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Highly efficient modeling and optimization
of neural fiber responses to electrical
stimulation

Minhaj A. Hussain 1, Warren M. Grill 1,2,3,4 & Nicole A. Pelot 1

Peripheral neuromodulation has emerged as a powerful modality for con-
trolling physiological functions and treating a variety of medical conditions
including chronic pain and organ dysfunction. The underlying complexity of
the nonlinear responses to electrical stimulationmake it challenging to design
precise and effective neuromodulation protocols. Computationalmodels have
thus become indispensable in advancing our understanding and control of
neural responses to electrical stimulation. However, existing approaches suf-
fer from computational bottlenecks, rendering them unsuitable for real-time
applications, large-scale parameter sweeps, or sophisticated optimization. In
this work, we introduce an approach for massively parallel estimation and
optimization of neural fiber responses to electrical stimulation using machine
learning techniques. By leveraging advances in high-performance computing
and parallel programming, we present a surrogate fiber model that generates
spatiotemporal responses to a wide variety of cuff-based electrical peripheral
nerve stimulation protocols. We used our surrogate fiber model to design
stimulation parameters for selective stimulation of pig and human vagus
nerves. Our approach yields a several-orders-of-magnitude improvement in
computational efficiency while retaining generality and high predictive accu-
racy, demonstrating its robustness and potential to enhance the design and
optimization of peripheral neuromodulation therapies.

The success of therapeutic electrical stimulation to treat disorders—
spanning inflammatory, cardiovascular, cognitive, metabolic, and pain
conditions, among others—hinges on appropriate modulation of tar-
geted neurons. Neural responses to stimulation are highly nonlinear,
and they are influenced by the delivered electrical signal, physical
electrode-tissue relationships, and neuronal biophysics. Designing
effective therapies thus requires analysis of a vast parameter space,
including waveform shape, amplitude, frequency, pattern, active
contact configuration, as well as individual and inter-species differ-
ences. Computational models of neural anatomy and biophysics
enable rigorous optimization of application-specific parameters1 (e.g.,

for selective stimulation of peripheral nerves2–5), as well as investiga-
tion of the mechanisms of complex non-linear phenomena (e.g., con-
duction block6–8). However, these approaches are limited by
exceedingly high computational costs due to the non-linear properties
of neurons. Therefore, we designed a highly efficient model of nerve
fibers, and we used this “surrogate” model for rapid estimation of
stimulation parameters to achieve selective activation.

Recent computational tools support neural simulations on
GPUs9–11 and provide significant speedup over traditional CPU-based
methods. However, extracellular stimulation cannot bemodeled using
these tools: NEURON—the “industry-standard” neural simulation
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environment—is CPU-based, and it is the only platform that supports
simulating the effects of extracellular voltages (as produced by
extracellular stimulation) and the complex ultrastructure of state-of-
the-art fiber models12.

Prior efforts to reduce computational demand designed surro-
gate models that enabled higher throughput of simulations13–15. How-
ever, these surrogates were restricted to a predetermined class of
waveform and thus did not permit full exploration of the parameter
space, including temporal features of stimulation. Further, they only
considered fiber activation from rest, and thus could not predict other
neural responses such as conduction block, action potential collision,
subthreshold modulation, or dependence on prior history of excita-
tion. These surrogates also only predicted activation thresholds,
without spatiotemporal responses of the gating parameters and
transmembrane voltage, which are critical for mechanistic studies.

Our objective is to estimate rapidly the full spatiotemporal
response of large populations of nerve fibers to electrical stimulation.
Previous studies acrossmany fields appliedmachine learning tomodel
physical systems by solving specific initial- or boundary-value
problems16,17, and recently, neural networks to solve such differential
equations were conditioned to account directly for the governing
physical laws18. These methods provide significant computational
benefits, such as mitigating the need for fine spatial and/or temporal
discretization while yielding high-resolution solutions; however, they
offer limited speed gains for our purposes due to the need for opti-
mization that is specific to the particular set of initial and/or boundary
conditions, i.e., specific extracellular stimulation conditions. Other
recent studies showed significant computational acceleration using
generic function approximators to emulate mechanistic biological
models19,20. However, these methods do not accommodate enforcing
boundary conditions that vary continuously in both space and time, as
is necessary to represent electrical stimulation.

In this work, we present a framework, AxonML21, to implement,
parameterize, efficiently execute, and perform optimization on GPU-
based models of peripheral nerve fibers. Under the AxonML frame-
work, we developed a high-throughput generalized computational
model of myelinated peripheral fibers—hereafter labeled as the sur-
rogate myelinated fiber, S-MF, pronounced “smurf”—that accurately
predicts responses to electrical stimulation orders-of-magnitudemore
quickly than conventional methods, thus enabling efficient optimiza-
tion of stimulation parameters for neural interface design. S-MF
reproduces the spatiotemporal dynamics of the McIntyre-Richardson-
Grill (MRG) fiber12, a well-established and well-validated nonlinear
model of a myelinated mammalian fiber; hereafter, we refer to the
reference implementation of the MRG fiber as the “NEURON” model.
The MRG model is the current gold standard for predicting fiber
responses to electrical stimulation22; it was developed using detailed
electrophysiological data12, and it has been validated experimentally to
design new energy-efficient modes of stimulation23,24, to predict
responses to high-frequency signals for nerve block25, and to predict
species-appropriate stimulation thresholds of in vivo experiments26. It
has also been used to accurately predict responses to unconventional
methods of stimulation, such as transcutaneous amplitude-modulated
signals for the treatment of overactive bladder27. Commercially, the
MRG model has been used in the development of a number of FDA-
approved platforms to predict the volume of tissue activated, and it is
the basis for Boston Scientific’s digital interface for setting clinical
deep brain stimulation parameters in patients with Parkinson’s disease
(Vercise Neural Navigator with STIMVIEW XT)28.

S-MF is executed on a GPU for exceptional computational effi-
ciency and uses a simplified myelinated cable geometry with non-
linear ionic conductances that are reparametrized to reproduce
accurately the responses of the NEURON model. AxonML can also be
used to implement other fiber models; we show that it generalizes
effectively to produce a surrogate of an established model of an

unmyelinated C-fiber29. We quantified the performance of S-MF across
a wide range of parameters: monopolar and multipolar stimulation,
fiber diameters, nerve morphologies, stimulus waveforms, states of
intrinsic neural activity, and neuromodulation protocols (including
excitation and kilohertz frequency block). We compared the perfor-
mance of S-MF to simulations in NEURON. We used S-MF to design
stimulation parameters that achieve selective stimulation in pig and
human vagus nerves using gradient-free and gradient-based optimi-
zation approaches. We achieved 2,000 to 130,000× speedup over
single-core simulations in NEURON, while maintaining accuracy.

Results
We solved morphologically realistic models of human (n = 1) and pig
(n = 1) vagus nerve stimulation (VNS) using the finite element method
to simulate distributions of electric potential within the nerves. We
applied these potentials as time-varying boundary conditions to
McIntyre-Richardson-Grill (MRG)12models ofmyelinated fibers (Fig. 1f)
in NEURON to generate a dataset of responses to linear combinations
of rectangular waveforms with randomized amplitudes, delays, and
pulse widths, delivered with the six-contact ImThera cuff electrode
(Fig. 1a).Weused this dataset to train bybackpropagation andgradient
descent a surrogate model of the MRG fiber, implemented as a sim-
plified cable model (Fig. 1g) with trainable parameters.

We used the trained surrogate model (S-MF) to simulate VNS, a
pivotal neuromodulation method due to its versatility—including
treatment of drug-resistant epilepsy30, treatment-resistant depression31,
stroke sequelae32, and heart failure33—and favorable safety profile34. We
tested S-MF for accuracy in predicting activation thresholds to stimulus
pulses with various waveforms, as well as accuracy in predicting other
nonlinear responses to stimulation in pig (n =6) and human (n = 6)
vagus nerve models instrumented with either an ImThera (six-contact)
or helical (bipolar, circumneural) cuff electrode (Fig. 1a,b).

We used S-MF to optimize stimulation parameters for selective
activation of fascicles in models of pig and human VNS, using both
rectangular biphasic and arbitrary waveforms. We implemented two
optimization methods, gradient-free and gradient-based, and we
compared performance across tasks and optimization methods using
both the NEURON model and S-MF.

Surrogate model accurately and rapidly predicts activation
thresholds
We quantified the accuracy of S-MF’s activation thresholds. Activation
thresholds are the most common output metric in neuromodulation
modeling studies. The MRG fiber model has been used to explain
neuroanatomy-dependent differences in activation thresholds for
responses related to heart rate changes and neck muscle contractions
in animal experiments of VNS35. We placed surrogate fibers of various
diameters in pig (n = 6) and human (n = 6) vagus nerve models
instrumented with one of two cuffs geometries: ImThera, with six
circular contacts (Fig. 1a), or LivaNova helical, with twohelical contacts
spanning ~270° around the circumference of the nerve (Fig. 1b). We
delivered stimulus currents with waveforms of various shapes (see
Methods “Surrogatemodel: Testing—activation thresholds”) and pulse
widths, in monopolar configuration with ImThera and bipolar config-
uration with the helical cuff. We determined to within 1% accuracy the
minimum current amplitude required to evoke at least one propa-
gating actionpotential (AP) in each S-MF for all stimulus configurations
(n = 17,280 for ImThera and n = 25,200 for helical). We compared the
S-MF responses to MRG fibers implemented in NEURON, stimulated
under the same conditions; see Methods “Surrogate model: Testing –

activation thresholds” for full details.
S-MF accurately predicted NEURON thresholds across fiber dia-

meters, nerve morphologies, electrode geometries, and waveforms
(R2 = 0.999; Fig. 2a), with mean absolute percentage error (MAPE) of
<2.5% across all tested fiber diameters (6–14 µm), with lower error for
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larger fibers (r = −0.21, p <0.005; Fig. 2b). Threshold errors spanned
−11.0 to 7.3% (with >95% of errors within ± 5%), and they were com-
parable between human and pig nerve morphologies, as well as
between ImThera and helical cuff geometries, although the training
data used only the ImThera cuff (Fig. 2c). Threshold accuracy was
consistent across all six tested waveforms, although the training data
included only monophasic rectangular pulses (Fig. 2d).

