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Low protein diets are associated with increased lifespan and improved cardiometabolic

health primarily in rodents, and likely improve human health. There is strong evidence

that moderate to severe reduction in dietary protein content markedly influences caloric

intake and energy expenditure, which is often followed by a decrease in body weight and

adiposity in animal models. While the neuroendocrine signals that trigger hyperphagic

responses to protein restriction are better understood, there is accumulating evidence

that increased sympathetic flux to brown adipose tissue, fibroblast growth factor-21 and

serotonergic signaling are important for the thermogenic effects of low protein diets.

This mini-review specifically focuses on the effect of low protein diets with variable

carbohydrate and lipid content on energy intake and expenditure, and the underlying

mechanisms of actions by these diets. Understanding the mechanisms by which protein

restriction influences energy balance may unveil novel approaches for treating metabolic

disorders in humans and improve production efficiency in domestic animals.

Keywords: low protein, food intake, energy expenditure, neuroendocrine, energy balance

INTRODUCTION

Energy balance is a fundamental biological process that is dependent on a complex interplay
of calories consumed as macronutrients (carbohydrate, fat, and protein), and energy expended
and stored. A dysregulation of the mechanisms that sense and signal dietary nutrients in the gut
may predispose to obesity and metabolic complications. Among the macronutrients, the intake
of protein is tightly regulated and dietary protein restriction is purported to extend lifespan,
improve energy balance and cardiometabolic health (1); however, the underlying mechanisms
remain poorly understood. Here we review the potential mechanisms by which dietary protein
restriction modulates energy homeostasis to alter energy intake and energy expenditure (EE).

REGULATION OF FOOD INTAKE BY LOW PROTEIN DIETS

Effect of Dietary Protein Restriction on Food Intake
The “protein leverage” hypothesis posits that protein intake is tightly regulated in several species
including rodents, small animal pets, birds and humans (2–4). When isocaloric high protein diets
are fed, in order to keep the amount of protein consumed constant and avoid protein excess, the
total caloric intake and hence the intake of carbohydrates and fats is reduced. As a corollary, when
low protein diets are fed, in order to avoid protein deficiency and to meet the protein requirements,
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the total food consumption is increased and hence the total
caloric intake from carbohydrate and fat is also increased as
a consequence (2, 3, 5). In humans, diets that are moderately
deficient in protein were reported to increase food consumption
in some (6–8), but not all (9, 10) studies. Notably, protein intake
across 13 countries was found to be remarkably stable at ∼16%
of total calories (11), and even partial protein leverage caused
by a reduction in protein intake was predicted to contribute
to at least one-third of weight gain and the obesity epidemic
(12). In contrast to other species, previous studies were unable
to detect a hyperphagic response to mild [<25% lower crude
protein (CP) than requirements] and moderate (25–50% lower
CP than requirement) protein restriction in pigs. We and others
showed that moderate protein restriction (12–14% CP) reduced
feed intake in pigs (13–15), but slightly low protein diets (25%
lower CP than requirement) did not change their energy intake
(14, 16, 17). Reduced food intake in response to low protein
diets (22% metabolizable energy) has been also reported in cats
(18). However, severely low protein diets (50% lower CP than
requirements) have been shown to increase the energy intake in
pigs (19–21). A caveat is that most swine studies have primarily
focused on improving production efficiency by supplementing
essential amino acids to low protein diets, which adds complexity
in interpreting the energy intake data. The resistance of species
such as pigs to mount a hyperphagic response to mild to
moderate dietary protein restriction, but showing an increased
energy intake in response to severe protein restriction, is
suggestive of differences in protein dilution threshold sensing by
different species, which warrants further studies. Thus, gaining
insights into the mechanisms of food intake regulation by low
protein diets is important for developing effective prevention
strategies for weight gain and improving feed efficiency.

Mechanisms of Sensing Protein
Insufficiency
The hepatic amino acid sensing and signaling mechanisms
play an important role in detecting amino acid insufficiency to
coordinate a systemic response to restore protein balance. A
relative deficiency of dietary amino acids leads to accumulation
of uncharged cytoplasmic tRNA that bind to general control non-
derepressible (GCN2) which in turn phosphorylates eukaryotic
translation initiation factorα (eIF2α) leading to activation of
activating transcription factor 4 (ATF4) and CCAAT/Enhancer-
binding protein homologous protein (CHOP) to inhibit
protein synthesis and increase fibroblast growth factor-21
(FGF21) expression and secretion (22–25). Further, GCN2
through other intermediaries inactivates mTORC1 leading to
dephosphorylation of 4E-binding protein (4EBP1) to inhibit
protein synthesis (22, 26). Consistent with these studies that
were mostly conducted in vitro and with amino acids, we (27)
and others (28–30) showed that a similar pathway for sensing
dietary protein deficiency also operates in the liver to upregulate
hepatic FGF21 expression and secretion. Interestingly, we found
that similar amino acid sensing pathways were also upregulated
in the duodenum (31) suggesting that the intestine may detect
protein deficiency prior to the liver, and/or that the intestinal

sensing may serve to amplify the hepatic response to protein
restriction. Independent of sensing by gut-associated tissues,
amino acid deprivation causes a rapid anorexic response that is
triggered by GCN2 signaling in the piriform cortex (32, 33).

