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Abstract

Mucus layer that covers the body surface of various animal functions as a defense barrier against microbes, environmental
xenobiotics, and predators. Previous studies have reported that L-amino acid oxidase (LAAO), present in several animal fluids,
has potent properties against pathogenic bacteria, viruses, and parasites. LAAO catalyzes the oxidative deamination of specific L-
amino acids with the generation of hydrogen peroxide and L-amino acid metabolites. Further, the generated hydrogen peroxide is
involved in oxidation (direct effect) while the metabolites activate immune responses (indirect effect). Therefore, LAAO exhibits
two different mechanisms of bioactivation. Previously, we described the selective, specific, and local oxidative and potent
antibacterial actions of various LAAOs as potential therapeutic strategies. In this review, we focus on their biochemical features,
enzymatic regulations, and biomedical applications with a view of describing their probable role as biochemical agents and
biomarkers for microbial infections, cancer, and autoimmune-mediated diseases. We consider that LAAOs hold implications in
biomedicine owing to their antimicrobial activity wherein they can be used in treatment of infectious diseases and as diagnostic
biomarkers in the above-mentioned diseased conditions.

Key points

*Focus on biochemical features, enzymatic regulation, and biomedical applications of LAAOEs.
*Mechanisms of antimicrobial activity, inflammatory regulation, and immune responses of LAAOS.
Potential biomedical application as an antimicrobial and anti-infection agent, and disease biomarker.

Keywords Antimicrobial protein - L-amino acid oxidase - Interleukin (IL)-4-induced gene 1 - Hydrogen peroxide - Metabolites -
Biomarker

Introduction

L-amino acid oxidase (LAAO; EC: 1.4.3.2) is a flavoenzyme
that catalyzes the oxidative deamination of an L-amino acid to
an «-keto acid with the generation of ammonia and hydrogen
peroxide (Wellner and Meister 1961). Previously, we
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described the bioactivities of LAAOSs, including their antibac-
terial activity (Kasai et al. 2015b) that can be inhibited by
catalases, suggesting that their antibacterial potential is due
to the hydrogen peroxide produced during the reaction.
Hydrogen peroxide is a powerful oxidizing agent that acts
as an intracellular signaling molecule and is involved in the
oxidative bursts of phagocytes, thereby leading to the elimi-
nation of invading microorganisms (Clifford and Repine
1982). Briefly, hydrogen peroxide is an antimicrobial agent
that induces DNA damage and cell death and is attributed to
direct cytotoxicity and generation of reactive oxygen species
(ROS) (Ueda and Shah 1992). This molecule regulates cell
proliferation, growth arrest, apoptosis, and necrosis in various
organisms (Vatansever et al. 2013). Owing to their diverse
properties, LAAOs hold potential applications in detection
and treatment of several diseased conditions, such as microbi-
al infections, cancer, and autoimmune diseases. In this review,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-021-11381-0&domain=pdf
http://orcid.org/0000-0003-3104-2134
mailto:tomisato@hirosaki-u.ac.jp

4820

Appl Microbiol Biotechnol (2021) 105:4819-4832

we have elaborated the biochemistry of LAAOs and focused
on their potential applications in the field of biomedicine. This
comprehensive overview of the current state of the LAAOs
studies may facilitate the development of novel strategies for
the diseased conditions.

