expression, structure and biological im-
portance that need to be considered before a given transcript can be
designated as druggable. Finally, we will present most recent devel-
opments in screening strategies that support identification of RNA-
specific ligands, and we will highlight the newest discoveries in the
field of therapeutically-valuable target RNAs.

3. Assessing RNA potential as a drug target by biochemical
probing

As our knowledge of RNA biology and its importance in regulation
of cellular processes increases, it is becoming clear that specific pre-
ponderant characteristics of RNA, such as its structure and conforma-
tional dynamics, may influence whether a given RNA target can be
efficiently targeted with drugs.38 In the past, a wide range of chemicals
and enzymes have been used to monitor RNA folding.39,40 DMS is one of

the most well-established chemicals used to study RNA structure. It is
highly reactive with solvent accessible, unpaired residues but reliably
unreactive with bases engaged in Watson-Crick interactions, thus nu-
cleotides that are strongly protected or reactive to DMS can be inferred
to be base-paired or unpaired, respectively. DMS treatment has been
more recently coupled to a massively parallel sequencing readout
(DMS-seq) by randomly fragmenting the pool of modified RNAs and
size-selecting prior to 3′ ligation with a specific adapter oligo.41 Be-
cause DMS modifications at adenine and cytosine residues block reverse
transcription (RT), sequencing of the fragments reveals the precise site
of DMS modification, with the number of reads at each position pro-
viding a measure of relative reactivity of that site. DMS footprinting has
proven to be a tremendously versatile method and has been applied to a
large fraction of known structured RNAs42 as well as to probe the
structure of modified RNAs and ligand binding to RNA.43

In recent years, a group of electrophiles, known as SHAPE reagents,
have become widely used for high-throughput RNA structural
probing.12 These compounds preferentially modify the backbone of
RNA in structurally flexible single-stranded regions by reacting with the
2′-hydroxyl group on ribose and generating bulky 2′ O-adducts. The
choice of electrophile can be tailored to specific experimental systems.
For example, probes that react with RNA rapidly are well suited to
obtain a structural “snap-shot” of target RNA,44,45 while electrophiles
with long half-life are suitable for studying RNA slower local motions,
shown to have the greater potential to govern RNA folding, ligand re-
cognition, and ribonucleoprotein assembly reactions.46 There is also a
wide palette of cell-permeable probes that can be used to interrogate
RNA folding in living cells, yielding information on how RNA structure
changes in response to various environmental stimuli.11,12,47 The probe
selection is followed with chemical adduct detection, which involves
processing modified RNA samples and then performing reverse tran-
scription (RT) to record probe modifications as either truncations (RT-
stop) or mutations (RT-mutate) in the resultant cDNA sequences.

SHAPE and mutational profiling (SHAPE-MaP) is an example of RT-
mutate methods that have recently been applied in living cells to re-
solve the secondary structure of lncRNAs with emerging roles in human
diseases. The metastasis associated lung adenocarcinoma transcript 1
(MALAT1), a highly abundant nuclear transcript associated with me-
tastasis in non-small cell lung cancer,48 polyadenylated nuclear (PAN)
RNA, the key regulator of Kaposi’s sarcoma associate herpesvirus lytic
reactivation,49,50 and X-inactive specific transcript (XIST)51 a transcript
that orchestrates mammalian X-chromosome inactivation (XCI), are just
to name a few that led to increased appreciation of the functional
capabilities of RNA structure. From the partition function of base
pairing, a SHAPE-MaP data-informed Shannon entropy52 can be cal-
culated, which yields information on the diversity of RNA conformation
within a given region (Fig. 1A). In general, regions that have both low
SHAPE reactivities and low Shannon entropy are likely to exist in a
single structural state. These have been found to be highly correlated
with known functional RNA structures,52,53 and as such they potentially
represent valuable drug targets. In addition, SHAPE-MaP allows re-
searchers to study the effects of small molecule binding on native RNA
structure. The ΔSHAPE-MaP comparative analysis can yield informa-
tion on not only whether a small molecule binds, but also which specific
nucleotides constitute potential binding sites(s). The effectiveness of
this approach has been proven on HIV-1 TAR and thienopyridine, a
novel TAR-specific ligand.54 Here, however, the prior version of RNA
probing method, namely SHAPE, was performed on in vitro transcribed
HIV-1 5′ untranslated region (UTR) to validate the ligand specificity.

Coupling systematic mutagenesis with high-throughput chemical
mapping during two-dimensional mutate-and-map approach expands
the information content of RNA chemical mapping.55,56 Mutate-and-
map seeks to determine not just chemical reactivities at each nucleotide
but also how these reactivities are affected by systematic perturbations
– nucleotide mutations, thus providing the insight into its tertiary
conformation as well as validating its predicted structure. In practice,
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some mutations might not lead to the desired ‘release’ of the pairing
partners, and some mutations might produce larger perturbations, such
as the unfolding of an entire helix. Nevertheless, if even a subset of the
probed mutations leads to precise release of interacting nucleotides, the
base-pairing pattern of the RNA could potentially be read out from this
extensive data set.

Still, the biochemical methods for RNA structure probing in living
cells generate averaged reactivity profiles and have a limited capacity
to capture the complexity of RNA structures that include long-range
structures, pseudoknots, and alternative conformations. Psoralen ana-
lysis of RNA interactions and structures (PARIS) address these chal-
lenges by directly identifying base-paired helices and RNA-RNA inter-
actions.16 In this method, cross-linking is performed with 4′-
aminomethyl trioxsalen (AMT) that intercalates in RNA helices and,

upon photo-activation, crosslinks the two strands, with a preference for
staggered uridines.57 RNase and proteinase digestion followed by 2D
gel electrophoresis ensure that the identified crosslinks are representing
the directly base-paired RNA fragments. Proximity ligation of duplex
RNA fragments, photo-reversal of crosslinks, and high throughput se-
quencing ultimately reveal the direct base pairing between fragments.
Each PARIS read gives individual-molecule evidence of a duplex be-
tween two RNA fragments. The multiplicity of PARIS reads can thus
reveal a single common structure, multiple alternative structures, or
interactions between two RNAs in trans. As such, PARIS can provide
information on RNA prevalent alternative conformation that, similarly
to Shannon entropy, can be used to avoid structurally dynamic and
poorly defined RNA regions for small molecule targeting.

The relative solvent accessible surface area is one of the parameters

Fig. 1. Structural and functional aspects of target RNAs for informed design of small molecule therapeutics. [A] SHAPE-MaP data-informed Shannon entropy yields
information on RNA alternative conformation. Structurally well-defined motifs constitute valuable RNA targets. The ΔSHAPE-MaP comparative analysis can identify
specific nucleotides that constitute ligand binding sites. [B] The interactions of target RNA with effector molecules expand the desirable structural space for ligand
binding. [C] RNA epitranscriptomic modification, e.g. m6A affects RNA structure and RNA-binding sites.
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that has been established previously to predict the magnitude of
binding-induced conformational changes from biomolecule struc-
tures.58,59 The novel chemical probing methodology, namely Light
Activated Structural Examination of RNA (LASER), informs on RNA
solvent accessibility, and as such provides an additional layer of
structural information, particularly in RNA-ligand complexes.60 LASER
uses a light-generated nicotinoyl nitreniumion (NAz)47 to form covalent
adducts with the C8 position of adenosine and guanosine, which can be
quantified by either RT-stop or RT-mutate deep-sequencing. The au-
thors verified the applicability of the method for ligand binding de-
tection by probing the binding of an antimicrobial peptide on rRNA.