Mechanisms of Regulation of Food Intake
by Low Protein Diets
Accumulating evidence indicates that moderate protein
restriction in rodents (5–8% protein kcal) stimulates FGF21
secretion from the liver which acts on β-klotho receptors
in the brain to promote hyperphagia (34–36) (Figure 1).
We have also shown that such hyperphagic responses to
protein dilution are a consequence of increased meal size in
rodents (31). The hyperphagic responses to moderate protein
dilution are also associated with reduction in circulating
concentrations of leptin and IGF-1, increased plasma ghrelin,
and upregulation of orexigenic neuropeptide Y transcripts
in the rodent hypothalamus (27, 31, 37, 38). Although the
role of anorexigenic lower gut peptides such as peptide YY
and glucagon-like peptide-1 (GLP-1) in high-protein induced
hypophagia is well-documented in rodents (39–41) and humans
(42), we were unable to detect a graded insufficiency in
circulating concentrations of these and other anorectic gut
hormones (e.g., gastric inhibitory polypeptide and amylin) in
rats (27, 31) that might explain the hyperphagia with protein
dilution. It is unknown whether sensitivity to hypophagic effects
of these satiety hormones is impaired with dietary protein
restriction. However, birds fed with low protein diets were found
to have a higher occurrence of GLP-1-immunoreactive cells in
the ileum (43). Though the hyperphagic responses to protein
dilution are consistently observed in a no-choice condition
(27–31, 36), when protein restricted rodents are given a choice
of macronutrients, they tend to prefer protein (8, 34, 44) with
reduced preference for carbohydrates (45, 46). Similarly, in
humans, the fMRI BOLD responses to food cues were greater in
reward areas such as orbitofrontal cortex and striatum under low
protein conditions (7). In contrast to mild protein restriction,
severe protein restriction or depletion (<5% protein kcal) leads
to profound hypophagia with a rapid reduction in both meal size
and number in rats (31). Such aversive responses are due to rapid
sensing of the amino acid imbalance by the anterior piriform
cortex where the GCN2–eIF2α pathway is activated to repress
protein synthesis, together with activation of glutamatergic
outputs to the hypothalamus to cause anorexia (47). The relative
importance of peripheral and central sensing and signaling
mechanisms that regulate food intake in response to varying
degrees of dietary protein restriction across species remains to
be resolved.

REGULATION OF ENERGY EXPENDITURE
BY LOW PROTEIN DIETS

Effects of Low Protein Diets on Energy
Expenditure
Protein or total amino acid restriction increases thermogenesis
in rodents (27, 29, 31, 35, 36, 48–61). An increased EE was also
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FIGURE 1 | Potential mechanisms by which protein dilution alters energy intake and energy expenditure. Protein restriction concurrently increases energy intake and

energy expenditure. Amino acids insufficiency is sensed by liver, small intestine, and brain by the involvement of unchanged tRNA, non-derepressible (GCN2),

eukaryotic translation initiation factorα (eIF2α) and activating transcription factor 4 (ATF4) which results in hyperphagia to restore protein balance. The low protein

induced hyperphagia is possibly mediated by increased circulating concentrations of ghrelin and fibroblast growth factor-21 (FGF21), and neuropeptide Y (NPY)

expression in the hypothalamus. Whether reduced secretion of anorexigenic gut peptides such as peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) contribute to

increased energy intake following protein dilution is not completely known. The increased energy expenditure in response to protein restriction is mediated by multiple

mechanisms including increased sympathetic flux and upregulation of thermogenic markers in brown adipose tissue (BAT), and muscle thermogenesis. Whether local

FGF21 secreted by skeletal muscle, small intestine and BAT, and 5-hydroxytryptamine (5HT) signaling in BAT play a role in low protein induced thermogenesis via

autocrine, paracrine and endocrine pathways remains unclear. B-AR, beta adrenergic receptors; UCP1, uncoupling protein-1; PGC-1α, proliferator-activated receptor

gamma coactivator 1-alpha; TPH1, tryptophan hydroxylase 1; SERT, serotonin transporter.

reported in pigs fed with severely low protein diets (19–21). In
one study, pigs maintained equal body weight when fed protein
deficient diets with high or low energy content suggestive of
enhanced EE in these groups (62). We also showed that moderate
reduction of dietary protein results in an increased EE in early
weeks of study in young pigs (13, 14). Similarly, protein restricted
diets have also been shown to acutely increase EE in humans
(63–65). Overall, increased EE and subsequently reduced food
efficiency may contribute to reduced weight gain and lean mass
during protein restriction (27, 36, 56, 58, 66).