Biochemical features of LAAOs and their
mechanism of action

LAAO:s are found in various animal fluids, including serum,
snake venom, sea hare ink, body surface mucus of the snail
and fish, mammary milk, and tissue extracts (mammary gland,
intestine, liver, and kidney). Reportedly, several LAAOs have
characteristic functions and excellent bioactivity in various
species (Table 1). Further, Fig. 1 illustrates the molecular phy-
logenetic tree of LAAOs from various organisms. LAAOs are
involved in innate immunity with selective and specific anti-
bacterial properties (Kasai et al. 2015a (Table 1 V1), Kasai
et al. 2015b (Table 1 V1), Teixeira et al. 2016 (Table 1 M2),
Lazo et al. 2017 (Table 1 G), Rey-Suarez et al. 2018 (Table 1
N), Salama et al. 2018 (Table 1 L), Elsheimer-Matulova et al.
2020 (Table 1 D), Soares et al. 2020 (Table 1 E)), antiparasites
(Carone et al. 2017 (Table 1 H2), Wiezel et al. 2019 (Table 1
M1), Soares et al. 2020 (Table 1 E), Barbosa et al. 2021) and
induce DNA fragmentation (Mukherjee et al. 2015, Burin
et al. 2016a, 2016b, Machado et al. 2018 (Table 1 H2),
Machado et al. 2019a, 2019b (Table 1 H2)), apoptosis
(Mukherjee et al. 2015, Fung et al. 2015 (Table 1 O), Burin
et al. 2016a, 2016b, Ribeiro et al. 2016, Tan et al. 2017,
Carone et al. 2017 (Table 1 H2), Machado et al. 2018
(Table 1 H2), Mukherjee et al. 2018, Rey-Suarez et al. 2018
(Table 1 N), Bedoya-Medina et al. 2019 (Table 1 N)), regula-
tion of immune responses (Cousin et al. 2015, Scarlata et al.
2015, Romagnani 2016, Bod et al. 2018, Ramspott et al. 2018
(Table 1 A), Aubatin et al. 2018 (Table 1 A), Elsheimer-
Matulova et al. 2020 (Table 1 D), Sadik et al. 2020), and cell
cycle arrest (de Melo Alves Paiva et al. 2011 (Table 1 F),
Machado et al. 2019a, 2019b (Table 1 H2)).

The mechanism of LAAOs’ antibacterial action has been
investigated extensively and the most prevalent mechanism is
via generation of hydrogen peroxide, as described above. An
early report showed that LAAO isolated from Crotalus
adamanteus venom to be effective against bacteria (Skarnes
1970). Many previous reports have highlighted that the bac-
tericidal activity of LAAOs is generally inhibited by catalases
(Stiles et al. 1991, Stabeli et al. 2007, Nagashima et al. 2009
(Table 1 U), Kasai etal. 2015a (Table 1 V1), Soares et al. 2020
(Table 1 E)), thereby the antibacterial action of LAAOs is due
to the generated hydrogen peroxide.

Mammalian LAAO, which is capable of generating ROS
upon exposure to an aromatic and hydrophobic amino acid,
such as L-Trp or L-Phe in the presence of oxygen, has been
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found in milk (cow, donkey, and mouse), expressed immune
cells (human, mouse, and chicken). Mammalian LAAO,
which has an immunoregulatory function, was first detected
in murine B cells (Chu and Paul 1997) and has been known to
inhibit T cell proliferation (Boulland et al. 2007), cytotoxicity,
and IFN-y production by tumor-infiltrating CD8* T cells,
which favors tumor escape. Human LAAO, encoded by inter-
leukin (IL)-4-induced gene 1 (IL4I1), is secreted and
expressed by macrophages (M) and dendritic cells (DCs)
stimulated by microbial-derived products or interferons,
which are endowed with immunoregulatory properties, and
block the growth of gram-negative Escherichia coli and
gram-positive Staphylococcus aureus (Puiffe et al. 2013).

Interestingly, 11411 is found in the mammalian spermatozoa
head (human, equine, and bovine), particularly in the acroso-
mal. The aromatic amino acids were substrates for equine
sperm LAAO, eliciting the dose- and time-dependent genera-
tion of ROS via mechanisms that were enhanced by cell death
(Aitken et al. 2015). The combination of aromatic amino acids
and nonviable cells was also found to enhance the levels of
lipid peroxidation in live spermatozoa. Houston et al. (Table 1
A) reported that the stimulation of LAAO activity results in
the induction of several hallmarks of capacitation, including
tyrosine phosphorylation of the sperm flagellum and concom-
itant activation of phospho-SRC expression, that are important
in the regulation of growth and differentiation of eukaryotic
cells (2015). In addition, stimulation of IL4I1 resulted in an
increase in the levels of acrosomal exocytosis in both the
presence and absence of progesterone stimulation via a mech-
anism that could be significantly reversed by the presence of
catalase. Their results suggested that the existence of human
spermatozoan LAAO has a potential role in driving the redox
regulation of sperm capacitation and acrosomal exocytosis
(Houston et al. 2015 (Table 1 A)).