For comparison, we implemented a previously published thresh-
old estimator14 (Supplementary Note 5). The Peterson surrogate
overestimated thresholds with MAPE = 31% across all tested fiber dia-
meters and pulse widths, and in some cases, threshold error exceeded
150% (Fig. 2e).

S-MFmassively reduced computation time (Fig. 2f). Calculating all
17,280 ImThera thresholds required 92min 18 s in NEURON paralle-
lized across 375 CPU cores but only 26 s for S-MF on a single GPU, i.e.,
~80,000× speedup over single-core NEURON. Calculating all 25,200
helical cuff thresholds required 155min 12 s in NEURON but only 37 s
for S-MF, i.e., ~95,000× speedup over single-core NEURON.

Surrogate model exhibits emergent nonlinear spatiotemporal
phenomena
The responses of nerve fibers to stimulation depend on states of
intrinsic activity and prior history of excitation, and local excitation

does not necessarily imply action potential propagation to downstream
targets. These complex interactions give rise to phenomena such as
conduction block. TheMRG fiber model has been used to predict high-
frequency block36–38 and to explain non-monotonic effects of frequency
on block thresholds from in vivo studies39. S-MF accurately reproduced
a variety of highly nonlinear phenomena that were not represented in
the training set and were not captured by threshold estimators13–15,40.
See Methods “Surrogate model: Testing - other non-linear responses to
stimulation” for full methodological details.

We first examined suprathreshold effects of stimulation with a
single pulse. We selected one fiber location in a pig nerve model
instrumented with the ImThera cuff and determined the activation
threshold for cathodicmonopolar stimulationwith a rectangular pulse
delivered from a random contact. We then stimulated with increasing
suprathreshold amplitudes. S-MF reproduced diverse responses at
increasing amplitudes, from excitation to unidirectional propagation,
to bidirectional failure of action potential propagation, to re-excitation
with a slightly delayed action potential relative to initial low-threshold
excitation (Fig. 3a).

We then examined S-MF responses to kilohertz frequency stimu-
lation, as is used to induce reversible conduction block. We selected a
pig nerve model instrumented with the ImThera cuff and populated it
with fibers of different diameters (5.7, 8.7, and 14.0 μm).We generated

Fig. 1 | Components of computational models of electrical stimulation of per-
ipheral nerves. ImThera (a) and helical cuff (b) geometries (with example pig vagus
nerve morphology). The perineurium (side boundaries of each fascicle), muscle
(tissue surrounding the nerve and cuff), and saline (fill between the nerve and cuff)
are not shown. c Mean (lines) and standard deviation (shaded regions) potential
distributions along the centroid of 10 example fascicles for pig (orange; Supple-
mentary Note 1 P1) and human (blue; Supplementary Note 1 H1) vagus nerves in
response to a 1mA monopolar stimulus delivered via the ImThera (solid lines) or
helical (dashed lines) cuff. d 2D array representation of spatiotemporal boundary

condition imposed by extracellular stimulation, generated by an outer product
between the potential distribution along the fiber (VA−1) and the stimulus waveform
(mA). eCartoon of the longitudinal cross section of amyelinated fiber, with the axon
in pink andmyelin in yellow. fDouble-cable structure of the MRG12 NEURONmodel,
with example circuit representations of the node of Ranvier, paranode, juxtapar-
anode, and internode compartments. Inputs may include extracellular [extra] and
intracellular [intra] current stimulation. g Single-cable structure of the surrogate
model (S-MF) that retains only the nodes of Ranvier. As with the NEURON model,
S-MF permits both extracellular [extra] and intracellular [intra] current stimulation.
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100Hz intrinsic activity using intracellular current pulses at one end of
each fiber. We then selected one electrode contact and delivered
sinusoidal extracellular signals at a range of frequencies and ampli-
tudes and recorded the number of action potentials arriving over a
100ms period at the other end of each fiber opposite the site of
intracellular stimulation. Kilohertz frequency extracellular signals
generate complex interactions with ongoing neural activity across
signal frequencies, amplitudes, and fiber diameters, including excita-
tion, partial block, complete block, re-excitation, and re-block, and
these responses were captured by S-MF (Fig. 3b).

Next, we examined S-MF’s ability to represent interactions
between propagating action potentials. We generated action poten-
tials at opposite ends of fibers of various diameters (5.7, 8.7, 10.0, and
14.0μm) using intracellular current injection. We recordedmembrane
potential along the length of the fibers over time. S-MF accurately
reproduced action potential annihilation by collision formultiple fiber
diameters (Fig. 3c).

Finally, we examined S-MF’s ability to represent interactions
between intrinsic firing and stimulation at “conventional” (sub-kHz)
frequencies. We selected a human nerve model instrumented with the
helical cuff and populated the nerve with fibers of different diameters

(5.7, 8.7, and 14.0μm) at the centroids of randomly selected fascicles.
We generated random intrinsic activity at different mean rates (10, 50,
100Hz) in each fiber through intracellular current injection at one end.
We simultaneously delivered bipolar extracellular stimulation with
0.1ms biphasic pulses delivered at different frequencies (30, 50, and
100Hz) at amplitudes ranging from 50% below to 50% above themean
threshold for each fiber diameter. We recorded the timing of spikes
arriving at the end of each fiber opposite from the site of current
injection and compared the spike times with and without extracellular
stimulation. S-MF accurately predicted spiking desynchronization (i.e.,
changes in intrinsic spiking activity caused by extracellular stimula-
tion) across mean intrinsic firing rates, frequencies of extracellular
stimulation, stimulation amplitudes, fiber diameters, and electrode-
fiber distances (Fig. 3d). For kilohertz-frequency and spike synchro-
nization modeling tasks, S-MF produced up to 90,000× speedup over
single-core NEURON (Supplementary Note 8.1).

Surrogate model greatly accelerates optimization for spatial
selectivity
Given an appropriate model of a nerve’s anatomy and biophysics,
optimization methods can define stimulation parameters to achieve a

Fig. 2 | Surrogate model (S-MF) accurately predicts activation thresholds and
dramatically reduces compute time. All tests were conducted in nerves other
than those used to train S-MF. Data collected with monopolar ImThera and bipolar
helical cuff electrodes are indicated with (I) and (H), respectively. a Thresholds
calculated with S-MF vs. NEURONmodel across fiber diameters (n = 8), waveforms
(n = 6), pulse widths (n = 5), species (n = 2), nerve morphologies (n = 6 per species),
fiber locations (n = 5 to 10 per nerve), and cuff geometries (n = 2). We simulated
thresholds using 375 CPU cores (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz) for
NEURON, and 1 CPU and 1 GPU (NVIDIA RTX 24GB A5000) for S-MF. The gray line
denotes a 1:1 relationship. b Absolute percentage error (APE) in S-MF thresholds
relative to the NEURONmodel across fiber diameters. Lines indicate the mean APE
(n = 1080perfiber diameter for ImThera cuff,n = 1800perfiber diameter for helical
cuff on pig nerves, n = 1350 per fiber diameter for helical cuff on human nerves),
where the mean was calculated across waveforms, fiber locations, and nerve
morphologies. Shaded regions indicate 95% confidence intervals. cDistributions of

percent threshold error versus fiber diameter across waveforms (n = 6), pulse
widths (n = 5), nerve morphologies (n = 12), and fiber locations (n = 5 to 10 per
nerve) for a given cuff. d Distributions of percent threshold error versus stimulus
waveform across fiber diameters (n = 8), pulse widths (n = 5), species (n = 2), nerve
morphologies (n = 6 per species), and fiber locations (n = 5 to 10 per nerve) for a
given cuff. e Distributions of percent threshold error for the Peterson surrogate
versus fiber diameter across pulse widths in a pig vagus nerve (n = 1) instrumented
with the ImThera cuff. c–e Boxplots are displayed using the Tukey method (center
line, median; box limits, upper and lower quartiles; whiskers, maximum /minimum
point within 1.5× interquartile range of nearest hinge). f Compute times for dif-
ferent numbersoffibers (53 nodesofRanvier, 5ms simulation, 0.005ms time step),
simulated usingNEURONor S-MFon different hardware. Compute times for single-
core NEURON were extrapolated assuming linear scaling beyond 1000 fibers.
Source data are provided as a Source Data file.
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targeted neural response, such as activation of specific fibers while
avoiding activation of other fibers. We examined this selective stimu-
lation task under various constraints.

We instrumented each vagus nerve (n = 6 human and n = 6 pig)
with a six-contact ImThera cuff andmodeled a 5.7 µmdiameter fiber at

the centroid of each fascicle. Vagal motor fibers pass by the nodose
ganglion, where the cell bodies of visceral afferent sensory fibers are
located. Inpigmodels,we usedpublishedhistology41 to assignfibers as
target or off-target based on this sensory / motor distinction. Analo-
gous immunohistochemical data are not yet available for the human

Fig. 3 | Surrogate model (S-MF) predicts a range of nonlinear responses to
stimulation. All tests were conducted in nerves other than those used to train
S-MF. a S-MF (dashed orange) reproduced NEURON (solid blue) responses to a
0.75ms monopolar cathodic extracellular pulse delivered to pig vagus nerve
(Supplementary Note 1 P3) with the ImThera cuff across different stimulation
amplitudes (rows). Columns indicate the timepoints during each simulation at
which transmembrane potential (Vm) is plotted. b S-MF (orange) reproduces the
NEURON (blue) responses to kilohertz frequency extracellular stimulation with
intrinsic activity. Fibers were simulated in a pig vagus nerve (Supplementary Note 1
P2) instrumented with the ImThera cuff. Intrinsic activity was generated at 100Hz
with intracellular current pulses at one end of each fiber and action potentials (APs)
were counted at the opposite end. Rows correspond to the frequency of the
extracellular sinusoidal signal and columns correspond to fiber diameters. Solid
lines are the mean number of APs recorded across 7 sampled fascicles, and shaded
regions are 95% confidence intervals. c S-MF (dashed orange) reproduces NEURON

(solid blue) AP interactions. Action potentials initiated by intracellular current
pulses (2 nA, 0.1ms) at opposite ends of a fiber propagate bidirectionally at
appropriate speeds and mutually annihilate when they meet. Rows correspond to
different fiber diameters, and columns correspond to the timepoints at which Vm

along the nerve is plotted. d S-MF (orange) reproduces state-dependent fiber
responses to extracellular stimulation predicted by NEURON (blue). Fibers were
placed in a human nerve (Supplementary Note 1 H2) instrumented with the helical
cuff. Rows correspond to mean intrinsic firing rates, and columns correspond to
fiber diameters. Lines correspond to mean SPIKE synchronization64 (a quantity
between 0 and 1 that measures the proportion of coincident spikes between two
spike trains) across all modeled fibers of a given diameter andmean intrinsic firing
rate (n = 35, 7 fiber locations × 5 distinct patterns of intrinsic firing) at a given
amplitude and frequency (line style) of extracellular stimulation (0.1ms symmetric
biphasic rectangular pulses). Shaded regions correspond to 95% confidence
intervals. Source data are provided as a Source Data file.
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vagus nerve; therefore, we assumed a similar vagotopy to pigs, and we
randomly assigned one-half of the nerve as target and the other half as
off-target.