In addition to the above-mentioned methods, various bioinformatic
tools, including Rsample61 and Swellix,62 can provide insights to RNA
alternative conformation. Rsample considers that multiple copies of the
same sequence can simultaneously fold into different conformations
and focuses on the agreement between experimental mapping data and
estimated mapping data by sampling RNA structure models, rather than
interpreting data in their absence. This technique provides a principled
approach for integrating thermodynamic prediction with mapping data.
On the other hand, Swellix combines all possible helices with a com-
binatorial approach to the RNA folding problem in order to compute all
possible non-pseudoknotted RNA structures. The software can include
experimental constraints on global RNA structures, such as data from
pairing constraints in phylogenetic analysis, SELEX experiments, or
chemical and enzymatic probing experiments, as well as thermo-
dynamic parameters. Both bioinformatic methods represent com-
plementary tools to analyze RNA sequences with multiple folds.
Overall, the abovementioned methodologies led to much-improved
appreciation of the ubiquity and functional capabilities of RNA struc-
tures. As they provided not only the insight into RNA secondary, ter-
tiary structure and conformational changes, they can inform on po-
tential features for a given interaction between target RNA and small
molecules and verify the specificity of such interaction.

4. Tackling RNA interactions

The diverse roles of RNAs, particularly ncRNAs, are often a con-
sequence not only their complex structures, but most importantly their
structure-mediated interactions with effector molecules, e.g. other
RNAs, DNAs and proteins (Fig. 1B).51–57 These intermolecular contacts
increase possible targetable structures – e.g. structure space for ligand
binding, which might be missing with some less structured RNAs.

Recently, several biochemical methods have been developed to
yield information on RNA interacting partners. RNA antisense pur-
ification (RAP-RNA)14 relies on the application of crosslinking reagents
that fix endogenous RNA-RNA complexes in living cells, followed by
RNA-specific affinity purification with biotinylated antisense oligonu-
cleotides and high-throughput sequencing. RAP-RNA can be performed
using various crosslinking reagents to differentiate between target RNA
direct and indirect contacts with other transcripts. For instance, direct
RNA-RNA interactions are specifically captured by UV and AMT
crosslinking, while indirect interactions, involving protein inter-
mediates, can be captured by crosslinking with formaldehyde. Com-
pared to other similar techniques, the most distinctive feature of RAP is
the use of long capture probes that tile across the target RNA, allowing
for stringent hybridization and wash conditions that significantly re-
duce nonspecific background.

RAP method has been combined with quantitative mass spectro-
metry (RAP-MS) to identify proteins that directly interact with a spe-
cific RNA in vivo.63 RAP-MS uses UV crosslinking to create covalent
bonds between directly interacting RNA and protein, and purifies RNAs
with target specific oligonucleotides in denaturing conditions to disrupt
non-covalent interactions. This approach, which is used by other
methods such as crosslinking and immunoprecipitation (CLIP),64 is
known to identify only direct RNA–protein interactions and to separate
interactions that are crosslinked in the cell from those that associate in

solution. The application of RAP-RNA and RAP-MS revealed that
Functional Intergenic Repeating RNA Element (FIRRE) interacts with a
∼5 Mb region that flanks their transcription site and with the nuclear
matrix factor hnRNPU during the process of anchoring the inactive X
chromosome to the nucleolus.65 Also, RAP-MS provided insight into
novel protein factors that facilitate the activity of XIST the transcript
that orchestrates XCI by coating and silencing one X chromosome in
females.63 RAP-MS not only allowed to recognize proteins that activate
histone deacetylase, but also components that recruit the polycomb
repressive complex 2 (PCR2) across the X and exclude RNA polymerase
II from the inactive X.66 This data, together with recently resolved
secondary structure of the entire 18 kb XIST RNA,51 provides valuable
findings that can accelerate small molecule targeting of XIST in various
diseases.67,68

Chromatin isolation by RNA purification (ChIRP),17 domain-specific
chromatin isolation by RNA purification (dChIRP),69 and capture hy-
bridization analysis of RNA targets (CHART)70 are techniques used to
identify genomic binding sites of RNAs by purifying for-
maldehyde–crosslinked complexes through the use of short oligonu-
cleotide probes directed against specific RNAs. The main difference
between these techniques is that probes for ChIRP tile the entire target
RNA, while probes for dChIRP are used as specific pools to characterize
RNA at the domain level, and probes for CHART are experimentally
determined after an RNase H assay, which defines the accessible hy-
bridization regions. ChiRP has been applied to reveal the genomic oc-
cupancy of two therapeutically valuable lncRNAs, namely telomerase
RNA (TERC) and HOX-transcript antisense RNA (HOTAIR). HOTAIR
has been shown to function as a key regulator of chromatin states and
dynamics by recruiting and affecting PRC2 occupancy on genes
genome-wide. It has been associated with tumorigenesis, growth, in-
vasion, cancer, stem cell differentiation, metastasis, and drug re-
sistance, and as such it is considered as a biomarker for diagnostic and
therapeutic purposes in several cancers.71,72 TERC is a critical RNA
component of telomerase polymerase that serves as a template for the
enzyme telomerase reverse transcriptase (TERT) to elongate telomeres.
Variants and copy-number changes at the TERC locus have been asso-
ciated with cancer risk and progression73 and neurodegenerative dis-
eases.74 Given the ability of small molecules to detect RNA structural
elements and target specific biomolecular interactions, these tools are
perfectly poised to expand the palette of achievable drug targets.

5. Epitranscriptomics, multi-layered world of RNA modifications

Recent studies have identified over 100 distinct epitranscriptomic
RNA modifications, with the most prevalent involving the addition of a
methyl group at certain positions on the nucleobase, as in N6-methy-
ladenosine (m6A),75 5-methylcytosine (m5C)76 and N1-methyladenosine
(m1A).77 Other predominant epitranscriptomic modifications include
isomerization of uridine to pseudouridine (Ψ), ribose modifications,
and adenosine-to-inosine editing.78 These post-transcriptional mod-
ifications expand RNA functional capacity beyond what can been re-
cognized from its sequence and structure alone79 and, at the same time,
offer an avenue of increasing specificity for small molecule targeting.
Known to affect RNA conformation,79 function,80,81 and metabolism,82

epitranscriptomics should be considered while developing adequate
tools to study RNA druggability.

The different positions of methylation carry distinct structural
consequences for RNA. For example, m6A destabilizes pairing with
uracil by altering the energetics of the AU pair through steric hin-
drance, but without affecting the pattern of hydrogen-bonding donors
and acceptors.83 The presence of m6A reduces RNA base pair stability
both in vitro and in vivo,84 creating binding sites for proteins that pre-
ferentially recognize modified bases (Fig. 1C).83 Distinct human dis-
eases, including developmental disorders,85 cancer and viral infec-
tions86 have been associated with dysregulation of m6A patterns in
various cellular transcripts. Also, two m6A sites have been detected in