On the contrary, mice have two isoforms of LAAO
encoded by Laol or [l4il that are localized and expressed in
lactating mammary glands during the lactation period and
immune cells by microbial-derived products or interferons,
respectively, similar to humans. LAO1 present in milk pro-
tects against bacterial infections by producing hydrogen per-
oxide (Sun et al. 2002 (Table 1 C), Nagaoka et al. 2009
(Table 1 C)). Recently, gut microbiota profiles were compared
between wild type and Laol-knockout mouse pups to deter-
mine whether LAO1 affects infant gut microbiota develop-
ment via mother’s milk consumption (Shigeno et al. 2019).
In particular, the gut microbiota of lactating Laol-knockout
pups was highly diverse, whereas those of the wild type were
composed of only a few dominant bacteria, such as
Lactobacillus sps. Furthermore, cross-fostering indicated that
milk of wild type mothers has the ability to suppress this
diversity in LaoI-knockout pups. Moreover, the stomach con-
tents of pups fed milk containing LAO1 could produce hydro-
gen peroxide. They suggested that hydrogen peroxide is
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Fig. 1 Phylogenetic tree of LAAO
from different vertebrates. The
tree is constructed by neighbor-
joining (NJ) method using LAAO
sequences with the bootstrap

100 Homo sapiens[CAI54291.1]
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Rhinopithecus roxellana[XP_030768531.1]
Equus caballus [XP_023505960.1)

Mus musculus [009046] — Table 1 B
Rattus rattus[XP_032749606.1]
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values indicated (1000 replicates).
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Seriola lalandi d¢

Siganus

phip

generated from the process of free amino acid metabolism in
the mother’s milk and may play a key role in regulating initial
acquisition and development of the gut microbiota.
Conclusively, LAO1-containing milk protects organs from
bacterial infection via innate immunity.

Snake LAAQOs are a major component of their venom and
exhibit bactericidal (Lazo et al. 2017 (Table 1 G), Salama
et al. 2018 (Table 1 L), Rey-Suarez et al. 2018 (Table 1 N)),
parasiticidal (Carone et al. 2017 (Table 1 H2), Wiezel et al.
2019 (Table 1 M1), Barbosa et al. 2021), and anticancer
effects through caspase activation (Fung et al. 2015
(Table 1 O), Mukherjee et al. 2015, Burin et al. 2016a,
2016b, Carone et al. 2017 (Table 1 H2), Tan et al. 2017,
Mukherjee et al. 2018, Machado et al. 2018 (Table 1 H2)).
CR-LAAO, isolated from Calloselasma rhodostoma venom,
has antitumor potential and induces acute inflammatory re-
sponses similar to mammalian LAAO in vivo, with recruit-
ment of neutrophils and release of IL-6, IL-1f3, leukotriene
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B4 (LTB,), and prostaglandin E2 (PGE,). In vitro, IL-6 and
IL-1 production by peritoneal macrophages stimulated by
CR-LAAO was dependent on the activation of the Toll-like
receptors, TLR2 and TLR4 (Costa et al. 2017). CR-LAAO
and several other LAAOs promote apoptosis of tumor cells
mediated by the release of hydrogen peroxide and activation
of immune cells, resulting in oxidative stress and production
of cytokines, such as IL-6 and IL-1f3, which trigger a series
of events, such as activation of caspase (-8, -9, and -3)
cascade, and modulate cell cycle delay or arrest in the GO/
G1 and S phases of tumor cells (Costa et al. 2017).
Moreover, CR-LAAO alters regulation of apoptosis by mod-
ulating expression of miRNAs related to anti-apoptotic
genes (Bid, Bim, Bcl-2, Cip-2, c-Flip, and Mcl-1) in BCR-
ABL" cells (Burin et al. 2016a). They suggested that CR-
LAAO is a potential tool for enhancing apoptosis-related
miRNA expression in chronic myeloid leukemia therapy
(Burin et al. 2016a; Burin et al. 2016b).
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Previously, we reported that 2.5 pg/mL of psLAAO1 iso-
lated from the flounder Platichthys stellatus, which favors L-
Lys as a substrate, produced approximately 2.7 mM of hydro-
gen peroxide within 1 h in the bacterial culture media (Kasai
et al. 2015a (Table 1 V1)). This result suggests that sufficient
levels of hydrogen peroxide can be produced by the action of
psLAAOI during the early bacterial growth phase to kill the
bacteria under liquid culture conditions. Interestingly,
psLAAOI1 and other LAAOs (Achacin, OH-LAAO, SSAP,
and CC-LAAO) bind to the bacterial membrane, which leads
to localized high concentrations of hydrogen peroxide and
antibacterial action in or near the bacterial surface (Ehara
et al. 2002 (Table 1 P), Lee et al. 2011, Kitani et al. 2008
(Table 1 X), Kasai et al. 2015a (Table 1 V1), Abdelkafi-
Koubaa et al. 2016). In summary, LAAOs selectively and
specifically bind to sensitive bacteria and exhibit their antibac-
terial effect by exposing the cells to high, localized concentra-
tions of hydrogen peroxide near the bacterial surface.