We applied our optimization algorithms to two tasks: amplitudes
of symmetric rectangular current pulses and arbitrary waveforms.
First, we limited stimulation to symmetric biphasic rectangular wave-
forms with a fixed 400 μs pulse width, yielding a six-dimensional
optimization problem for each nerve, i.e., the optimization algorithm
was taskedwith identifying the amplitude of the rectangularwaveform
for each of the six electrode contacts. Second, each contact was per-
mitted to deliver simultaneously a 1ms charge-balanced signal with an
arbitrary waveform, yielding a 1200-dimensional optimization pro-
blem for each nerve, i.e., the optimization algorithm was tasked with
identifying the current delivered at 200 consecutive time points for
each of the six electrode contacts.

The computational demands to conduct optimization using CPU-
based biophysical models can be prohibitive for many users and
applications. Further, typical black-box optimizationmethodsmaynot
perform well for high-dimensional problems (e.g., waveform-agnostic
optimization). We developed two optimization strategies (gradient-
free and gradient-based) that used S-MF in lieu of a standard

biophysical model to address both the computational demands and
performance onproblemswithmany degrees of freedom.All reported
selectivity results for optimized stimulus parameterswere evaluated in
NEURON. Supplementary Table 3 provides a summary of optimization
performance with respect to waveform constraint (biphasic or arbi-
trary), optimization algorithm (gradient-free or gradient-based), and
fiber model (NEURON or S-MF).

We optimized the amplitudes of rectangular pulses delivered via
the six electrode contacts to achieve spatially selective fiber activation
(Fig. 4a–d). Comparable selectivity was achieved across nerve
morphologies, optimization methods, and fiber models (Fig. 4e).
Optimization with S-MF yielded consistently high-quality solutions,
with 100% median target activation and 0% median off target activa-
tion for both gradient-free optimization (differential evolution; DE)
and gradient descent (GD). Relative to single-CPU execution time for
DE with the NEURON model, S-MF achieved ~2,300× speedup when
using DE (single GPU) and ~26,000× when using GD (single GPU)
(Fig. 4f; Supplementary Note 8.2)

We used the weighted binary cross entropy (WBCE)—a weighted
distance between two sets of binary probability vectors—to assess
selectivity (Fig. 4e), where larger WBCE corresponds to poorer

Fig. 4 | Optimization of current amplitudes (6 degrees of freedom) for spatially
selective activation of 5.7 µm fibers using symmetric biphasic rectangular
waveforms. a–c Example selectivity performance for a pig vagus nerve (Supple-
mentaryNote 1 P4) usinggradient-free optimization (differential evolution; DE) and
NEURON (a), gradient-free optimization and the surrogate model (S-MF) (b), and
gradient descent (GD) with S-MF (c). d Final optimized stimulation waveforms
corresponding to panels a–c. Frame colors and numbers correspond to contact
colors and numbers in panels a–c. e Summary of optimization performance across
all 12 nerves (6 pig vagus nerves in red and 6 human vagus nerves in blue) for all
optimizationmethods: % target fascicular area activated,%off-target fascicular area
activated, andweighted binary cross entropy (WBCE, Eq. (18)). We assumed that all

fibers of a specific diameter within a given fascicle had the same threshold78; we
thus converted percent fibers activated to percent fascicular area activated. For all
optimized stimulus parameters generated by algorithms using S-MF (DE + S-MF,
GD + S-MF), we evaluated the ‘true’ fiber activations using the NEURONmodel and
report performance metrics for those activations (Supplementary Note 7). f Com-
pute time for each optimization method on applicable hardware, per nerve (left,
n = 12) and total (right). Compute time for 4 CPUs was estimated from 350 CPUs
assuming linear scaling. e, f Boxplots are displayedusing the Tukeymethod (center
line, median; box limits, upper and lower quartiles; whiskers, maximum/minimum
pointwithin 1.5× interquartile rangeof nearest hinge). Sourcedata are provided as a
Source Data file.
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selectivity. We detected no significant differences in WBCE for solu-
tions generated using either DE with S-MF (Wilcoxon signed-rank test;
p =0.03 >0.0125) or GD with S-MF (Wilcoxon signed-rank test;
p =0.02 >0.01) compared to DE with NEURON. While optimization
with the six-contact ImThera cuff achieved spatial selectivity, the
standard clinical cuff has helical contacts spanning most of the nerve
circumference; optimization with the helical cuff activated target
fibers (100% median activation), but with strong concomitant activa-
tion of off-target fibers (87% median activation).

We optimized the shape of arbitrary, charge-balanced waveforms
delivered through each of the six contacts to achieve spatially selective
fiber activation (Fig. 5). The DE and NEURON-based optimization was
not successful in identifying selective stimulus parameters, consistent
with the limitations of randomization-based evolutionary algorithms
in searching high-dimensional spaces42. In contrast, gradient-based
optimization consistently achieved selectivity across all nerves, with
100% median target activation and 0% median off-target activation,
but selectivity was worse than with rectangular pulses (Wilcoxon
signed-rank test of WBCE between biphasic waveforms generated
using DE +NEURON and arbitrary waveforms generated using GD+ S-
MF yielded p =0.003 <0.006) likely due to additional degrees of

freedom increasing the probability of generating waveforms for which
S-MF prediction is less accurate (Supplementary Note 7). GD + S-MF
yielded a total speedup of ~135,000× over single-core DE +NEURON
(Supplementary Note 8.3). Additionally, the gradient descent algo-
rithm consistently generated smooth waveforms, in contrast to the
stochastic gradient-free procedure that consistently returned noisy,
random-looking waveforms (Fig. 5c).

Discussion
Electrical stimulation of the nervous system has been used for a broad
range of applications, including VNS for epilepsy, depression, obesity,
type 2 diabetes, heart failure, and rheumatoid arthritis; deep brain
stimulation for Parkinson’s disease, essential tremor, and epilepsy;
spinal cord stimulation for chronic pain; sacral nerve stimulation for
incontinence; and carotid sinus nerve stimulation for hypertension.
These therapies have a current estimated total global market of ~$10
billion. However, there currently exists only one simulation platform
(NEURON) that directly represents the effects of electric fields on
neurons, with some significant associated computational challenges;
therefore, there is a need for high-quality estimation and optimiza-
tion tools.

Fig. 5 | Optimization of current amplitudes (1200 degrees of freedom) for
spatially selective activation of 5.7 µm fibers using arbitrary waveforms.
a–b Example selectivity performance (Supplementary Note 1 P4) using gradient-
free optimization (differential evolution; DE) and NEURON (a), and gradient des-
cent (GD) with the surrogate model (S-MF) (b). c Final optimized stimulation
waveforms corresponding to panels a, b. The total pulse duration for every contact
for all optimizationswas constrained to 1ms (between0.2 and 1.2ms). Frame colors
and numbers correspond to contact colors and numbers in a, b. d Summary of
optimization performance using arbitrary waveforms across all 12 nerves (6 pig
vagus nerves in red and 6 human vagus nerves in blue) for both optimization
methods: % target fascicles activated, % off target fascicles activated, and weighted

binary cross entropy (Eq. (18)). We assumed that all fibers of a specific diameter
within a given fascicle had the same threshold78; we thus converted percent fibers
activated to percent fascicular area activated. For all optimized stimulus para-
meters generated by algorithms using S-MF (GD + S-MF), we evaluated the ‘true’
fiber activations using the NEURON model and report performance metrics for
those activations (Supplementary Note 7). e Compute time for each optimization
method on different hardware, per nerve (left, n = 12) and total (right). Compute
time for 4CPUswas estimated from350CPUs assuming linear scaling.d, eBoxplots
are displayed using the Tukey method (center line, median; box limits, upper and
lower quartiles; whiskers, maximum / minimum point within 1.5× interquartile
range of nearest hinge). Source data are provided as a Source Data file.
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We introduced a framework, AxonML, for defining surrogate
models of nerve fibers that dramatically reduces computational
demands while preserving key biophysical attributes by (1) simplifying
the fiber geometry, (2) developing a GPU-compatible implementation,
and (3) tuning the model parameters to maintain accuracy relative to
the original biophysical model. The surrogate preserves the dynamic
behavior at the nodes of Ranvier where action potentials are initiated
andpropagatedbynonlinear voltage-gated ion channels, including the
full spatiotemporal response of the gating variables, transmembrane
currents, and transmembrane potential.We defined a surrogatemodel
tomimic theMRG fibermodel; we chose theMRG fibermodel because
it is the “industry standard”, it is highly relevant to the development of
peripheral nerve neuromodulation therapies, it balances complexity
and accuracy, it was developed based on extensive experimental data
from mammalian myelinated fibers, and it reproduces in vivo thresh-
olds of rat, pig, and human VNS26,35. AxonML can be applied to
implement other neuronal models; for example, we also used the
framework to create a surrogate of the Sundt29 C-fiber model, an
unmyelinated fiber model-of-choice for computational studies22

(Supplementary Note 10).
Our surrogate model (S-MF) scales efficiently on multithreaded

hardware, like the RTX A5000 24GB GPU, and trains effectively on
large spatiotemporal datasets. This GPU compatibility is an important
advantage given that existing platforms like NEURON lack GPU sup-
port for solving differential algebraic equations inherent to extra-
cellular potential boundary conditions. GPU deployment yielded a 4 to
5 orders-of-magnitude speedup over single-core NEURON, where the
speedup depends on the problem size and parallelism factors (i.e., the
number of fiber simulations, the length of each fiber, and the pro-
portion of simulations that can be performed in parallel). Specifically,
GPU execution enables the concurrent solution of several thousand
fiber models, achieving concurrency both at the population level,
where multiple fibers are processed simultaneously, and at the indi-
vidual level, allowingparallel computationof state variable updates for
all nodes within a single fiber. This approach significantly enhances
scalability (Fig. 2f): for example, as shown in Fig. 4f, optimizing sti-
mulation parameters only required ~2min for either 1 nerve (whether
~10 fibers for a human nerve or ~50 fibers for a pig nerve) or 12 nerves.
GPUs consistently outperform CPUs in both cost-per-gigaflop and
performance-per-watt metrics43,44; securing equivalent computational
performance with CPUs via NEURONwould be financially burdensome
and would necessitate dedicated management of resources (for both
maintenance and job allocation). Conversely, GPUs comparable to the
RTX A5000 are commercially available and can be readily integrated
into standard desktop computers, thus circumventing the need for
elaborate, expensive infrastructure to tackle large-scale simulation and
optimization problems.