Given the concurrent increase in EE and energy intake
in response to protein restriction (27, 51, 56, 60), and as
increased EE is generally considered a compensatory response to
hyperphagia (67–69), one may question whether the enhanced
EE with protein restriction is a consequence of increased
energy intake. Leveraging effect of dietary protein content on
energy intake has been reported previously (49) suggesting that
low protein induced EE could be considered as a primary
response to dietary protein content. Recently, we showed

that protein restricted rats sustain an enhanced EE in the
absence of hyperphagia, which is suggestive of an energy intake
independent pathway for low protein induced thermogenesis
(31). Likewise, others have shown that low protein induced
EE occurs independent of hyperphagia (35) and that energy
intake changes as a secondary response to compensate for the
enhanced EE (70). Therefore, it appears that increased EE in
response to protein restriction is partly related to enhanced
basal metabolic rate component of total EE (53), although
the contribution of basal metabolic rate and diet-induced
thermogenesis was reported to be negligible (71). An increased
spontaneous motor activity was reported in mice fed with low
protein diets (71), which does not seem to be related with the
overall activity level (69, 71). Further research is required to
better understand the effect of low protein diets with variable
dietary carbohydrate and fat contents on different components of
total EE.

Due to high carbohydrate content of low protein diets (13,
14, 27, 48, 49, 51, 53–56, 60, 61) an increased EE in response to
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such diets could be the result of either high carbohydrate or low
protein content. In an independent study, using obesity-prone
rats we showed that low protein diets with fixed carbohydrate,
but variable fat contents increased EE (31), similar to low
protein-high carbohydrate diets (27). A greater EE response
to protein dilution was also observed in humans regardless
of dietary carbohydrate and fat content (65). Altogether, these
studies suggest that enhanced EE is likely a primary response to
protein restriction rather than carbohydrate or lipid content, or
energy intake; however, further studies are required to assess the
contribution of dietary carbohydrate and fat content to enhanced
EE under protein restriction.

Mechanisms of Regulation of Energy
Expenditure by Low Protein Diets
Despite intense efforts to gain insights into the hyperphagic
responses driven by protein dilution, the underlying mechanisms
of changes in EE received less scrutiny. The thermogenic
effects of low protein diets have been associated with (i)
increased sympathetic flux to brown adipose tissue (BAT) via
β-adrenergic receptor (β-AR) signaling (50, 51, 55–57, 72,
73), as well as stimulation of thermogenesis in white adipose
tissue (74) and muscle (27), (ii) FGF21 and mitochondrial
uncoupling protein-1 (UCP1) mediated mechanisms (27, 29,
31, 36, 70, 75) and (iii) serotonergic signaling (27, 76)
(Figure 1).

The BAT plays an important role in diet-induced
thermogenesis (77–79). An increased sympathetic influx to
BAT appears to be essential for the thermogenic effects of
low protein diets (50–52, 55, 56). This involves release of
noradrenaline from postganglionic sympathetic nerve terminals
and subsequent interaction of noradrenaline with β-AR, in
particular β3-AR in BAT (80–83). We and others showed that
the transcripts of adrenergic signaling and thermogenic markers
including β2 and β3-AR, peroxisome proliferator-activated
receptor gamma coactivator 1-alpha and UCP1 were increased
in BAT of rats fed with protein deficient diets (27, 57). We also
showed that low protein induced EE is attenuated following
administration of propranolol, a β1 and β2-AR antagonist
(27, 31). This suggests that low protein induced EE is mediated
by sympathetic signaling.