Characterization, structural stability,
and regulation by metal ions

Recently, it has been reported that snake LAAOs have unique
characteristics, namely, wide range of optimal pH, resistance
to high temperatures, and structural conformation for enzy-
matic stability via regulation by metal ions. LAAOs from
the venom of Bothrops jararacussu (BjussuLAAO-II) and
Bothrops moojeni (BmooLAAO-I) showed high enzymatic
activity in a wide temperature range of 25 to 75 °C with broad
range pH and high optimum temperature (pH 6.0 to 9.0 at 65
°C and pH 5.5 t0 9.5 at 60 °C).

Metal ions (Zn**, AP*, Cu**, and Ni**) negatively modu-
late the enzymatic activity of the aforementioned LAAOs
(Costa et al. 2018 (Table 1 I)). A homodimeric Cv-LAAOI
from the venom of Cerastes vipera has antibacterial, antipro-
liferative, and cytotoxic effects via extensive hydrogen perox-
ide production and optimum enzymatic activity on L-Leu at
50 °C. Moreover, the enzymatic activity is enhanced by Mn**,
while Cu®*, Hg**, Ni**, and Co* have suppressive effects on
the oxidative activity (Salama et al. 2018 (Table 1 L)). LAAO
from Peruvian Bothrops pictus (Bpic-LAAO), which is a ho-
modimeric glycoprotein, exhibited optimal activity at pH 8.5
and remained stable up to 55 °C (Lazo et al. 201 7 (Table 1
G)). The kinetic activity of Bpic-LAAO was inhibited by
Zn**, while Ca**, Mg**, and Mn** ions induced no significant
change. Furthermore, enzymatic activity of Cc-LAAOI and
Cc-LAAOII, purified from Cerastes Tomato venom, was in-
creased by Mn?*, while Zn**, Ni**, Co**, Cu**, and AI** ions
markedly inhibited the activities of both isoforms. Notably,
the optimal temperature of both enzymes remains stable up
to 70 °C (El Hakim et al. 2015). They suggested that the
thermoactivity of Cc-LAAO is related to the hydrogen bond
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between Ser73 and Gly70, which is an external loop
consisting of residues 64—73 for contact with the FAD cofac-
tor and might act as an energy barrier to adopt an optimal
conformation for the catalytic activity. Therefore, the optimal
temperature for Cc-LAAO can be surpassed at elevated tem-
peratures. Moreover, the crystal structure and molecular dy-
namics simulations of LAAO from the venom of Bothrops
atrox (BatroxLAAO) presented a dimeric arrangement that
can be stabilized by Zn*" (Feliciano et al. 2017 (Table 1 F)).
These results suggest that metal coordination is critical for
dimerization and eventually rendering effective catalytic
activity.