J. Sztuba-Solinska, et al. Bioorganic & Medicinal Chemistry 27 (2019) 2149–2165

2152



the stem loop II of HIV-1 RRE,87 a viral RNA motif that has been the
focus of many current and past targeting efforts,34 forcing scientists to
rethink their strategies for effective drug-design. The regulatory func-
tions of m5C are not yet fully understood.88 It has been shown, how-
ever, that in vitro cytosine-5 methylation can affect Mg2+ binding to
tRNA molecules, which influences the anticodon stem loop conforma-
tion and stability of the secondary structure.89 Also, synthetic cytosine-
5 methylated mRNAs exhibit increased stability, and the loss of me-
thylation in the 3′ UTR of p16, an mRNA encoding tumor suppressor,
has been reported to reduce its stability.88 Thus, it is likely that m5C
affects RNA stability and function in living cells.76 The m1A modifica-
tion carries a positive charge that protrudes from the Watson–Crick
hydrogen-bonding face of adenine, resulting in the nucleotide re-
maining unpaired, and thus can dramatically alter protein-RNA inter-
actions and RNA secondary structures through electrostatic effects. The
m1A maps uniquely to positions near the translation start site and first
splice site in coding transcripts, and it correlates with upregulation of
translation.77 Isomerization of uridine, known as pseudouridine (Ψ),90

affects RNA secondary structure by increasing backbone rigidity and
base stacking, due to a preference of the 3′-end conformation.91 The
precise pseudouridylation pattern and their role in human RNAs re-
mains only partially uncovered. However, based on the heat shock in-
duced Ψ deposition in yeast mRNAs, it is assumed that Ψ increases
mRNA stability by preventing the melting of RNA structures that pro-
tect the 3-end at increased temperatures.92

High-throughput mapping of modified nucleosides is now possible
due to advances in deep-sequencing technologies.93 In general, these
techniques fall into three categories: (1) immunoprecipitation of frag-
mented RNAs using modification-specific antibodies followed by se-
quencing, which has been used for mapping m6A (meRIPseq)93 and
m1A (RIPSeq)77; (2) chemical treatment of RNA prior to sequencing,
which exploits the differential reactivity of modified bases such as using
sodium bisulfite for detection of m5C (Bisulfate-seq)88 or CMC (N-cy-
clohexyl-N9-(2-morpholinoethyl)-carbodiimidemetho-p-toluenesulpho-
nate) for detection of pseudouridine (Ψ-seq)92; and (3) non-random
mismatch signatures in RNA sequencing data produced during reverse
transcription, which has been applied to m1A and m6A (miCLIP)
modified DNA. To date, these technologies have produced tran-
scriptome-wide maps for the above-mentioned epitranscriptomic
modifications, while concurrently supporting the epitranscriptomic
characterization of specific coding and nc transcripts with known
therapeutic value.94

Furthering our understanding of the discriminatory potential of
specific epitranscriptomic modifications holds immense promise for the
informed design of RNA-based small molecule therapeutics. Also, since
RNA modifications are known to contribute to immune system function
by suppressing the signaling of innate RNA sensors,95 these findings
have contributed to the ‘second coming’ of RNA therapeutics.96 De-
veloping small-interfering RNAs, RNA-based vaccines, or mRNA ther-
apeutics regularly includes modifying component RNA strands, which
decreases nuclease sensitivity and reduces the activation of the innate
immune response.

6. Druggable RNA targets

Until the last decade, the majority of small molecule based ther-
apeutic strategies have been focusing on targeting proteins, mainly
because the study of protein structure and function significantly pre-
dates that of RNA. Soon enough, the RNA revolution revealed that RNA
function is complex, directly related to RNA folding, and often critical
for the therapeutic interventions we pursue. To date, small molecules
have been found to regulate approximately 30 unique disease-asso-
ciated mammalian RNAs apart from the ribosome.97 These RNAs are
known to be involved in fine-tuning of many cellular processes, in-
cluding cellular differentiation, homeostasis, immune response and
proliferation.98–100 Many of them contain conserved cis- and trans-

acting motifs that act as scaffolding sites for other RNAs and proteins,
influencing their subcellular localization, stability and functionality.101

Frequently these interactions are severely dysregulated in a variety of
human disorders.102 In addition, many human diseases are caused by
RNA viruses or DNA viruses whose transcripts dysregulate cellular
functions, further expanding the palette of potential RNA targets. In this
section, we highlight important RNA structural elements that have been
at the forefront of RNA-targeted small molecule therapeutics and report
recently discovered small molecules that modulate these disease-asso-
ciated RNA elements.

6.1. miRNAs

miRNAs are post-transcriptional gene regulators that bind to the 3′
UTR of their target mRNA to inhibit translation or cause miRNA-
mediated degradation. The biogenesis of these transcripts begins with
nucleus localized primary miRNA (pri-miRNA) hairpins that are di-
gested by Drosha to form precursor miRNA (pre-miRNA). The pre-
miRNA is subsequently transported to the cytoplasm for further pro-
cessing by Dicer, followed by loading of the duplex miRNA into the
RNA-induced silencing complex (RISC).103 Dysregulated miRNAs con-
tribute to a variety of human diseases,104 including cancer,105 and
therefore they serve as potential small molecule target. For cancer re-
search purposes, miRNAs can be divided into those that are over-ex-
pressed, which target tumor suppressor proteins, and those with de-
creased expression in cells, which target oncogenes. The principal goal
of miRNA-targeting is to identify compounds that potently and speci-
fically bind to miRNAs and/or its upstream precursors, thereby de-
creasing their levels.

In 2018, Li et al. described a novel small molecule, bleomycin A5
conjugate, which selectively binds to the precursor of miR-96106

(Fig. 2A). OncomiR-96 is found to be upregulated in many breast can-
cers and has been associated with breast cancer proliferation, migra-
tion, and invasion in vitro, as well as tumor growth in vivo.107 The novel
chemotype specifically inhibits Drosha processing of pri-miR-96,
leading to the upregulation of its target FOXO1 and the induction of
apoptosis in Michigan Cancer Foundation-7 (MCF-7) breast cancer cells.
OncomiR-21 is another crucial cancer-associated miRNA that plays a
pivotal role for the initiation, progression, and metastasizing of various
cancers.108 In 2012, Gumireddy et al. discovered diazobenzene deri-
vative, a small molecule that inhibits the transcription of pri-miR-21.109

Also, in 2017, Liu et al. described the novel small molecule sopho-
carpine (SC), which downregulates miR-21 expression in head and neck
squamous cell carcinoma (HNSCC) by blocking Dicer-mediated miR-21
maturation in a dose-dependent manner (Fig. 2A).110 SC inhibits
HNSCC cell proliferation, invasion, and metastasis through increased
expression of tumor suppressors without tissue toxicity or damage,
showing its promise as a small molecule anti-tumor therapeutic.

Despite the reported successes in miRNA-targeting, no small mole-
cules are undergoing preclinical testing.113 This disparity can be at-
tributed to similar secondary structures among different miRNAs and
other cellular RNAs, that limits selectivity and specificity for RNA tar-
gets. Yet, we might be just at the verge of resolving that issue. For
example, Costales et al.111 have recently identified a small molecule
that binds two targets, the precursor hairpins of miR-515 and miR-885,
which share a common target motif. In this new study, the group op-
timized the dual-selective molecule to bind only one of the targets. By
using secondary structures of the two binding sites, the model identified
an additional, adjacent binding site only present on miR-515, and used
fragment-based assembly to create a molecule with over 3200-fold se-
lectivity over the parent compound for the new site. The new molecule,
Targaprimir-515, only bound miR-515 containing the original target
site and the adjacent site. MiR-515 represses sphingosine kinase 1
(SK1), a key enzyme that phosphorylates sphingosine – and its down-
stream target S1P, thereby blocking a pathway that promotes cell
proliferation and migration in human breast cancer.
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6.2. RNA splice sites

The mechanism of pre-mRNA splicing is complex and requires in-
teraction of the pre-mRNA molecule, small nuclear ribonucleoproteins,
and splicing factor proteins through cis-acting regulatory sequence
elements, trans-acting protein factors, and various cellular responses.123