Training a surrogate efficiently and effectively requires con-
sideration of dataset generation, dataset consumption, and gradient
descent configuration. Generating training datasets requires solving
costly finite element models of the peripheral nerve and several
thousand biophysical fiber models, which is made practical by access
to a high-performance computing platform. Storing the training data
requires moderate hard drive space (~100 GB), and training requires
efficient streaming of data from the hard drive, depending on the
available RAM. We found that training with the Adam45 or RMSprop46

optimizer generated surrogates of comparable quality. Training was
also sensitive to the length of the chunks of data over which back-
propagation was performed: 50 timesteps were suitable in our case,
but thismayvary depending on the systembeing approximated. These
considerations, however, do not apply at the time of inference; we
provide our trained surrogate publicly for others to usewithout having
to train their own surrogate model.

S-MF greatly expands the types of waveforms and stimulation
protocols that can be predicted as compared to threshold- or

activation-based estimators, thus providing broader insight into how
information transmitted along fibers is transformed by electrical sti-
mulation. Prior efforts were exclusively designed to predict activation
thresholds from rest for a specific class of waveform13–15,40. In contrast,
S-MF can represent states of intrinsic activity, effects of intracellular
current injection, and history of excitation, while being agnostic to
waveform shape, even though the training data featured only fiber
responses to simple rectangular pulses delivered extracellularly via a
cuff electrode. Despite this limited training set, S-MF accurately
reproduced emergent non-linear responses, including responses to
high-frequency signals, direct current (DC) block, and interactions
between intrinsic activity and stimulation. Further, S-MF achieved
rapid and accurate optimization across complex design spaces, where
traditional computational approaches are intractable.

We introduce a gradient descent-based stimulus parameter opti-
mization algorithm using S-MF, in addition to an implementation of a
gradient-free population-based differential evolution algorithm. Both
optimization strategies using S-MF preserved accuracy while sig-
nificantly reducing run time compared to traditional metaheuristic
methods coupled with a NEURON model. The gradient descent
approach scaled especiallywell as it is straightforward to parallelize on
a single GPU. In gradient-free methods, each optimization step
requires evaluating a set of candidate solutions (“population”) for
every problem, cumulatively requiring a total number of fiber simu-
lations that equals the product of the population size and the number
of fibers in the nerve model. In contrast, with gradient descent, we
need only evaluate and backpropagate through the number of fibers in
the nerve model. This difference becomes increasingly significant for
larger nerve models and larger population sizes, where a single
instance of gradient-free optimization can consume all available GPU
memory.

We applied our optimization algorithms to spatially selective sti-
mulation. In vivo studies demonstrate spatially selective neuromodu-
lation using multi-contact stimulation on the pig cervical vagus nerve
for activation of efferent fibers47, cat sciatic nerve for control ofmuscle
activation48,49, and human femoral nerve in an intraoperative setting
for selective hip and knee flexion and extension50. In our first set of
optimizations, we constrained stimulation to fixed-duration biphasic
rectangular pulses. This is consistent with stimulation delivered by
standard implantable pulse generators. However, some commercial
stimulators, such as the STG4008 (Multi Channel Systems, Reutlingen,
Germany) support delivery of continuous arbitrary waveforms51,52, and
recently, experimental system-on-chip platformshave been developed
to deliver fully arbitrary biomimetic signals53. We therefore also con-
ducted a set of experiments where arbitrary waveforms were per-
mitted. The design of arbitrary waveforms demonstrated the
performance of S-MF and different optimization algorithms in a high-
dimensional parameter space, where prior methods are very compu-
tationally expensive and/or ineffective.

Across all 36 optimization trials using S-MF, optimized solutions
activated 97.1 ± 10.2 % of the target fascicular area (median 100%, IQR
97.5–100 %) and only 2.8 ± 6.1% of the off-target fascicular area (med-
ian 0%, IQR 0–2.5 %), as evaluated using the NEURONmodel. S-MF also
was highly accurate in predicting whether fibers were activated or not
in response to the 36 optimized waveforms (accuracy of 98.0 ± 5.1%;
median 100%, IQR 100–100%) (Supplementary Note 7). Further, we
evaluated the neural responses at every 10th step of the gradient-
based optimization, and S-MF’s accuracy remained high (Supplemen-
tary Note 8). These results indicate that our surrogate model and
optimization approach are not biased to poor quality solutions or to
regions of low surrogate accuracy.

Our optimization results consistently predicted stimulus config-
urations of multi-contact electrodes that selectively activated spatially
localized fibers. However, the optimized parameters were not unique:
the various optimization methods found solutions with comparable
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selectivity, but with different numerical values (Supplementary
Note 6).Optimizing arbitrarywaveformshapes is challenginggiven the
very large degrees of freedom compared to, e.g., simply optimizing
stimulation amplitude across contacts for fixed waveform shapes and
timing. Nonetheless, gradient descent successfully identified smooth
arbitrary waveforms for spatially selective activation (where conven-
tional optimization using NEURON struggled). Multi-contact electro-
des for peripheral nerve stimulationwill soonbemore readily available
and common, and thus these methods will be important in improving
and accelerating neuroelectronic interface design. We illustrated
results for charge-balanced stimulation to achieve spatial selectivity in
the vagus nerve with a specific six-contact cuff electrode, but the
surrogate model and optimization methods could be applied to any
nerve and optimization criteria.

Our surrogate fiber model and optimization approaches effi-
ciently and dramatically reduce the scale of design problems. For
example, these methods can quickly generate a selection of high-
quality candidate solutions, or they can inform the prioritization and
exclusion of different regions of the candidate design space. After this
initial reduction, traditional biophysical models can be applied for
further analysis at a significantly reduced computational cost. Addi-
tionally, using the NEURON model to validate the most promising
candidate solutions can maintain higher accuracy when using
gradient-free optimization techniques with the surrogate model. Such
hybridmethods have shown promise for model-based optimization in
other physical domains54.

Limitations
Users of S-MF (or any surrogate) must be aware of the scope over
which its accuracy has been evaluated, as discussed further below,
including the range of training and testing data, the complexity of an
optimization task, and validation against in vivo data. However,
regardless of this specific surrogate model’s limitations, our approach
and architecture can be leveraged if more accurate target responses
become available, either to retrain the model presented herein or to
develop a different fiber model.

Successful application of the surrogate model must consider
accuracy in scenarios that are outside the range of the training data.
S-MF performedwell on a range of stimulation waveforms, stimulation
protocols (e.g., kilohertz frequency signals and interactions between
action potentials), human and pig vagus nerve morphologies, and cuff
electrodes outside the training data (Figs. 2, 3). Slightly larger thresh-
old errors occurred with the helical cuff and biphasic waveforms
(symmetric rectangular pulse and single period of a sinusoid; Fig. 2d):
S-MF slightly underestimated the effect of an anodic second phase in
increasing activation threshold in these cases that were not in the
training data. S-MF also generalized well to a model of the rat vagus
nerve (Supplementary Note 9), which is monofascicular with a dia-
meter ~10× smaller than pig or human vagus nerves. S-MF accuracy
decreased for fiber diameters outside of the training range (5.7 to
14 µm), particularly smaller diameter fibers (3 to 4 µm) for which the
geometrical parameters are defined by different equations than used
for the training data (Supplementary Note 9). Extensive validation of
S-MF has been undertaken for cuff-based stimulation paradigms;
however, performance may not generalize as well to other conditions
such as intraneural stimulation. Additional training data could be used
to improve themodel’s accuracy for other such specialized tasks, such
as the effects of electrode design on stimulation responses in a specific
species and nerve.

S-MF was slightly less accurate in its predictions when optimizing
arbitrary waveforms (median accuracy 100%, IQR 97.4−100%), i.e., an
optimization task with a large number of degrees of freedom, com-
pared with optimizing biphasic rectangular waveforms (median accu-
racy 100%, IQR 100−100%) and thus yielded slightly reduced

selectivity. However, optimization with S-MF generated high-quality
solutions (100% median target activation and 0% median off-target
activation), and S-MF retained accuracy during optimization even with
arbitrary waveforms. We nonetheless recommend validating the
results of any surrogate-based optimization against a ground-truth
model, especially if performing high-dimensional optimization.

The MRG fiber model that we used as a basis for S-MF has been
used to analyze and design neuromodulation therapies that were
outside of the scope of theMRG’s initial development, including novel
energy-efficient stimulation waveforms23,24 and kilohertz frequency
block25, and there was a strong match between the model and
experiments. However, the development and use of any fiber model—
whether using our GPU-based approach, NEURON, or another imple-
mentation platform—must consider whether the model is sufficiently
validated for a given application, or whether additionalmechanisms or
parameter values must be considered.

Our optimization of stimulation parameters assumed that we
have exact knowledge of the nerve’s morphology. However, this level
of detail is unavailable in clinical settings. The enhanced computa-
tional throughput made possible by the surrogate model enables
efficient optimization across a range of nerve morphologies, thus
accounting for the uncertainties in real-world applications.

Methods
Field models: pig and human vagus nerve stimulation
We implemented and simulated finite element models of pig and
human vagus nerves with cuff electrodes using ASCENT v1.2.1 (DOI:
10.5281/zenodo.7627427)55, with COMSOL Multiphysics® v5.6 (COM-
SOL, Inc.; Burlington, MA, USA).