We recently reported that psLAAO]1 pre-treated with a
chelating agent showed transiently increased antibacterial ac-
tivity that was either decreased or diminished after one or two
freeze—thaw cycles. Moreover, the mutant constructs of
His348, whose position is predicted to be a metal coordination
site by homology modeling simulation, did not show antibac-
terial activity or Mg®* coordination (Kasai et al. 2020 (Table 1
V1)), indicating that Mg** coordination is essential for the
enzymatic activity and structural stability of psLAAO]1 at
His348. Metal detection assay revealed that pre-chelated
psLAAOI did not detect 7Zn**, whereas 1 mole of the wild
type or mutant constructs (His348Ala and His209Ala) detect-
ed approximately 0.5 mole of Zn>". These results suggest that
Zn** does not coordinate with monomeric psLAAO1 and that
the metal ion probably inhibits its enzymatic activity.
Therefore, metal removal can potentially increase the enzy-
matic activity or vulnerability of LAAOs via changes in struc-
tural complex and conformation.

Immunoregulatory responses mediated
by LAAOs

Human M@ and DCs are major producers of L-Phe-
catabolized IL411 under inflammatory conditions; B cells also
express IL411 in response to NF-kB-activating stimuli
(Marquet et al. 2010). IL4I1 inhibits the proliferation of
CD3-stimulated T cells with a similar effect on CD4" and
CD8™ T cells via mature DCs. Notably, IL411 exerts inhibitory
effects via its oxidative activity; these effects are associated
with a transient downregulation of T cell receptor zeta (TCR)
expression (Boulland et al. 2007). According to another study,
the expression of IL411 has been reported in Th17 cells and a
subset of FOXP3™ regulatory T (Treg) to Th17
transdifferentiating cells under inflammatory conditions
(Scarlata et al. 2015). Moreover, IL411 expression is restricted
to cells that do not express Helios, a transcription factor that
characterizes natural Treg (nTreg) cells, but Aiolos, which is
involved in the differentiation of Th17 and induced Treg
(iTreg) cells. Supposedly, the expression of IL4I1 in Th17
and iTreg cells may provide insights into approaches that
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aim to modulate the balance of these populations in different
pathological conditions involving inflammation-mediated im-
munosuppression, such as rheumatoid arthritis, inflammatory
bowel disease, and multiple sclerosis. In fact, previous reports
have suggested that the human IL4I1 ortholog is located on
chromosome 19q13.3-19q13.4 (Chavan et al. 2002) in a re-
gion that is a hot spot for autoimmune disease susceptibility in
general, including rheumatoid arthritis, multiple sclerosis,
insulin-dependent diabetes mellitus, and systemic lupus ery-
thematosus (Mason et al. 2004 (Table 1 B)). Therefore, an
alteration in expression of IL4I1 could contribute to autoim-
mune disease, and its expression screening is a potential bio-
marker of inflammation-mediated immunosuppression.

Recently, IL4I1, which uses L-Phe as well as L-Trp as a
substrate, activates the aryl hydrocarbon receptor (AHR)
through the generation of indole metabolites and kynurenic
acid (KynA) (Sadik et al. 2020) where the latter constitutes
an important endogenous AHR ligand (Platten et al. 2019). In
humans, L-Trp catabolism is initiated by indole-amine-2,3-
dioxygenase 1/2 (IDO1/2) or tryptophan-2,3-dioxgenase
(TDO2). Cancers express high levels of IDO1 and TDO?2,
taking advantage of L-Trp catabolite-mediated AHR activa-
tion. The AHR—KynA axis enhances the malignant phenotype
of cancer cells, particularly cancer cell motility. Moreover,
AHR-KynA signaling suppresses T cell proliferation and
function by inducing differentiation of Treg cells, expression
of programmed cell death protein 1 (PD1) on CD8" T cells,
and recruitment of immunosuppressive tumor-associated
macrophages. These results suggest that [L411 promotes tu-
mor progression as a metabolic consequence of immune
checkpoints.

Recently, Elsheimer-Matulova et al. (Table 1 D) reported
that IL411 from ISA brown chicken (Gallus gallus
domesticus) is expressed in the cecum of newly hatched
chickens 4 days post-infection with Salmonella enteritidis
serovar Enteritidis. Moreover, chicken IL411 was expressed
in M, granulocytes, phagocytes, and CD4" and v6 T cells,
while they were not detected in CD8* T or B cells (2020).
Notably, mutation of the gene encoding chicken IL4I1 in M
HD11 did not affect the enzyme’s bactericidal capacity
against S. enteritidis ser. Enteritidis but negatively affected
its oxidative burst after phorbol 12-myristate 13-acetate
(PMA) stimulation. Their findings suggest that IL4I1 is not
directly involved in the bactericidal activity of phagocytes but
instead it is likely involved in the control of inflammatory
responses and signaling to T and B cells.