To add another layer of complexity, alternative-splicing of pre-mRNAs
will lead to the assemblage of various protein isotypes. Thus, mutations
within splice sites and disrupted regulatory elements can result in loss
of function, reduced specificity, and/or truncation of a protein, which
are frequently associated with human diseases.124

Spinal Muscular Atrophy (SMA) is a severe neurodegenerative dis-
ease caused by a loss or dysfunction of survival motor neuron (SMN1)

genes and is the leading cause of genetic-related infant death
(Fig. 3A).125 The loss of SMN1 results in the degradation of lower motor
neurons in the spinal cord and causes symptoms such as hypotonia and
severe weakness due to neuromuscular degradation. Interestingly, the
sequence of the survival motor neuron 2 (SMN2) gene differs from
SMN1 by a single nucleotide. This single nucleotide change increases
the rate of exon 7 exclusion during splicing events, thus SMN2 can
produce little to no functional SMN protein. Increasing exon 7 inclusion
in SMN2 mRNA with a small molecule could be therapeutically bene-
ficial. PTC Therapeutics discovered a molecule, RG7800, which in-
creased the production of the inefficiently spliced SMN2 in a FRET-
based assay (Fig. 2B).126 RG7800 was the first small molecule splicing
modifier to enter clinical trials. The drug is being tested in Phase 1b/2a

Fig. 2. Small molecule binders of various RNA targets. [A] Ligands targeting miRNAs. Compound 1 and Compound 2 target oncomiR-21,113 Sophocarpine,111

Bleomycin A5 conjugate,113 and Targaprimir-96115 target oncomiR-96. Targaprimir-210 targets oncomiR-210.115 [B] Chemotypes, RG7800116 and LM1070116,117

target alternative RNA splice site of SMN2 gene. [C] BRACO-19 and RHPS4 are G4-RNA-specific ligands used in G4RP-seq methodology.117 Compound 4 disrupts G4-
RNA in the expanded repeat in ALS. [D] Chemotypes targeting viral RNA motifs, i.e. HIV-1 TAR,54,119 SARS-CoV pseudoknot121,122 and HCV IRES.10,123
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trials in SMA patients, although it is currently on hold due to safety
findings.115 Novartis (Basel, Switzerland) also identified a small mole-
cule, LMI070,122 which works via stabilization of the transient double-
strand RNA structure formed by the SMN2 pre-mRNA and a small nu-
clear ribonucleic protein U1.125 LMI070 binding causes more efficient
splicing of the SMN2 gene and therefore increases levels of functional
SMN proteins. The ongoing first-in-human study (NCT02268552) is
evaluating the safety, tolerability and potential benefit of LMI070 in
type 1 SMA patients between 1 and 7 months of age. These discoveries
demonstrate the feasibility of small molecule-mediated RNA-selective
splice modulation, as well as the potential for leveraging this strategy in
other splicing diseases such as cancer.127

Another promising example of splicing-targeted small molecules is
GQC-05, an ellipticine G4 ligand, which targets the two alternative 5′
splice sites of apoptosis regulator Bcl-X pre-mRNA.128 GQC-05 binding
to Bcl-X pre-mRNA causes the direct alteration of the splicing sites Q2
and Q5 signified by a 15-fold fluorescent intensity increase and a shift
in emission peak upon interaction of GQC-05 and the pre-mRNA, con-
sistent with direct binding. The interaction of this small molecule with
Bcl-X pre-mRNA affects the overall secondary structure close to the XS

and XL sites at the Q2 and Q5 regions, respectively, to favor the for-
mation of stable G4 conformations over the stem loop structure. Ad-
ditionally, GQC-05 antagonizes the anti-apoptotic isoform of Bcl-X in
favor of the pro-apoptotic isoform, showing the small molecule’s ability
to induce apoptosis.

6.3. RNA expansion elements

Microsatellite diseases are a class of neurological and neuromus-
cular disorders caused by repeat expansions.129 These expansions can
be located in (1) open reading frames (Huntington’s disease, HD), (2)
untranslated regions (myotonic muscular dystrophy type 1, DM1; fra-
gile X–associated tremor ataxia syndrome, FXTAS; and fragile X syn-
drome, FXS), and (3) introns (amyotrophic lateral sclerosis, ALS; and
myotonic dystrophy type 2, DM2) (Fig. 3B).

Various groups have tackled targeting RNA repeat expansions with
small molecules. The well-studied RNA repeat expansion is the trinu-
cleotide repeat that causes DM1, r(CUG)exp, which binds and sequesters
the RBP splicing regulator muscleblind-like 1 (MBNL1), among
others.130 In 2009, Warf et al. identified a small molecule, pentamidine,
which disrupted the MBNL1-CUG repeat complex in DM1.131 When
pentamidine disrupts the CUG RNA foci, it releases the MBNL1 protein
from sequestration and reverses aberrant alternative splicing that is
commonly seen in DM1 mis-spliced pre-mRNAs. Originally, pentami-
dine was believed to bind to the r(CUG)exp. However, when Coonrod
et al. attempted to identify the exact mechanism, biophysical experi-
ments failed to demonstrate significant affinity between pentamidine
and CUG RNA repeat.132 Through a series of experiments, scientists
suggested that pentamidine may interact with the CTG*CAG repeat
DNA to inhibit transcription; however, the mechanism of action for this
small molecule is still unknown. Using a structure of r(CUG) repeats,
the Zimmerman laboratory designed a small molecule comprised of an
acridine and a triaminotriazine that interacts with the RNA via Janus-
wedge hydrogen bonding.133 Optimization of the first-generation
compound resulted in three bioactive compounds that improved mis-
splicing and formation of nuclear foci in both DM1 cellular and Dro-
sophila models.134 Furthermore, the Disney group has also been very

active in identifying inhibitors of different RNA repeats including
transcripts involved in both DM1 and DM2, FXTAS, and, most recently,
amyotrophic lateral sclerosis (ALS).135 They reported a substituted
naphthyridine that was identified by high-throughput screening and
shown to inhibit the r(CUG)exp-MBNL1 interaction using a FRET-based
assay.136 In cell models, the chemotype improved DM1-associated pre-
mRNA splicing defects and caused reductions in nuclear foci formation.
Subsequently, the compound has also been identified as an inhibitor of
miR-544.137 Finally, the Disney laboratory also identified benzimida-
zoles by screening of an RNA-focused small-molecule library, as well as
oligomeric Hoechst dye-like compounds that bind r(CUG)exp in cells
and have promising effects on DM1-associated defects in cell models.138

The major advantage of targeting RNA expansion elements is that
their structures are well documented leading a path forward for the
effective design of multivalent molecules with high specificity for their
target.139 Additionally, many repeat expansion disorders affect the
central nervous system, where small molecules can more easily pene-
trate than competing antisense oligonucleotides. Currently, two ther-
apeutic companies, namely Ribometrix and Arrakis Therapeutics Inc.
lead the way in targeting RNA expansion elements.140 Ribometrix is
pursuing Huntington’s disease (HD) and is targeting MYC mRNA for
cancer, while Arrakis Therapeutics Inc. has programs on undisclosed
repeat expansion disorders in neurology, as well as programs in on-
cology and rare genetic diseases.