We modeled realistic morphologies of pig (n = 7) and human
(n = 7) cervical vagus nerves using segmented histology of nerve cross
sections56–58 that we extruded 50mm longitudinally (Supplementary
Note 1). We made each nerve circular while preserving its cross-
sectional area using ASCENT’s deformation feature; fascicles were
repositioned during deformation to maintain at least 10 µm between
fascicles and between fascicles and the nerve boundary.

Wemodeled twocuff electrodes (Fig. 1). First, wemodeled the six-
contact ImThera cuff electrode (LivaNova PLC, London, UK). The cuff
was 9mm in length, with an inner diameter of 3mm and six circular
contacts (2mm diameter each) arranged along two diagonals (Fig. 1a).
The ImThera cuff geometry and validated models of pig vagus nerve
stimulation (VNS) with the ImThera cuff are published in prior
papers35,59. We also modeled the bipolar helical cuff used to treat epi-
lepsy and depression clinically (LivaNova PLC, London, UK) (Fig. 1b),
which is available in two sizes. For nerves with a diameter under 3mm
(n = 11), we used the 2mmdiameter cuff; for larger nerves, we used the
3mm diameter cuff (n = 3). In its unexpanded state, the helical metal
contacts of the cuffs spanned 338.5 degrees for the 2-mm cuff and
346.5 degrees for the 3-mm cuff. The contacts were positioned 8mm
apart, measured from their centers. Further details on the helical cuff’s
design and validated models of human VNS using this cuff are pre-
viously published60. We used the ImThera cuff to generate training
data (see “Surrogate model: Training”), and subsequent tests were
performed using both the ImThera and helical cuffs.

For both cuff geometries, we positioned the cuff at the midpoint
of the nerve’s length. Spaces between the cuff and nerve were filled
with saline. We modeled a 10 µm saline gap between the ImThera cuff
and the nerve and a 100 µm saline gap between the helical cuff and the
nerve. We placed the nerve and cuff in a cylinder of muscle (5mm
diameter, 50mm length). We rotated and shifted each cuff based on
the size and position of each nerve’s fascicles. Specifically, we deter-
mined the centroid of all fascicles (“fascicle centroid”) by applying a
weighted average (using each fascicle’s area) to all individual fascicle
centroids, and then found the closest point on the nerve boundary to
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that fascicle centroid. We then rotated the center of the cuff to align
with the closest point. The cuff was then shifted towards the nerve to
leave a 10 µm (ImThera) or 100 µm (helical) gap between the cuff
and nerve.

We assigned materials to the geometry as shown in Fig. 1; see
Supplementary Note 2 for material and tissue conductivities. Some
human nerves feature “peanut fascicles”, where multiple endoneurial
bundles (inner perineurium boundaries) are within a single outer
perineurium boundary, separated by a perineurium septum (e.g.,
Supplementary Note 1 H3). We meshed the perineurium for all peanut
fascicles, otherwise we modeled the perineurium using a thin layer
approximation:

ρsurface =
thkperi
σperi

ð1Þ

where ρsurface is the contact impedance of the perineurium boundary
(Ωm2), σperi is the conductivity of the perineurium (Sm−1), and thkperi is
the thickness of the perineurium (m). For human nerve morphologies,
we calculated the perineurium thickness for each fascicle based on the
original segmentations:

thkperi = router � rinner ð2Þ

where router, inner are the effective circular radii of the outer and inner
perineurium boundaries, respectively. For pig morphologies, we
applied a published relationship between fascicle diameter, dfasc (μm),
and perineurium thickness for the pig vagus nerve56:

thkperi = 3:44μm+0:02547×dfasc ð3Þ

We solved Laplace’s equation:

∇ � σ � ∇Vð Þ=0 ð4Þ

using quadratic geometry and solution shape functions once for
each electrode contact in each model. When solving for each contact,
we applied a 1mApoint sourceof current in the center of the electrode
contact, a floating potential boundary condition for all other electrode
contacts, and grounded outer boundaries of the model. Pig finite
element models (FEMs) had 35 to 95million free tetrahedral elements,
and human FEMs had 2 to 35 million free tetrahedral elements.

Surrogate model
Design and implementation. The surrogate model (S-MF, Fig. 1g) is a
simplified version of the McIntyre-Richardson-Grill (MRG) model of a
mammalian myelinated fiber12 (Fig. 1f) that calculates the transmem-
brane potential (Vm) and all gating variables (m, h, p, s) at every nodeof
Ranvier and time point. S-MF retains only the nodes of Ranvier and the
intracellular space connecting nodes, thus assuming perfectly insu-
lating myelin and omitting additional extracellular field layers. S-MF,
like the original MRGmodel, assumes that the fiber is in a large, highly
conductive medium (i.e., equivalent circuit nodes representing extra-
cellular voltage are grounded and have nonzero potential only when
an extracellular stimulus is applied). The inputs to S-MF are a 2D array
defining the extracellular electric field in space (along the length of the
fiber, at each node of Ranvier) and in time (according to the chosen
stimulation waveform) (Fig. 1d), the diameter of the fiber, and
optionally, any intracellular current sources.

We solved the system of differential equations of the surrogate
model using forward Euler discretization and a staggered timestep. To
advance the simulation by one timestep, we first update the gating
parameter values from time t −0.5dt to t + 0.5dt using the analytic

solution:

xn,t +0:5dt = x1 Vn,t
m

� �� x1 Vn,t
m

� �� xn,t�0:5dt
� �

e�dt=τx ðV
n,t
m Þ ð5Þ

x1ðVmÞ=
αxðVmÞ

αx Vm

� �
+ βxðVmÞ

ð6Þ

τxðVmÞ=
1

qx
10 × αx Vm

� �
+βxðVmÞ

� � ð7Þ

qx10 = aq
x
10

Tc�bqx10
cqx

10
ð8Þ

where n is the index of the node of Ranvier, Vn,t
m is the transmembrane

potential for node n at time t, and αx and βx are independent rate
constant functions, as defined in theMRG paper12, for gating variable x
(where x is m, h, p, or s). qx10 is the q10 value for gating variable x,
parameterized by scalars aqx

10, bq
x
10, cq

x
10, where Tc = 37 °C is the tem-

perature. Using m to indicate mn,t +0:5dt (likewise for all other gating
variables h, p, and s), we then calculate the ionic current and advance
the transmembrane potential from time t to t + dt:

In,tion = �gNafm
3h Vn,t

m � ENa

� �
+ �gNapp

3 Vn,t
m � ENa

� �
+ �gKs Vn,t

m � EK

� �
+ gLðVn,t

m � ELÞ
ð9Þ

Vn,t +dt
m =Vn,t

m +dt ×
1
Cn

×
1
Ra

×CNN Vn,t
m ,Vn,t

e

� �� �� In,tion + I
n,t
stim

� 	
ð10Þ

Cn = cm ×π ×dnode ð11Þ

dnode =β
n
1 ×D

2 +βn
2 ×D+ βn

3 ð12Þ

Ra =
ρa∂x

π × daxon
2

� �2 ð13Þ

∂x =β
d
1 ×D

2 +βd
2 ×D+βd

3 ð14Þ

daxon =β
a
1 ×D

2 + βa
2 ×D+ βa

3 ð15Þ

where βn,βd,βa 2 R3 are coefficients of interpolants relating fiber
diameter (D) to node diameter (dnode), internodal distance (∂x), and
axon internodal diameter (daxon), respectively. We used second-order
polynomials for these interpolants to remain consistent with
previously developed interpolants for the NEURON MRG
implementation55 (Supplementary Note 3.5). CNN Vn,t

m ,Vn,t
e

� �� �
is a

symmetric linear convolution over concatenated Vm and Ve vectors
with a three-node-wide kernel centered on node n at time t. In,tstim is the
intracellular current injected at node n at time t.

Parameters were initialized to the values used in the MRG NEU-
RON model (Supplementary Note 3), with CNN initialized to the sec-
ond spatial difference.We used backpropagation and gradient descent
to optimize 26 parameters of the surrogate model, as detailed in
“Surrogate model: training”, to reproduce the responses of the
NEURON model.

We implemented S-MF in PyTorch v2.061 and deployed it on an
NVIDIA RTX A5000 24GB GPU. All arithmetic operations calculating
updates to state variables, determining the presence of action poten-
tials, and performing backpropagation were executed on the GPU.
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Training. All training data were generated from NEURON simulations
of the MRG myelinated fiber12. All simulations were conducted in
NEURON v7.8 and solved using the implicit Euler method with a fixed
timestep (dt) of 0.005ms and tstop of 5ms.

The ultrastructural geometric parameters for the fiber models
were interpolated over the originally published fiber geometries
(Supplementary Note 3). The training dataset consisted of 65,536 field-
response pairs, where the field was a 2D array representing the extra-
cellular potential at every nodal compartment of the model neuron at
each timepoint, and the response was a 3D array representing the
states of the neuron (Vm,m, h, p, and s) at every nodal compartment at
each timepoint. The training data were generated using two vagus
nerve morphologies, one pig (Supplementary Note 1 P1) and one
human (Supplementary Note 1 H1), instrumented with the ImThera
cuff (Fig. 1a). We followed the procedure outlined in Algorithm 1
(Box 1), where S = 65,536 is the number of sampled field-response
pairs, C = 6 is the number of contacts in the cuff used to generate the
data,N = 53 is the number of nodes of Ranvier per fiber, and T = 1000 is
the number of simulated timesteps.

All modeled fibers had their central node of Ranvier positioned
halfway along the modeled nerve with a random longitudinal offset
∼U½� INL

2 , INL2 Þ, where INL is the internodal length. NEURONsimulations
were distributed over 400 CPU cores on the Duke Compute Cluster,
usingOpenMPI62 for loadbalancing andparallel HDF5 for efficient data
handling. The full training set was ~100 GB and took ~2 h to generate.
Weused80%of the generateddata for training, and 20% for validation.

S-MF was trained by gradient descent onminibatches of data that
were randomly sampled from the field-response pairs of the training
dataset. Training was performed on an NVIDIA RTX A5000 24GB GPU
and took ~5 h. We used double-precision floating-point arithmetic for
training to mitigate underflow error during the initial training period;
subsequent tests using the trained surrogate were performed using
single-precision floating-point arithmetic for improved speed.