In a recent study, an antibacterial LAAO from the serum of
red-spotted grouper (Epinephelus akaara) showed a broad
range of substrate specificity with aromatic and hydrophobic
amino acids, similar to mammalian and snake LAAOs (Osaka
and Kitani 2021 (Table 1 S)). Interestingly, the encoding gene
was expressed at a low level in the kidney under normal con-
ditions, while it was significantly upregulated by blood loss.

On the contrary, //4i1-knockout mice been exhibit an acceler-
ated B cell egress from the bone marrow, resulting in the
accumulation of peripheral follicular B cells (Bod et al.
2018) and present a higher serum level of natural immuno-
globulins and self-reactive antibodies. Collectively, several
LAAOs including IL4I1 may function as extreme responses
and vicious circles of inflammation due to bacterial and viral
infection in the peripheral or tissue environments, such as
bacillemia, ischemic disease, and sepsis. These LAAOs prefer
aromatic and hydrophobic amino acids for substrate specific-
ity and are conserved in vertebrates through the process of
evolution (Fig. 1).

Perspectives for possible biomedical
applications

Previously, we reported that LAAOs have bioactive potential;
they can produce hydrogen peroxide and can be used for de-
veloping drugs against community and health care-associated
bacterial infections. Briefly, LAAOs show significant antibac-
terial activity against various pathogenic bacteria such as
E. coli, Pseudomonas aeruginosa, Acinetobacter baumannii,
Klebsiella pneumonia, Proteus mirabilis, Vibrio cholera,
Yersinia enterocolitica, S. aureus, S. epidermidis,
Enterococcus faecalis, and Streptococcus pyogenes that cause
infections such as that of the urinary tract, bloodstream, and
abdominal cavity, diarrhea, vomiting, intestinal inflammation,
endocarditis, tympanitis, and conjunctivitis (Kasai et al. 2015b
(Table 1 V1)).

Several studies have reported procedures for the production
of recombinant LAAOs. For instance, fungal LAAO from
Rhizoctonia solani (RsSLAAO1) was expressed in E. coli
BL21 Codon Plus (DE3) as a fusion protein with maltose-
binding protein to induce solubility (Hahn et al. 2017a;
Hahn et al. 2017b). Further, hcLAAO4, one of the fungal
LAAOs from Hebeloma cylindrosporum, was expressed in
E. coli or yeast (Pichia pastors) systems with His-Tag
(Bloess et al. 2019; HeB et al. 2020). Moreover, L-Lys-
specific LAAO isolated from the Siganus pramin (serum) or
Platichthys stellatus (gill), which is an innate immune protein
with antibacterial activity, was codon optimized for expres-
sion in insect cells (S9) or P. pastoris expression systems
(Han et al. 2020, Kasai et al. 2020 (Table 1 V1)). These re-
combinant LAAOs can be easily high mass-produced by
scale-up and display strong bioactivity via bactericidal, para-
siticidal, and apoptotic effects, and bind to the surface of bac-
teria, similar to native LAAOSs, suggesting potential use of
LAAOs against clinical pathogens. Moreover, L-Lys «-oxi-
dase (LysOX; EC: 1.4.3.14), a homodimeric flavoenzyme that
has substrate specificity for L-Lys as the name suggests, was
identified from Scomber japonicus as an apoptosis-inducing
protein. This enzyme was used for L-pipecolic acid synthesis
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using an E. coli expression system that expressed both LysOX
and A'-piperideine-2-carboxylate reductase (Tani et al. 2015
(Table 1 W)). L-pipecolic acid produced by the action of
LysOX is a precursor of numerous natural and synthetic bio-
active compounds that function as immunosuppressants, anti-
cancer agents, and local anesthetics. Based on these findings,
LysOX is being investigated as a new approach for the pro-
duction of chemical intermediates or precursors.