6.4. RNA G-Quadruplexes

RNA can fold into alternate four stranded secondary structures in
regions rich in guanine, called G-quadruplexes (G4-RNA, Fig. 3C).141

Each G-tetrad has four guanines arranged in a square planar arrange-
ment and held together by Hoogsteen hydrogen bonding. Further sta-
bilization of each G4-RNA is then achieved through the presence of a
monovalent cation, most often potassium, which is localized in the
center between each pair of tetrads.141 G-quadruplexes has been first
described in DNA,142 yet there are key structural differences between
DNA and RNA G4s that may further the therapeutic targeting of G4-
RNA. In general, RNA G4s have higher stability attributed to differences
in hydration and increased intramolecular hydrogen bonding due to 2′
of ribose sugar.143 Another key difference between DNA and RNA is the
presence of a methyl group in uracil which is absent in its counterpart
thymine present in DNA. Substitution of 2′ eOH by chemical analogues
also has shown to destabilize G-quadruplexes further highlighting its
importance in G-quadruplex structure.144 Utilizing these differences
between RNA and DNA can increase the selectivity and specificity of
available G-quadruplex ligands towards RNA.145 Recent publication by
Kwok et al. provided a comprehensive overview of predictive algo-
rithms and structure-based sequencing methods that can be utilized for
transcriptome-wide detection of G4-RNA.146

Since G4-RNA are predicted to form in mRNA encoded by several
oncogenes,141 current RNA-targeting efforts focus on identifying small
molecules with high selectivity for the motif. A proof-of-concept was
established using a reporter construct comprising the 5′ UTR of neu-
roblastoma RAS oncogene, which included the G-quadruplex element
upstream of the firefly luciferase gene.147 The authors showed that the
RR110 small molecule inhibits translation of the G-quadruplex-con-
taining mRNA with high affinity and selectivity for the motif. Using a
biotin-streptavidin pull-down assay, Xodo and colleagues identified

Fig. 3. Druggable RNA targets. [A] Mutated RNA splice sites can result in loss of function of a protein, e.g. survival motor neuron (SMN1) in Spinal Muscular Atrophy
(SMA). RNA-specific ligand, e.g. LMI070 causes more efficient splicing of the SMN2 gene and therefore increases levels of functional SMN proteins. [B] Examples of
RNA repeat expansion diseases (EPM – Unverricht–Lundborg disease, SCA – Spinocerebellar ataxia, TBP – TATA binding protein associated diseases, DRPLA –
Dentatorubral-pallidoluysian atrophy) and the a ‘trans-dominant’ model of RNA toxicity. The RNAs that contain expanded repeats interact with different RNA-
binding proteins (colored shapes) which interfere with their functions leading to abnormalities. [C] RNA G-quarduplexes are predicted to form in mRNA encoded by
several oncogenes, current RNA-targeting efforts focus on identifying small molecules with high selectivity for the motif. [D] Examples of viral RNA motifs, e.g. HIV
RRE-Rev, TAR-Tat, HCV IRES/Ribosome.
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small molecules that bind to G4-RNA in the 5′ UTR of Ki-ras2 Kirsten rat
sarcoma (KRAS) oncogene.148 The human KRAS is mutated in ∼95% of
patients with pancreatic ductal adenocarcinoma (PDAC),149 leading it
to be considered a crucial target for anticancer drugs. The authors
identified two compounds, anthrafurandiones and anthrathiophene-
diones, that suppressed luciferase expression from expression con-
structs, strongly induced apoptosis, and reduced both the metabolic
activity and colony formation of Panc-1 cells carrying mutant KRAS.

Recently, a new small molecule chemotype has been described to
bind to and inhibit G4 RNA formation in the expanded G4C2[(G4C2)exp]
repeat of C9ORF72 in ALS.150 The RNA transcribed from this repeat
expansion sequesters RNA-binding proteins that produce toxic dipep-
tide. The identified compound has been shown to bind to the GG in-
ternal loop in the hairpin structure of r(G4C2)exp to prevent the for-
mation of G4 RNA. These results highlight the power of rationally
designed small molecules to target therapeutically relevant RNA
structures.

Due to their elusive nature, verifying the existence and function of
RNA G-quadruplexes in biological systems has been a challenging task.
However, a newly developed method for transcriptome-wide identifi-
cation of RNA G-quadruplexes utilizing motif-specific small molecules
has been recently reported.117 G4-RNA-specific precipitation with se-
quencing (G4RP-seq) uses a chemical crosslinking step, followed by
affinity capture with BRACO-19 and RHPS4 chemotypes (Fig. 2C), and
target identification by sequencing to capture global snapshots of
transiently folded G4-RNA. This technique provides insight into the G4-
RNA landscape in the human transcriptome, as well as a means for
studying the dynamics of in vivo dynamic formation of G4-RNA under
various biological conditions, in addition to the activity of G4-RNA-
specific ligands.

Another challenge related to G-quadruplexes targeting is the limited
selectivity of their typically large and flat aromatic ligands.151 These
ligands are often decorated with protonated side chains which are ne-
cessary for loop and groove interactions but lower the overall se-
lectivity of the molecule. Recent developments in crystallography and
bioinformatic analyses may be the key into unlocking unique features of
G4 structures, leading to the development of specific and potent li-
gands.152,153

6.5. Viral RNA motifs

Viral genomes are highly economical when it comes to the genetic
information they encode and, as such, provide only a narrow number of
protein targets for therapeutic intervention. Recent studies aiming at
elucidation of the structural conformation of viral RNA genomes52 and
virus-encoded coding and nc transcripts49 greatly expanded the re-
pertoire of drug targets.

HIV remains the most thoroughly studied virus, for which multiple
RNA motifs have been investigated as drug targets (Fig. 3D). These include
TAR154 and RRE,155 but also the dimer initiation sequence (DIS),156 the
packaging signal (Ψ),157 and the Gag/Pol frameshifting signal.34 The TAR
element resides within the 5′ UTR of the viral genome and serves as the
binding site for the Tat protein. Formation of the TAR/Tat complex sti-
mulates transcription elongation to yield full-length viral transcripts.33 A
fragment-based screening approach to identify ligands of the HIV TAR has
been described by Göbel and colleagues, who interrogated a set of 29
small molecules that were selected to represent molecular motifs bene-
ficial for RNA recognition.118 Also, Benhida and coworkers pursued a
design approach for TAR RNA‐binding ligands based on amino-phe-
nylthiazole derivatives.54,158 More recently, Schneekloth and colleagues
have applied small molecule microarray (SMM) screening of a fluores-
cently labeled TAR hairpin to identify selective chemotypes (Fig. 2D).54

Other frequently targeted HIV motif include RRE, which is located in the
second intron of the viral genomic RNA and serves as a high‐affinity
binding site for the Rev protein. Rev binding to RRE is required for the
nucleocytoplasmic export of full‐length and singly spliced viral

transcripts.87 Only two studies report small molecules targeting the Rev-
RRE complex.35 None of these approaches have produced inhibitors that
show antiviral activity in cells. A recent study has shown that RRE carries
m6A modifications that play a critical role in the activity of the RRE/Rev
complex,34 which serves as a poignant reminder that authentic model
systems are necessary for the study of RNA targets.