Twenty-six parameters of S-MF were optimized during training
(i.e., θ, “optimizable surrogate model parameters”): maximum ionic
conductancevalues (�gNaf , �gNap, �gK, and gL), axial intracellular resistivity

(ρa), membrane capacitance (cm), coefficients of the dnode interpolant
(βn

1 ,β
n
2,β

n
3), coefficients of the daxon interpolant (βa

1 ,β
a
2,β

a
3), q10 para-

meters (aqm
10,aq

h
10,aq

p
10,aq

s
10), parameters governing K+ dynamics

(Supplementary Note 3.3, denoted sK below), and the values of the
symmetric convolutional kernel of CNN (4 values). The objective
function for training was tominimize themean squared error between
S-MF and NEURON predictions:

argmin
�gNaf ,�gNap,�gK,gL,ρa,cm,aqm,h,p,s

10 ,βn ,βa,sK,CNN

jjy�ŷjjMSE ð16Þ

where y is the NEURONmodel prediction, and ŷ is the S-MFprediction.
See Supplementary Note 4 for discussion of the significance of
reparametrizing the membrane potential ODE with a trained convolu-
tional network.

For a given training epoch, let xi 2 RB×N ×T × 1,yi 2 RB×N ×T × 5
D E

be a randomly sampled (without replacement) minibatch of field-
response pairs from the full training dataset, where i 2
f1,2, . . . dtraining set size =65,536

B eg is the minibatch index, B is the size of the
sampled minibatch (i.e., number of simulated fibers in the sample;
B = 64),N is the number ofmodeled nodes of Ranvier (53 nodes), and T
is the number of simulated time steps (5.0ms/0.005ms = 1000 time
steps); the fourth dimension is 1 for the extracellular potentials of xi

and 5 for the number of state variables of yi (Vm, m, h, p, and s).
Let S : x 2 RB×N ×T × 1,s 2 RB×N × 5 ! ŷRB×N ×T × 5 represent the

mapping performed by our surrogate model S from input x (field) to
predicted output ŷ (fiber response) with initial condition (IC) s (using
the numerical methods described in “Surrogate model: Design and
implementation”). Let SSMRG (“steady-state MRG”) represent the
state of MRG nodal compartments at rest (Vm= −80mV and all four
gating variables x at x∞(−80mV)).

Let Adamðθ,∇θL,λÞ represent a single gradient descent update to
optimizable surrogate model parameters θ using the Adam update
rule with default hyperparameters45 and learning rate λ, where

BOX 1

Algorithm 1 - Training Data Generation

Solve 1 pig and 1 human vagus nerve model instrumented with the ImThera cuff (FEM)
ns ← number of fascicles in modeled pig nerve
if pig morphology then

sample field longitudinally at all fascicle centroids (one fiber location per fascicle)
else

sample field longitudinally with uniform density at ns fiber locations within fascicles
done
for i in 1 to S do

for j in 1 to C do

v 2 RN  randomly selected voltage distribution from pig or human nerve

st 2 RT  randomly generated monophasic rectangular pulse, A ~ U[−0.2,0.2) mA, ▷ see Fig. 6a
δ ~ U[0, 2) ms, ∇ ~ U[0, 2) ms

vj
e2RT ×N  st � v

end for
D∼U½5:7, 14Þμm

bc2RT ×N  P6
j= 1

vj
e

simulate MRG fiber (N nodes, fiber diameter D) with extracellular potential boundary condition bc

save field-response pair (all N nodes, all T timesteps, all state variables (Vm,m,h,p, s))
end for
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gradients of a scalar valued loss L (mean squared error) with respect to
the surrogate model parameters θ are represented by ∇θL.

We trained S-MF over 5 epochs using the procedure outlined in
Algorithm 2 (Box 2), a variation on truncated backpropagation
through time63 with the Adamupdate rule. Training was performed on
temporally sequential disjoint chunks of minibatch data, with chunk
length (in terms of number of timesteps) denoted Δ. We used mini-
batch size B = 64 fibers, Δ = 50, and λ= 1e� 5.

Testing—activation thresholds. We simulated activation thresholds
using both S-MFandNEURONmodels to quantify the accuracy of S-MF
across fiber diameters, stimulus waveforms, nerve morphologies, and
cuff geometries. We modeled 6 human and 6 pig vagus nerve
morphologies (Supplementary Note 1 P2-7, H2-7) each instrumented
with the six-contact ImThera cuff and the helical cuff for a total of
24 finite element models for testing; these nerves were constructed
from different histological cross sections than those used to
train S-MF.

For the ImThera cuff, for each nerve, for each of the six electrode
contacts, we randomly (with replacement) selected an associated fas-
cicle. We modeled 8 fiber diameters (5.7 to 14 µm) at the centroid of
each selected fascicle and delivered monopolar stimulation from the
associated electrode contact. For the helical cuff, for each nerve, we
randomly (without replacement) selected up to 10 fascicles (or the
number of fascicles in the nerve if the nerve had fewer than 10 fas-
cicles). We modeled 8 fiber diameters (5.7 to 14 µm) at the centroid of
each selected fascicle and delivered bipolar stimulation from the cuff.
Everymodeled fiber consisted of 101 nodes of Ranvier (increased from
53 to reduce the likelihood of end-excitation for optimization and
threshold tests), and all modeled fibers had their central node of
Ranvier positioned halfway along the modeled nerve.

We simulated activation thresholds for S-MF and NEURONmodels
using a bisection search algorithm to determine a threshold within 1%
tolerance, where activation was defined as Vm crossing −20 mV with a
rising edge at a node of Ranvier 5 nodes fromeither end of the fiber.We
used a time step of 0.005ms and simulated a total time (tstop) of 5ms.

We evaluated six waveforms:monophasic rectangular, symmetric
biphasic rectangular, sawtooth, exponential, sinusoid, and Gaussian
(Fig. 6). For each waveform, we tested five pulse widths (δ): 0.1, 0.2,
0.5, 0.75, and 1ms. We compared the activation thresholds predicted
by S-MF (TSURR) and by NEURON (TNRN) using the relative percent
threshold error (100%× TSURR�TNRN

TNRN
). In total, for nerves instrumented

with the ImThera cuff, we tested 17,280 thresholds (12 nerves × 6
contact-fascicle pairs × 6 waveforms × 5 pulse widths × 8 fiber dia-
meters), and for nerves instrumented with the helical cuff, we tested
25,200 thresholds (12 nerves × up to 10 fascicles × 6 waveforms × 5
pulse widths × 8 fiber diameters).

We compared the performance of S-MF with the published
Peterson threshold estimator14 designed to predict activation thresh-
olds for monophasic rectangular waveforms. Their approach involves
calculating adriving forceestimator termedMDF2 that uses aweighted
sum of second spatial differences over 19 adjacent nodes of Ranvier:

MDF2 =
X
j

W n�jj jðPW,dÞ � Δ2Vj
e ð17Þ

n is the node index for which MDF2 is being calculated. Weights
W n�jj j are the ratio of depolarization caused by the current injected at
node j to the depolarization caused by current injectedwhen j =n for a
given pulsewidth (PW) and fiber diameter d in a linearizedMRGmodel
(generated by replacing all nonlinear ion channels with a fixed specific
conductance = 0.007mS cm−2). Rather than using their published
MDF2 values, we reimplemented their procedures to calculate
threshold MDF2 for the specific fiber diameters and pulse widths that
we tested for our MRG implementation, to avoid any interpolations of
fiber diameter or pulse width. We validated our implementation of the
Peterson surrogate model by reproducing the published threshold
errors across different electrode placements (Supplementary Note 5).

Testing—other non-linear responses to stimulation. We evaluated S-
MF’s accuracy in reproducing non-linear responses to stimulation
other than activation thresholds: unidirectional action potential (AP)

BOX 2

Algorithm 2 - Disjoint Truncated Backpropagation Through Time

In the following, we use NumPy array indexing syntax, where a colon ‘:’ indicates all indices along that dimension and ‘−1’ indicates the
final index

for epoch in 1 to 5 do

for i in 1 to training set size
B

l m
do

get xi, yi ▷ sample minibatch i without replacement from training setcyc None
for c in 0 to T=Δ


 �
do ▷ chunk index

xc xi½: , : ,c×Δ : c×Δ+Δ, :� ▷ get disjoint chunk of xi, length Δ
yc yi½: , : ,c×Δ : c×Δ+Δ, :�
if c = 0 then ▷ get disjoint chunk of yi, length Δ

s SSMRG ▷ if first chunk, set Vm = � 80mV and gating variables at ∞
else

s cyc : , : ,� 1, :½ �
done ▷ otherwise, set IC as previous last state predicted by surrogatecyc S xc, sð Þ ▷ calculate surrogate model prediction for input xc and IC s
L jjyc�cycjjMSE ▷ calculate MSE loss between surrogate prediction and NEURON
Adamðθ,∇θL, λÞ ▷ perform gradient descent step

end for
end for

end for
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propagation, bidirectional direct current (DC) block of AP propaga-
tion, AP annihilation by collision, excitation and block responses to
kilohertz frequency signals, and state-dependent modulation of
activity at conventional stimulation frequencies.

For unidirectional propagation and bidirectional DC block, we
randomly selected a fascicle and an electrode contact in a pig vagus
nerve model instrumented with the ImThera cuff (Supplementary
Note 1 P3). We placed a 12 µm diameter fiber in the centroid of the
selected fascicle and delivered stimulation using a 0.75ms cathodic
monophasic rectangularpulse from the selected electrode contact.We
delivered stimulation at progressively increasingly amplitudes to
observe transitions in the neuronal response from activation to uni-
directional propagation to block to re-excitation (Fig. 3a) in both the
NEURON and S-MFmodels. We used a timestep (dt) of 0.005ms and a
tstop of 7.5ms.