L-Trp is not only important in protein synthesis but also as
a precursor of various biologically active compounds via the
kynurenine pathway, generating metabolites with crucial
functions in neurotransmission and regulation of immune re-
sponses. Notably, the depletion of L-Trp facilitates tumor im-
mune escape by inducing Treg cells and expression of inhib-
itory receptors IL3 and IL4 on DCs and downregulating T cell
receptor (-chain (TCR() in CD8* T cells (Brenk et al. 2009).
L-Trp catabolic products downstream of IDO1/2 and TDO2
regulate immune cell function and promote cancer progres-
sion by activating AHR (Gutiérrez-Vazquez and Quintana
2018). As mentioned above, IL411 is expressed in Th17 cells
and a subset of Treg to Th17 transdifferentiating cells under
inflammatory conditions. Therefore, profiling IL4I1 expres-
sion in immune cells is a probable biomarker of the inflam-
matory grade and stage.

Hydrogen peroxide is a widely used antimicrobial agent; its
efficacy has been demonstrated in several human viruses,
among which coronaviruses have been found to be sensitive
(Dev Kumar et al. 2020). Recently, several chemical agents
used for viral decontamination could effectively inactivate
human coronaviruses by surface disinfection procedures using
62—71% ethanol, 0.1% sodium hypochlorite, or 0.5% hydro-
gen peroxide for 60 s (Kampf et al. 2020). Previously, we
described the antiviral activity of LAAOs demonstrated by
various studies (Kasai et al. 2015b (Table 1 V1)). For instance,
LysOX from the fungus Trichoderma viride inhibited the re-
production of the type I herpes simplex virus (Lukasheva and
Berezov 2002). Additionally, LysOX was heterologously
expressed by Streptomyces lividans TK24 (Amano et al.
2015). The enzymatic properties of the purified recombinant
LysOX, such as substrate specificity and thermal stability, are
same as those of native LysOX. LAAO from venom of the
Chinese green tree viper Trimeresurus stejnegeri (TSV-LAO)
also displayed dose-dependent inhibition of HIV-1 infection
and replication. Notably, in the presence of catalase, TSV-
LAO inhibited syncytium formation in a dose-dependent
manner, whereas anti-HIV-1 activity was not observed with
the exogenous addition of hydrogen peroxide (Zhang et al.
2003). These results suggest that the antiviral activity of
TSV-LAO does not affect infected cells via generation of
hydrogen peroxide but rather by intermediate product or sub-
strate depletion. L-Lys excess is characterized by a significant
increase in HIV-1 RNA copies in enriched peripheral blood
mononuclear cell fractions of HIV-infected patients and the
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copy number did not increase after adding L-Lys with LysOX
in the plasma samples (Butorov 2015). Therefore, we consider
that LysOX is a suitable antiviral as well as antibacterial agent.
However, optimization of high production and yield of bioac-
tive recombinant LAAOs and regulation of their cytotoxicity
need further research.

Conclusions

LAAOs show high potency and efficacy as treatment strategy
for various diseases and as biomarkers of autoimmune dis-
eases, tumor grade, and immune signaling responses.
Selective, specific, and localized activities of LAAOs in the
early response are the underlying reasons for their potential
biomedical implications. Although we now know that the di-
rect or indirect bioactivities of LAAOs are associated with the
catabolism of specific substrates and the production of hydro-
gen peroxide, several aspects such as the regulation of their
enzymatic activities and conformation, selective usage per
substrate specificity, production of intermediate products,
and immune regulatory mechanisms remain poorly under-
stood. It is, therefore, imperative to channelize future research
with a clinical approach rendering each LAAO as a therapeu-
tic agent. Moreover, LAAOs for clinical therapy must not only
fulfil improved in vivo production but also pH resistance,
thermal stability, and regulated substrate specificity and im-
mune responses. Elucidating the mechanisms of LAAO selec-
tivity against bacterial infections and evaluating the enzyme’s
effects on resistance, cytotoxicity, and genotoxicity must also
be characterized to fully realize the therapeutic potential of
these enzymes for biomedical applications.
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