The internal ribosome entry site (IRES), which enables cap-in-
dependent translation, has been studied as therapeutically relevant
target in both poliovirus and hepatitis C virus (HCV) (Fig. 3D).122 Seth
and colleagues used mass spectrometry-based screening to identify
2‐aminobenzimidazole derivatives as ligands binding the internal loop
RNA of subdomain IIa in the HCV IRES.126 Using an RNA-targeted small
molecule library, the Hermann lab discovered a chemotype which binds
to the IRES region and reduces viral replication.122 Scientists at Ibis
Therapeutics also discovered functional inhibitors of HCV IRES RNA
using a small molecule library and mass spectrometry screening
methods (Fig. 2D).126

The severe acute respiratory syndrome coronavirus (SARS-CoV)
frameshifting motif, which includes a slippery sequence followed by a
pseudoknot that stalls the ribosome during translation, has been also
explored as a valuable RNA target.121 Using an in silico screening ap-
proach, Park and colleagues identified 1,4-diazepane derivative that
acted as an inhibitor of translational frameshifting both in vitro and in a
cell-based assay (Fig. 2D).120

Recently, another therapeutic approach aiming at disruption of viral
latency has emerged as a weapon against HIV-1 and herpesvirus-asso-
ciated infections.159–161 Referred to as shock-and-kill therapy, this
strategy aims to disrupt the viral reservoir to reactivate viral produc-
tion, followed by antiviral treatment.162 Currently available latency-
reversing agents against herpesvirus infections163–165 manipulate an
epigenetic pathway, using histone epigenetic modifications to achieve
viral reactivation. It would be interesting to see if specific small mo-
lecule could potentially bind to viral RNA and cause a latent-to-lytic
switch in viral infection.13

7. Identification of RNA-specific small molecule therapeutics

RNA-specific small molecules represent a class of organic com-
pounds with low molecular weight that can specifically bind to RNA
secondary or tertiary structures and affect RNA-associated molecular
processes, e.g. translation patterns, localization and stability.166–168 A
desirable feature of such compounds is that they interact with RNA not
through intercalation, sequence, or electrostatic complementarity, but
by means of specific molecular recognition events unique to the parti-
cular RNA target. The use of small molecules as RNA-specific drug-like
compounds has increased due to their frequently desirable physico-
chemical characteristics, including their good hydrophobicity and se-
lectivity, as well as cell and tissue permeability. However, caution must
be taken when examining their properties as they might follow a dif-
ferent set of principles compared to the ones that have been coined for
protein-specific small molecules. Recently, Morgan et al. delved into
understanding the physicochemical, structural, and spatial properties of
RNA ligands and compiled the RNA-targeted BIoactive ligaNd Database
(R-BIND), which contains a list of bioactive monovalent small mole-
cules and multivalent ligands that target non-ribosomal RNAs.169,170

The overall aim of this database is to use 20 cheminformatic para-
meters, e.g. oral availability, Lipinski’s rules, Veber’s rules, structural
components, molecular complexity, and molecular recognition, to de-
termine trends in bioactive RNA ligands.171 In this section, we will
highlight novel technologies that pave the way to the discovery of new
types of RNA-targeted therapeutics.

7.1. Fluorescent based assays

Fluorescence based assays are convenient and practical tools for
identifying novel nucleic acid-binding ligands, mainly due to their
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sensitivity, speed, and versatility. Most conventional fluorescence as-
says rely on incorporation of fluorescent probes in the RNA sequence,
which might impact its native conformation as a side effect.172 An al-
ternative to that approach is the fluorescent indicator displacement
assay (FID), where the indicator displays different fluorescence prop-
erties in the presence and absence of the oligonucleotide, and can
therefore be utilized to measure the binding properties of various
chemotypes.173,174 FID is a tagless approach, meaning that the target
RNA and the ligands under investigation do not have to be modified.
Instead, the FID assay utilizes intercalating dyes, e.g. 3-methyl-2-((1-(3-
(trimethylammonio)propyl)-4-quinolinylidene)methyl)benzothiazo-
lium (TO-PRO)175 thiazole orange,176 which show high binding affi-
nities to RNA but frequently require large quantities of RNA. Recent
alternation to the method relies on the use of high affinity RNA-specific
peptides, e.g., HIV Tat labeled with a Forster Resonance Enhancement
Transfer (FRET) pair, against specific RNA-motif, e.g. TAR
(Fig. 4A).33,119 When the peptide is bound to RNA, the fluorophores are
distant in space, which facilitates the excitation of the donor and
emission detection from the acceptor. When the small molecule probe
displaces the peptide from the RNA, the fluorophores are proximal, and
the emission of the acceptor is quenched. This quenching allows for
quantification of the binding affinity of the small molecule towards TAR
RNA. Recently, the Hargrove laboratory extended the development of
fluorescent peptide displacement assay for screening small molecule
ligands against four different RNA targets, namely Tat to HIV-1-TAR
and HIV-2-TAR, bacterial ribosomal A-site RNA and the IIB domain
HIV-1-Rev response element RNA (RRE-IIB).177 The authors validated
the method by quantifying the binding of aminoglycosides and other
known RNA binding small molecules, against all four RNA targets.

7.2. Mass spectrometry

Advancement of electrospray ionization (ESI) and matrix-assisted
laser desorption-ionization (MALDI), which has decreased the sample
requirement and increased the mass range, have resulted in mass
spectrometry (MS) being increasingly utilized for screening of targets
for small-molecule inhibitors. MS as a screening tool has the advantage
that neither the target nor the potential ligands require labeling or
deconvolution. Information such as stoichiometry, cooperativity, and
relative binding affinities are determined quickly within a single sample
solution at low concentrations.178

MALDI uses a pulsed laser for desorption of the ions and a time-of-
flight analyzer, and has been successfully used in combination with ESI
for the metabolite profiling of a model small interfering RNA (siRNA)
duplex TSR#34.179 ESI mass spectrometry (ESI-MS) has been of greater
utility for studying non-covalent molecular interactions because it
generates molecular ions with little to no fragmentation. One of the first
applications of ESI-MS resulted in identification of 2-aminobenzimida-
zole, that specifically binds to the internal ribosome entry site IIA
subdomain of Hepatitis C Virus and results in the reduction of HCV RNA

replication.126,180 Also, ESI-MS was used by Dremann et al. to identify
RNA-peptide complexes specific for bacterial ribosome helix 69
(H69).181 Fourier-transform ion cyclotron resonance (FT-ICR) MS pro-
vides high-resolution spectra, isotope-resolved precursor ion selection
and accurate mass assignments. FT-ICR MS has been used to study the
interaction between two closely related model RNA constructs corre-
sponding to the decoding sites of the prokaryotic and eukaryotic rRNA
and a collection of aminoglycoside antibiotics.182

The Automated Ligand Identification System (ALIS), a label-free AS-
MS platform, is a novel MS-based approach that allows for high-
throughput screening of small molecules as large combinatorial mix-
tures tested for binding to target macromolecules.183 By coupling fast
size exclusion chromatography (SEC) to separate free ligands from
target–ligand complexes to integrated LC-MS ligand identification, a
single ALIS instrument can screen hundred thousand compounds a day
with minimal, label-free target consumption. Unlike direct AS-MS
methods that rely on MS to detect the intact target–ligand complex,
ALIS is an “indirect” AS-MS technique that uses size-exclusion chro-
matography to resolve the target–ligand complex from the unbound
species, then dissociates the ligand from the complex using denaturing
conditions and employs MS to identify the previously bound ligand.
ALIS has been recently used to identify and characterize two RNA li-
gands that competitively bind to the flavin mononucleotide (FMN) ri-
boswitch and exhibit drug-like functional capabilities, potent analog of
ellipticine (WG-1) and quinolone (WG-3) class of antibacterial, re-
spectively.181 These MS-based screening aids in the discovery of novel
chemical classes that bind RNAs that may be missed by nonbiophysical
screening approaches.