For kilohertz frequency stimulation, we randomly selected 7 fas-
cicles and 1 electrode contact in a pig vagus nerve model (Supple-
mentary Note 1 P2) instrumented with the ImThera cuff. We placed 5.7,
8.7, and 14 µmdiameter fibers at the centroids of the selected fascicles
and delivered stimulation from the selected electrode contact. We
delivered extracellular sinusoidal stimulation at 1, 2, 5, and 10 kHz
starting at t = 0.5ms across a range of amplitudes (0 to 10mA for the
5.7 µm fibers, 0 to 5mA for the 8.7 µm fibers, and 0 to 2mA for the
14 µm fibers). We initiated action potentials at a rate of 100Hz at one
endof eachfiber using a0.1ms intracellular anodic current pulse (2 nA)
starting at t = 50ms and recorded the number of action potentials
(defined asVm crossing −20mVwith a rising edge) arriving at the other
end of each fiber after t = 50ms. In all cases, we simulated a total of
100ms with a dt of 0.001ms. We compared the population response
(mean number of action potentials and 95% confidence interval across
the 7 sampled fiber locations) for each stimulation frequency and
amplitude for eachfiber diameter betweenNEURONandS-MF (Fig. 3b).

For AP collision, we initiated action potentials at both ends of 5.7,
8.7, 10, and 14 µm fibers using a 2 nA, 0.1ms intracellular rectangular
current pulse. We recorded snapshots of Vm along the length of the
fibers at various timepoints to observe how the propagated APs
interacted with each other (Fig. 3c).

For state-dependent modulation of activity at conventional fre-
quencies, we modeled the effects of extracellular stimulation across
a range of suprathreshold and subthreshold amplitudes on fibers
firing intrinsically at different mean frequencies due to random
intracellular current pulses. We selected a human nerve model
(Supplementary Note 1 H2) instrumented with the helical cuff and
randomly selected 7 of its fascicles (without replacement). We
modeled 5.7, 8.7, and 14 µm diameter fibers (101 nodes each) at the
centroid of each fascicle. We first calculated activation thresholds in
NEURON for every fiber for a single 0.1ms symmetric biphasic pulse
using a bisection search algorithm, without any intrinsic activity. For
both the NEURON and S-MF models, we then stimulated extra-
cellularly with trains of symmetric biphasic pulses at {30, 50, and
100Hz}, pulse widths of 0.1ms, and amplitudes from −50% to +50%
of the NEURON-calculated mean threshold (across the seven sam-
pled locations for the given fiber diameter). We simultaneously
delivered intracellular current pulses to one end of the fiber follow-
ing five Poisson random generated sequences at each of 3mean rates
µIFR∈ {10, 50, 100Hz}, totaling 15 random intrinsic firing patterns for
each fiber location and diameter for each extracellular stimulus
parameter combination (frequency × amplitude). We simulated for
t = 100 * (100/µIFR) ms using a dt of 0.005ms with and without
extracellular stimulation.We recorded Vm at the fifth node of Ranvier
from the end of the fiber distal to the location of intracellular sti-
mulation. We calculated the spike times for APs arriving at the Vm

recording node (the timepoints at which Vm crossed −20 mV in the
positive direction). We compared spike times with and without
extracellular stimulation using the SPIKE-synchronization metric64,
SC , which is a mean over aggregated coincidence indicators CðtkÞ
between two spike trains:

SC =
1
M

XM
k = 1

CðtkÞ ð18Þ

whereM is the total number of spikes (across both spike trains) and tk
is the kth spike time in the pooled spike train (in the case of an exact
match, k counts both spikes).CðtÞ is calculated per spike in the original

Fig. 6 | Waveform definitions. a Monophasic rectangular. b Symmetric biphasic rectangular. c Sawtooth. d Exponential. e Sinusoid. f Gaussian.
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pair of spike trains and subsequently pooled:

C ti
1ð Þ� �

=
1 if minj ti

1ð Þ � tj
2ð Þ

��� ���� �
< τij

ð1,2Þ

0otherwise

(
ð19Þ

τij
ð1,2Þ = min ti + 1

1ð Þ � ti
1ð Þ,ti

1ð Þ � ti�1
1ð Þ,tj + 1

2ð Þ � tj
2ð Þ,tj

2ð Þ � tj�1
2ð Þ

n o
=2

ð20Þ

where ti
1ð Þ is the ith spike time in train 1 (and likewise for tj

2ð Þ). SC is 0 if
andonly if the twospike trains donot contain any coincidences, and SC
is one if and only if each spike in each spike train has exactly one
matching spike in the other spike train.We used thismetric tomeasure
the extent to which the extracellular signal transformed the intrinsic
firing signal (Fig. 3d).

Optimization for spatial selectivity
We designed and implemented two optimization methods (gradient-
free and gradient-based). We applied both optimization methods to
define rectangular pulses and arbitrary waveforms to achieve spatially
selective fiber activation in 12 nervemodels (SupplementaryNote 1 P2-
7 and H2-7) instrumented with the six-contact ImThera cuff. We used
NEURON to validate all parameters returned by optimizations that
used S-MF.

The resting inner diameter of the original ImThera cuff model
(whichwas used togenerate trainingdata and activation thresholddata
for surrogatemodel validation) was up to 1.9× larger than the diameter
ourhumannerve specimens (without shrinkage correction). Therefore,
for humannerveoptimization tasks, we inflated all nervemorphologies
by 25% to correct for 20% shrinkage in the tissue preparation process26

and instrumented the resulting nerves with a shrunk version of the
ImThera cuff. We reduced the cuff’s resting inner diameter from 3mm
to 2.5mm, but retained the cuff length, insulation thickness, number of
contacts, contact size, and lengthwise contact spacing. Edge-to-edge
contact spacing of the shrunk ImThera cuff was reduced from 1.05mm
to 0.96mm. Circumferential inter-contact spacing was reduced from
1.34mm to 1.11mm; this spacingwas preserved as the cuff expanded to
fit around nerves with an inner diameter larger than 2.5mm.

Optimization for spatial selectivity: tasks
The overall task in all cases was to maximize activation of target fibers
and avoid activation of off-target fibers, with different objective
functions implemented based on the optimization method (see
“Optimization for spatial selectivity: algorithms”). We defined the
functional organization of the pig vagus nerves using immunohis-
tochemistry which showed that afferents and efferents are segregated
on separate halves of the nerve41, as confirmed with in vivo imaging65

and physiological recordings35. Target and off-target fiber populations
were assigned based on this histological designation of sensory/motor
(afferent/efferent) fascicles, with sensory fibers targeted for selective
activation (Supplementary Note 1 P2-7). Analogous immunohisto-
chemical data are not yet available for human vagus nerves, but this
functional organization reflects the gross anatomical structure of the
nodose ganglion—where thenodosecontains the cell bodies of visceral
vagal afferents, next to which efferent fibers pass—and therefore we
assumed a similar vagotopy between the pig and human nerves. In
human nerves (Supplementary Note 1 H2-7), we randomly partitioned
the nerve approximately into two semicircles and randomly assigned
all fascicles in each semicircle as either target or off-target.Weplaced a
single 5.7 µm diameter fiber at the centroid of each fascicle, each with
101 nodes of Ranvier and a node placed at the longitudinalmidpoint of
the nerve.

Stimulation with rectangular pulses. We optimized the stimulation
amplitudes delivered through all six contacts of the ImThera
cuff for symmetric biphasic rectangular waveforms (PW=0.4ms,
delay = 0.4ms). For each nerve, this yielded an optimization problem
with 6 degrees of freedom. We compared optimized performance
using the ImThera cuff with the best selectivity predicted for bipolar
stimulation with the helical cuff. Specifically, we determined the
optimum amplitude for stimulation with the helical cuff (using the
same biphasic rectangular waveform) by calculating activation
thresholds (in NEURON) for every fiber in the nerve and subsequently
determining the threshold amplitude that minimized the weighted
binary cross-entropy loss (Eq. (21)).

Stimulation with arbitrary waveforms. We optimized the current
delivered at each timestep (dt = 0.005ms) between 0.2 and 1.2ms (the
‘nonzero period’) from all six contacts of the ImThera cuff. For each
nerve, this yielded an optimization problem with 1200 degrees of
freedom (200 current amplitudes corresponding to 200 timesteps for
each of the six contact). We enforced charge balance for each contact
by subtracting the mean of the nonzero period from the nonzero
period for each contact before evaluating the neural response.

Optimization for spatial selectivity: algorithms
We developed two optimization methods: gradient-free (using an
adapted differential evolution algorithm) and gradient-based (using
gradient descent). For the gradient-free method, we compared the
performance between the NEURON and S-MFmodels. Conversely, the
gradient-based method leveraged the differentiability of the surro-
gate; therefore, we only used the surrogate model.

Gradient-free optimization (differential evolution). We implemented
an adapted differential evolution (DE) algorithm66 to optimize stimu-
lationparameters (Fig. 7).Wedefined an initial populationof candidate
solutions (i.e., sets of stimulation parameters) and iteratively updated
the candidate solutions based on their performance on the target
optimization task (i.e., selective activation of target neurons, as
defined in “Optimization for spatial selectivity: tasks”). Thus, the DE
approach is stochastic and does not rely on the differentiability of the
loss function with respect to the parameters being optimized, i.e., it is
gradient-free. We selected DE for its relative ease of implementation,
applicability to real-valued loss functions, widespread use, and con-
tinued development67.

We initialized the population of candidate solutions using random
Latin hypercube sampling. For all DE optimizations, we used bounds of
(−0.3, 0.3) mA. For a population of size n, a random Latin hypercube
was constructed by splitting each of the d dimensions to be sampled
into n equivalently sized intervals over the respective bounds. Each
dimension corresponded to a parameter to be optimized in ourmodel
of extracellular peripheral nerve stimulation: for the rectangular pul-
ses, this corresponded to one amplitude for each contact, yielding a
6-dimensional optimizationproblem, and for arbitrarywaveforms, this
corresponded to 200 current amplitudes for each contact, yielding a
1200-dimensional optimization problem.We then randomly selected a
value from a uniform distribution in each of the n intervals, and we
generated the initial population of candidate solutions by randomly
shuffling these values to produce n sets of parameters. We used
populations of 100 and 300 candidate solutions for the NEURON and
S-MF optimizations, respectively.

For all optimizations using the DE algorithm, we calculated the
loss function as the weighted binary cross-entropy (WBCE):

f ðXÞ=WBCE =
XN
n= 1

f n
F
ð1� AnÞ× lnð1� ÂnÞ+An × lnÂn

� �
ð21Þ
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where N is the total number of fascicles in the nerve, fn is the cross-
sectional area of fascicle n, F is the summed cross-sectional area of all
fascicles in the nerve, An 2 1,0f g is the target activation (activated or
not) of the fiber in fascicle n, and Ân 2 1,0f g is the predicted activation
(using NEURON or S-MF) of the fiber in fascicle n. Fiber activation was
determined by the presence of at least one AP, defined as a rising Vm

crossing 0mV, in either node of Ranvier 5 nodes from each end of
the fiber.