Fibroblast growth factor-21 is released in response to nutrient
deficiency and stimulates browning of white adipose tissue to
regulate adaptive thermogenesis (53, 74). Infusion of FGF21
increases EE and core body temperature in rodent models (84–
86). Using FGF21 deficient rodent models, the effect of protein
restricted diets on basal and cold-induced EE have been shown
to be FGF21 dependent (35, 61, 87, 88). Although hepatic
FGF21 seems to stimulate BAT thermogenesis via an endocrine
pathway (29, 30, 36, 74, 89), the FGF21 expression and secretion
in BAT is also increased by sympathetic stimulation (72, 90).
We and others showed that plasma FGF21 concentrations and
transcripts in liver, small intestine, skeletal muscle and BAT
were increased when rodents are fed with low protein diets
(27, 31, 36, 53, 60, 75, 91). Further, methionine and leucine
restriction increases FGF21 expression particularly in liver and

circulation (92–94). Dietary protein restriction also increases
circulating FGF21 concentrations in humans (36, 61, 63–65).
FGF21 appears to be produced in variety of organs including
skeletal muscle in response to cellular stress triggered by various
stimuli (95–99). Whether FGF21 derived from BAT, muscle and
other organs reaches the circulation and contributes to low
protein induced thermogenesis via endocrine pathway remains
unclear, but it appears that FGF21 most likely mediates the low
protein induced EE through endocrine, paracrine and autocrine
signaling. Further, FGF21 signaling in glutamatergic neurons of
the ventromedial hypothalamus appears to be essential for the
increase in EE with dietary protein dilution (45). The roles of
peripheral and central FGF21 sensing and signaling mechanisms
in the thermogenic effects of dietary protein restriction remains
to be further delineated.

The role of serotonergic neurons in regulation of
thermogenesis and BAT activity has been previously documented
(100, 101). In particular, central serotonin signaling is crucial
for the activity of BAT and thermoregulation (102–104).
Serotonergic signaling also appears to be associated with low
protein induced EE. We showed that the mRNA abundance of
tryptophan hydroxylase 1, an enzyme involved in biosynthesis
of serotonin, and serotonin transporter is increased in the
BAT of rats fed with low protein diets which might suggest
a paracrine or autocrine control of low protein enhanced EE
by local 5-hydroxytryptamine (5-HT or serotonin). The VO2

and EE were shown to be decreased by administration of a
non-selective 5-HT receptor antagonist, metergoline (76) and
5-HT3 receptor antagonist, ondansetron (27) in rats fed low
protein diets. This is suggestive of higher serotonergic tone
in rats fed with protein restricted diets. Whether both central
and peripheral serotonergic signaling are equally essential
for the thermogenic effects of low protein diets remains to
be studied.

Dietary protein restriction results in reduced concentration
of most essential amino acids in the circulation, which play a
role in metabolic adaptations to protein deficient diets. Among
the amino acids studied, methionine (60, 105–108), tryptophan
(41), and leucine (109) restriction have been shown to enhance
EE. This is suggestive of the importance of amino acid profile
and protein quality in regulation of thermogenesis. We showed
that methionine restriction can partly recapitulate the total
amino acid restriction-induced EE (48). This increase in EE
in response to methionine restriction has been linked with
greater secretion of hepatic FGF21 (92, 94, 110), upregulation
of UCP1 in BAT (105, 107) and increased sympathetic signaling
(48, 108). We and others using pharmacological (i.e., chemical
sympathectomy and propranolol) and genetic (i.e., β3 receptor
knockout mice) tools, showed that sympathetically driven
enhanced EE in response to methionine restriction is mediated
by β-AR (48, 108). Similarly, increased EE following tryptophan
and leucine restrictions is mediated through sympathetic system
and upregulation of UCP1 in BAT as well as FGF21 (41, 93,
111, 112). Whether deficiency of other essential amino acids
play a role in the higher thermogenic effects of low protein
diets, and the underlying pathways and organs involved, warrants
further investigation.
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CONCLUSIONS AND FUTURE
IMPLICATIONS

Dietary protein restriction orchestrates a whole organismal
physiological response to stimulate energy intake and EE. The
low protein induced thermogenesis is largely driven by dietary
protein content and less likely by the concurrent hyperphagia.
Though the liver and brain appear to be the primary sites
for sensing protein deficiency, the coordination of these tissues
with intestinal sensing mechanisms to promote hyperphagia
and thermogenesis remains poorly understood. Although liver
driven FGF21 seems essential for stimulating EE in response to
protein or amino acid restricted diets, the role of local FGF21
synthesized and released from BAT, skeletal muscle and gut
in the thermogenic responses to low protein diets remains to
be determined. Further, the roles of systemic and local amino
acid concentrations, as well as sympathetic and serotonergic
signaling in brain, adipose and muscle tissues to coordinate
intake and expenditure responses to dietary protein restriction
remains largely unexplored. A deeper understanding of the
neuroendocrine mechanisms by which dietary protein dilution
modulates energy balance may lead to the development of novel

strategies for preventing and treating obesity and associated
comorbidities in humans, as well as for improving production
efficiency in domestic animals.
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