7.3. Small molecule microarray (SMM)

SMM is a high-throughput technology for screening a large unbiased
library of drug-like small molecules in a microarray format against a
target RNA (Fig. 4B).54,184 In this technique a collection of small mo-
lecules, i.e. primary and secondary alcohols and amines, are spatially
arrayed with a robotic microarrayer and covalently linked to a glass
surface at high density.112 The microarray is then incubated with
fluorescently-labeled target RNA, followed with washing to remove any
unspecific binding. The slides are imaged using a fluorescence scanner,
and fluorescence intensity is quantified for each spot on the array. A
statistical analysis then reveals spots with increased fluorescence upon
incubation, corresponding with discrete molecular interactions be-
tween the target RNA and associated small molecule.

SMMs have become established as the choice platform for screening,
lead discovery, and molecular characterization of RNA-specific binders.
For example, SMM has been applied to discover a chemotype that
specifically recognizes and binds the HIV TAR hairpin (Fig. 2D).54 The
binding specificity of an identified small molecule has been validated
by SHAPE probing performed on the HIV 5′ UTR in the presence and
absence of the chemotype, confirming that the ligand binding was

Fig. 4. Examples of RNA-specific small molecule screening techniques. [A] Fluorescent peptide displacement assay. The fluorescently-labeled peptide bound to RNA
has fluorophores distant in space facilitating excitation of donor and emission detection from acceptor. When the small molecule displaces the peptide from the RNA,
the fluorophores are proximal, and the emission of acceptor is quenched allowing for quantification of ligand binding affinity. [B] Small molecule microarray
screening approach (SMM). Fluorescently labeled target RNA motif is incubated with the array followed by the detection of fluorescence increase during binding
event. Right side represents raw SMM images for hit structure (compounds are printed in duplicate), control and buffer. [C] Microscale thermophoresis (MST) is
performed in thin capillaries (blue) in free solution. A microscopic temperature gradient is induced by an infrared laser (IR), and temperature related intensity change
as well as thermophoresis are detected. Initially, the molecules are homogeneously distributed and a constant “initial fluorescence” is detected. After activation of the
IR laser, a rapid change in fluorophore properties due to the fast temperature change is noted. Subsequently, thermophoretic movement of the fluorescencently
labeled molecules out of the heated sample volume can be detected. The overall MST signal is plotted against the ligand concentration to obtain a dose-response curve
(on the right). [D] Two-dimensional combinatorial screen (2DCS) selects privileged RNA motifs for a specific ligand by simultaneously screening a nucleic acid
library and a small molecule library. The chemicals are immobilized in a microarray format in a gradient of concentrations. Each row represents decreasing
concentrations of a unique chemical/small molecule. The RNA library is then allowed to react and hybridize on the microarray, and the unbound RNA is washed
away. The bound fractions are then excised, RNA is extracted and sequenced to identify features which allow binding to each small molecule. [E] Fragment-based
drug discovery (FBDD) includes unbiased diverse fragment set tested against target RNA using different biophysical, e.g. NMR and/or biochemical, e.g. SHAPE screen
approaches leading to hit identification that is further structure-led optimized.
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specific to the TAR hairpin. Also, recently, Connelly et al.112 used the
SMM approach to identify novel small molecules that selectively bind in
proximity to the apical loop of pre-miR-21 hairpin, preventing bio-
genesis of miR-21 through Dicer inhibition (Fig. 2A). The binding spe-
cificity and overall affinity of identified drug-like chemotypes has been
validated through differential scanning fluorimetry (DSF), 2-amino-
purine (2-AP) fluorescence titration, and fluorescence intensity assays.

Absorb Array is a recent advancement in SMM technology devel-
oped by the Disney laboratory.185 Here, small molecule compounds are
non-covalently absorbed onto a hydrate agarose-coated microarray
surface, creating a chemically unmodified library for binding to radi-
olabeled RNA motif libraries. This approach is meant to avoid the ad-
dition of functional groups for covalent immobilization of the chemo-
types to the array, which could influence the molecular recognition of
the parent compound’s natural targets. Absorb Array was applied to the
NIH Clinical Collection, a library of RNA-focused small molecules, RNA
splicing modulators, and a library of kinase inhibitors confirming that
these drugs, in particular topoisomerase inhibitors, kinase inhibitors,
and RNA splicing modulators bind to RNAs.114

7.4. Microscale thermophoresis (MST)

Understanding the biophysical characteristics of RNA-based small
molecule therapeutics is equally important to the discovery of the lead
compound itself. Microscale thermophoresis (MST) is a biophysical
technique used to identify and quantify interactions between biomo-
lecules including proteins, DNA, RNA, peptides, and small molecules, in
close-to-native conditions (Fig. 4C).186–192 To quantify the inter-
molecular interactions, infrared-lasers are used to achieve precise mi-
croscale temperature gradients within the glass capillaries filled with
the targeted solution, e.g. cell lysate, serum or bioliquids. The directed
movement of biomolecules through the microscale temperature gra-
dient allows for the quantification of changes within the chemical mi-
croenvironment of the fluorescently-labeled target biomolecule when it
interacts with the non-fluorescently-labeled ligand, which, in turn,
identifies binding affinities and discriminates between different binding
sites of a targeted biomolecule.

The Schneekloth laboratory has recently explored the utility of MST
for probing HIV RRE–neomycin and HIV RRE-Rev peptide interac-
tions.189 They also examined competition in RRE RNA binding between
neomycin and the Rev peptide via two different approaches. In all of
these applications, MST effectively measured binding affinities and the
results agreed with previously reported values determined via different
biophysical techniques. Also, the Disney laboratory has utilized MST to
characterize the binding affinity of a small molecule to the A and U
bulge in oncomiR-21.193 This particular chemotype was found to inhibit
levels of mature miR-21 and concomitantly increase levels of pre-miR-
21, while reversing the invasive phenotype caused by elevated ex-
pression of miR-21 in triple-negative breast cancer cells.114

The capacity of MST to monitor therapeutically relevant RNA
binding events and competitive displacement in connection with its
high sensitivity and the small volume of sample required for analysis,
makes it an attractive screening platform for discovering RNA-specific
small molecules.

7.5. Two-Dimensional combinatorial screen (2DCS)

2DCS is a library-versus-library selection-based screening approach
that identifies small molecule chemotypes with high-affinity and se-
lection for small RNA secondary structures, i.e. hairpins, internal loops
and bulges (Fig. 4D).194 First, a small molecule library is conjugated
site-specifically onto an agarose microarray. This chemical array is
probed for binding against a library of labeled RNA motifs, along with
competitor oligonucleotides. After incubation, it is analyzed for RNA
motif-ligand interactions and the hit RNA motifs are excised from the
array, quantified, and sequenced. Following sequencing, the RNA

binding-small molecule interaction is analyzed by structure-activity
relationships through sequencing (StARTS) or high-throughput struc-
ture-activity relationships through sequencing (HiT-StARTS), which use
statistical approaches to determine RNA motif fitness, affinity and se-
lectivity for a specific small molecule.195,196 StARTS can be utilized to
identify positive and negative features of RNA motif targets that may
impact small molecule affinity, and assign a score based upon the RNA
motif-ligand interaction.195 HiT-StARTS defines RNA-small molecule
affinity landscapes, scores the RNA-motif small molecule binding
partners, and generates structure-activity relationships based on data
collected from next-generation sequencing (RNA-seq), 2DCS, and ex-
perimentally determined affinities.196 StARTS and HiT-StARTS can be
used in tandem with Inforna, a bioinformatics-based approach that
integrates RNA motif–small molecule interactions identified via 2DCS
and structural data of target RNAs.185,196,197 Inforna generates lead
compounds for an RNA of interest by comparing the motifs found in the
RNA target’s structure with the RNA motif–small-molecule interactions
in its database.