Each generation, the population of candidate solutions was
updated through a process of mutation (Fig. 7a), crossover (Fig. 7b),
and selection (Fig. 7c). A “trial vector”Ui,G was constructed for each ith

candidate solution Xi,G that was evaluated in the current generation G
using the “best/1/bin”68 mutation rule and crossover operation:

Vi,G =Xbest,G + F � ðXr0,G � Xr1,GÞ ð22Þ

U j
i,G =

V j
i,Gifrandj 0, 1ð Þ<CR
Xj
i,G otherwise

(
8j 2 0, 1 . . .d ð23Þ

whereXbest,G is the best candidate solution in the current generation, F
is the mutation rate, Xr0,G and Xr1,G are mutually exclusive randomly
selected candidate solutions from the current generation, rand(0, 1) is
a random sample from a uniform distribution in the interval (0, 1)
(resampled for every j), CR is the crossover rate, and d is the dimen-
sionality of the optimization problem. If the resulting trial vector Ui,G

exceeded the problem bounds in any dimension, the mutation and
crossover operation was repeated up to 10 times, after which those
dimensions which remained outside the bounds were randomly

reinitialized to values within the bounds. This is a feasibility-preserving
strategy for boundary constraint handling that has shown advantages
over Darwinian (i.e., where boundary violations are discouraged by
adding a penalty term to the loss function) and repair (i.e., where
dimensions in which the boundary has been violated are placed back
within the bounds following some rule, such as reflection against the
boundary) methods in recent empirical studies using DE69. Ui,G then
replacedXi,G in generationG + 1 if f ðUi,GÞ< f ðXi,GÞ, i.e., if the loss ofUi,G

was less than the loss of Xi,G, or equivalently, Ui,G had a better
performance.

Weused parameter adaptation to improve convergence70. At each
generation, a crossover rate CRi was generated independently for each
member of the population, sampling from a normal distribution
with mean CR and standard deviation of 0.1, and subsequently
clipped to [0, 1]. Let SCR be the set of all such crossover rates
in the current generation for which the resulting trial vector Ui,G

successfully replaced the corresponding target vector Xi,G (i.e., had a
lower loss). In the next generation, CR was updated such that
CR= 1� cð Þ×CR+ c×meanA SCR

� �
, where meanA is the arithmetic

mean and c is a positive number between 0 and 1. Likewise, amutation
rate Fi was generated independently for every member of the popu-
lation by random sampling from a Cauchy distribution with
location parameter F and scale parameter 0.1, truncated to 1 if Fi > 1
and regenerated if Fi ≤0. Using the same terminology as
before, in the subsequent generation, F was updated such that
F = 1� cð Þ× F + c×meanL SF

� �
, wheremeanL SF

� �
is the Lehmer mean =P

F2SF
F2P

F2SF
F
. We initialized F to 0.8, CR to 1.0, and we used a value of c = 0.1

as in the original paper.
We terminated the DE operation after 200 or 500 generations

(Gmax) for the NEURON and S-MF optimizations, respectively, or if a
solution with a theoretic minimum WBCE loss (0) was found.

Gradient-based optimization (gradient descent). Gradient descent
operates on scalar-valued differentiable loss functions. Surrogate
models implemented using AxonML are differentiable and imple-
mented in PyTorch; therefore, neuromodulation parameters can be
designed using gradient descent for certain optimization tasks.

We optimized stimulation parameters using the procedure out-
lined in Algorithm 3 (Box 3). Let S : x 2 RB×N ×T × 1,s 2 RB×N × 5 !
ŷRB ×N ×T × 5 represent the mapping performed by S-MF S from input x
(field), to predicted output ŷ (the fiber response, i.e., membrane
potential and gating variables for all nodes at all simulated timepoints)
with initial condition s, where B is the number of fibers in the nerve
model,N is the number ofmodeled nodes of Ranvier per fiber, and T is
the number of simulated timepoints. Let SSMRG (steady-state MRG)
represent the state of MRG nodal compartments at rest (Vm= −80mV
and all four gating variables x at x1ð�80mVÞ).

Let MF : p 2 Rd ! x 2 RB ×N ×T × 1 represent the mapping from
the set of optimizable stimulus parametersp (where d is the degrees of
freedom; d = 6 in the waveform constrained case and d = 1200 in the
arbitrary waveform case) to the S-MF input x (tensor representing the
extracellular field at every node of ever fiber at every timestep). Let
Rangerðp,∇pL,λÞ represent a single gradient descent update to opti-
mizable stimulus parameters p using the Ranger update rule71 (Recti-
fied Adam72 with LookAhead73 and Gradient Centralization74) and
learning rate λ, where gradients with respect to the stimulus para-
meters p of a scalar valued loss L (weighted quotient (WQ) loss,
Eq. (26)) are represented by ∇pL. Let WBCE : A 2 0, 1f gN ,Â 2
0, 1f gN!R represent the weighted binary cross-entropy (Eq. (21))
between target activations A and predicted activations Â (where acti-
vation, in contrast to ŷ, is a derived Boolean quantity indicating whe-
ther the fiber propagated an action potential, defined, as before, byVm

crossing −20mV in the positive direction at 5 nodes from either end of

Fig. 7 | Algorithmic flowchart for DE/best/1/bin. G = generation number;
Gmax =maximum number of generations permitted; Xi,G = population member/
candidate solution i in generation G; Xr0,G, Xr1,G =mutually exclusive random
members selected from population in generation G; Xbest,G =best population
member in generation G; rand(0,1) = random number from uniform distribution in
interval [0, 1); j = index for each element in Xi,G=Ui,G=Vi,G; CR = crossover rate;
F =mutation rate; f = loss criterion; NP = population size. a Mutation operation.
b Crossover operation. c Selection operation.
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the fiber). Finally, let WQ : ŷ 2 RB ×N ×T × 5!R be the weighted quo-
tient loss on S-MF prediction ŷ:

monðŷÞ=
X
n2non

f n ×mnðŷÞ ð24Þ

moffðŷÞ=
X
n2noff

f n ×mnðŷÞ ð25Þ

WQðŷÞ=
ffiffiffiffiffi
d
nc

s
moffðŷÞ
monðŷÞ

ð26Þ

wherenon are the indices of all target fascicles,noff are the indices of all
off-target fascicles, f n is the cross-sectional area of fascicle n,mnðŷÞ is
the sumover them gating parameter in ŷ corresponding to the 20 end
nodes of Ranvier (10 at each end, including the terminal nodes) of the
fiber in fascicle n, and nc (n = 6) is the number of electrode contacts in
the model for which there were optimizable parameters.

We leveraged the concurrency of our S-MF GPU implementation
to evaluate the neural response and calculate gradients across all 12
nerve models in parallel. This allowed us to solve all 12 optimization
problems, with rectangular pulses or arbitrary waveforms, simulta-
neously with modest overhead.

Statistical analysis
We compared performances of the various optimization methods
using a non-parametric paired test (two-sided Wilcoxon signed-rank
test) between theWBCE values of generated solutions.We used a non-
parametric test because most distributions of WBCE values were non-
Gaussian (as verified by the Shapiro–Wilk test). We adjusted sig-
nificance values (with an uncorrected critical p value = 0.05) using the
Holm-Bonferroni method75 to account for multiple comparisons; we
reported both p and corrected significance values. All Boxplots are
displayed using the Tukey method (center line, median; box limits,
upper and lower quartiles; whiskers, last point within 1.5× interquartile
range of nearest hinge).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Inputs to ASCENT55 to build and solve finite element models of vagus
nerve stimulation, data required to run example applications in the
code repositories, and source data and scripts to generate figures are
publicly available in the Duke Research Data Repository (https://doi.
org/10.7924/r48g8tf2476). Histological data used to construct the
nervemodels are publicly available in the SPARCConsortiumdatabase
under accession codes 64 (pig; https://doi.org/10.26275/maq2-eii457)
and 65 (human; https://doi.org/10.26275/ofja-ghoz58). Source data are
provided with this paper.

BOX 3

Algorithm 3 - Gradient Descent for Stimulus Parameter Optimization

We used wd =0.01*N (where N is the number of fascicles in the nerve), γmax = 200/N, η = 0.6, and ns = 200
Requires wd, η, ns, γmax, A ▷ weight decay, learning rate decay, # gradient descent steps, maximum gradient norm, target fiber

activations

p f0gd ▷ initialize stimulus parameters to 0
λ 2 ▷ initialize learning rate to 2
pbest,ωbest,Lbest  None
for i in 1 to ns do ▷ optimization loop

xMFðpÞ ▷ construct field from stimulus parameters
ŷSðx,SSMRGÞ ▷ use surrogate to predict neural response

ω WBCEðA, ÂÞ ▷ calculate weighted binary cross entropy loss
L WQðŷÞ ▷ calculate weighted quotient
if i = 1 then
pbest,ωbest,Lbest  p,ω,L ▷ initialize best params and losses to initial values

done
if ω<ωbest then ▷ if improvement in WBCE
pbest,ωbest  p,ω ▷ update best params and WBCE

done
if ω=ωbest and L<Lbest then ▷ if improvement in WQ and WBCE still best
pbest,ωbest,Lbest  p,ω,L ▷ update best params, WBCE, and WQ
if ωbest < 1 then
λ λ*η ▷ reduce learning rate if near minimum

done
done
γp  ∇!pL ▷ calculate gradients

γp  min 1, γmax
jjγp jj

� �
γp ▷ clip gradient norm

p p� ð1�wdÞ ▷ apply weight decay on stimulus parameters
Rangerðp, γp, λÞ ▷ perform gradient descent step on weighted quotient loss

end for
return pbest ▷ return best params (corresponds to min. WQ for min. WBCE)
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Code availability
Core packages for executing NEURON models and performing
gradient-free selective stimulation optimization are available at
https://github.com/minhajh/cajal77. Surrogate model implementation,
training, dataset generation, and gradient-based selective stimulation
optimization code is available at https://github.com/minhajh/
axonml21.
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