The integration of 2DCS, HiT-StARTS, and Inforna led to the dis-
covery of a small molecule chemotype that binds to the miR-96 and
inhibits its biogenesis.197 Inforna was also applied to analyze secondary
structures in miRNAs that can be matched with RNA motif–small mo-
lecule pairs.197 Precise linking of modules that bind near and in the
Drosha processing site yielded Targaprimir-96 (Fig. 2A).114 This che-
motype enables selective targeting of pri-miRNA-96 and subsequent
inhibition of Drosha processing in breast cancer. A similar approach
was applied to identify Targapremir-210 (Fig. 2A), a small molecule
that modulates the production of miR-210, leading to increased apop-
tosis in triple-negative breast cancer cells via the hypoxia inducible
factor (HIF) pathway.198 The results of these studies led the authors to
propose broad guidelines for miRNA targeting to alleviate oncogenic
phenotypes. They suggest that: (1) binding must occur in a functionally
active region, e.g. Dicer or Drosha processing region, (2) the ligand
must bind to that site with high affinity, and (3) both RNA abundance
and molecule affinity can affect the target occupancy necessary to elicit
a biological response.

7.6. Fragment-Based drug discovery (FBDD)

Fragment-based drug discovery (FBDD) is a biochemical and bio-
physical approach used to identify lead drug-like compounds though
the identification and characterization of multiple small chemical
fragments that bind to RNA (Fig. 4E). The small size of fragments en-
hances the hit rate against their target since they form less destructive
steric interactions with their target compared to larger compounds. In
addition, it has been argued that the size of fragment chemical space is
substantially smaller than the chemical space of larger drug–like space
such that it can be sampled more efficiently.199 Once identified, com-
pounds may be elaborated via multiple strategies into potent, selective
inhibitors. Overall, the FBDD screening approach includes: (1) fragment
library, (2) target enablement, (3) screening chemical fragments with
biophysical or biochemical assays to identify fragment hits, (4) gen-
eration of fragment-binding model by biophysical characterization and
structure determination, and (5) fragment to lead drug-like compound
optimization through medicinal chemistry and further characterization
of the fragment.200

Early on, fragment linking studies identified novel small-molecule
ligands for ribosomal antibiotic binding sites.201 A benzimidazole hit
fragment for an internal loop within domain II of the HCV IRES was
used to grow a set of ligands with binding affinity in the micromolar
range. The series reduced HCV RNA levels in an HCV replicon assay,
with minimal toxicity.126 Initial ligands for these efforts originated from
large, generic high-throughput screen libraries. Recently, a fragment
library has been designed specifically for fragment screening against
RNA targets.202 An advantage of the approach used for the RNA-di-
rected fragment library is that physicochemical properties of the
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fragments are much more favorable for classical medicinal chemistry
than the original compounds.

More recently, the FBDD screening approach has been applied for
targeting telomeric repeat-containing (TERRA) RNA, resulting in
identification of 20 hits from a library of 355 fluorinated fragment
compounds, 7 of which were able to specifically recognize the parallel
propeller structure of G4-RNA.203 While all of the compounds inter-
acted with the DNA analog of TERRA, the compounds were shown to
favor the parallel conformation, which is the predominant conforma-
tion in the RNA G-quadruplexes present in TERRA. This result suggests
that the ligands can select and have a strong preference for the parallel
propeller-like conformation found in telomeric sequences.203 In the
context of viral RNA, a FBDD approach has been used to identify li-
gands of the HIV TAR element.118 Göbel and colleagues interrogated a
set of 29 small molecules that were selected to represent molecular
motifs beneficial for RNA recognition. The fragments were rich in
chemotypes that provide hydrogen bond donors and included amines,
amidines, and guanidines, as well as benzene rings for stacking inter-
actions. A fluorometric competition assay determined that seven small
molecule compounds were able to displace a dye labeled Tat peptide
from a TAR RNA. Also, Lee et al. reported a fragment-based screen for
small molecules that bind to the influenza A virus promoter.204 Overall,
the value of fragment-based approaches may not only be in developing
leads for specific RNA structures, but also in helping to assess the
druggability of newly discovered RNA structures. Compared to other
chemotype screening methods, FBDD allows for the selection of a weak
fragment to be highly specialized for the targeted RNA molecule based
off not only the initial hits but also the targeted RNA’s NMR spectro-
scopy or crystal structure, thus creating a highly potent, RNA-specific
therapeutic. Furthermore, FBDD can assess whether RNA target is
druggable through the amount, strength, and specificity of weak binder
hits, e.g. if there are little to no hits for a specific RNA then it will most
likely have structural elements that inhibit the binding of a small mo-
lecule.

8. Conclusions

The variety of RNA targets for therapeutic intervention is staggering,
spanning from viral regulatory RNA motifs to coding and ncRNAs involved
in infectious and non-infectious human diseases. There is also the mostly
unexplored potential of targeting novel RNA species, such as circular
RNAs,205 antisense RNAs206 and lncRNAs.207 In addition, RNA-mediated
interactions often dysregulated in variety of human disorders,208 further
widen the pallete of druggable targets. Aberrant interactions of RNA with
proteins is a well-recognized factor that leads to the RNA gain-of-function
mechanism that underlines repeat expansion disorders as discussed. Here,
to achieve a therapeutic effect, an RNA-specific chemotype would need to
specifically recognize and bind the disrupted RNA to prevent protein
binding. Binding to the protein itself would inhibit its cellular function and
likely cause adverse effects. Conversely, in the case of loss-of-function
disorders that decrease protein binding, a therapeutic small molecule
needs to enhance protein binding, as shown by small molecule ligands that
bind to SMN2 pre-mRNA and alter its alternative splicing. The advances in
methods that enable characterization of native RNAs structure, function,
cellular localization and intermolecular interaction will further expand the
already broad selection of potential therapeutic targets for small mole-
cules. Utilizing the information gained by studying RNAs from various
biological and in vitro systems will certainly accelerate the progress of
RNA-specific drug design. However, RNAs derived from different biolo-
gical systems may represent distinct challenges as drug targets, regardless
of their biological or pharmacological significance. Here, the relative ex-
pression of target RNA in a cell, its localization and structural accessibility
of functional sites for ligand binding, will certainly affect its druggability.

Another challenge will be overcoming the issues of specificity and
selectivity, which are major barriers for RNA-binding molecules. For
example, rRNA constitutes the vast majority of cellular RNA while

ncRNA collectively constitutes less than 5% of total cellular RNA. Thus,
targeting one ncRNA selectively might be challenging. However, the
implementation of structure-bases and high-throughput screening
methods that we have discussed are proven to be effective at identifying
new small molecule chemotypes with both good specificity and high
affinity. Also, the flexibility of RNA-specific small molecules should aid
the construction of effective multifunctional drugs that have more than
one mode of action and affect multiple targets that could replace drug
cocktails. Lessons learned from efforts of ligand discovery for structured
RNA elements, including regulatory motifs in the viruses, bacterial
rRNA and other ncRNA may inspire the future search for inhibitors that
target RNA motifs in a wide range of human disorders. In addition,
novel tools emerge as we speak, ranging from nanopore sequencing for
detecting RNA base modification (https://www.biorxiv.org/content/
early/2018/11/09/459529) to artificial intelligence-driven drug de-
sign.209 These will soon offer new insights to RNA biology and provide
a significant step forward in the development of novel and much
needed therapeutics.
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