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Abstract
Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-
learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial 
intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and 
parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previ-
ous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of 
echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image 
quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI 
calculated LVEF from the acquired loops (monoplane and also a “best-LVEF” considering all views acquired in the par-
ticular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts 
(ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 
(68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. 
We found an excellent agreement between the machine’s LVEF calculations from images acquired by the novices with the 
GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the “best-LVEF” algorithm). This pilot study shows first evidence that a 
machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF 
calculation that is in agreement with a human expert.
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Background

Left ventricular ejection fraction (LVEF) is by far the most 
important parameter in the assessment of cardiac function. 
Echocardiographic calculations of LVEF play an important 
role in diagnosis and clinical decision-making. This is espe-
cially true in cardiac device therapy, management of valvular 
heart disease, oncology patients, and in the diagnosis and 
treatment of heart failure [1–3]. At the same time, calcula-
tion of LVEF is strongly dependent both on image quality 
and on the experience of the reader [4]. Thus calculation of 

LVEF by non-cardiologists and beginners is a significant 
limitation for the widespread application of this parameter 
[5].

Quantitative evaluation of LVEF is performed by either 
human or automated computer-based measurements of end-
diastolic and end-systolic volumes through the tracing of 
endocardial borders followed by model-based calculations. 
Recently, a new software was developed, implementing a 
fully machine-learning algorithm mimicking the human eye 
by estimating LVEF from the degree of ventricular expan-
sion and contraction, myocardial thickening, and motion 
of the mitral annular plane (Fig. 1) [6]. This algorithm has 
meanwhile been developed further, also integrating the par-
asternal long axis view into global LVEF assessment.

Furthermore, another artificial intelligence (AI) algo-
rithm was added, which was trained to guide the echocar-
diographer to acquire diagnostic images. Depending on 
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the live-image, the machine advises the examiner to move, 
tilt, or rotate the transducer to reach the best image quality. 
While imaging, the machine automatically saves the best 
image acquired (Fig. 2).

A methodology, which allows even novices to acquire 
images that provide an accurate calculation of LVEF 
is revolutionary and could greatly impact the reach of 
echocardiography.

In our study we evaluated (1) if this new machine-learn-
ing algorithm is able to assist novice operators to acquire 
diagnostic image loops and (2) if the AI based algorithm 
using these images provides LVEF calculations comparable 
to those obtained by experts.

Methods

All patients provided signed informed consent, and the 
study was approved by the local ethics committee (EK # 
1833/2019). The study protocol conformed to the ethical 
guidelines of the Declaration of Helsinki.

Performance testing

The design of this study consisted of four steps: (1) nineteen 
echo-naïve first-year medical students were briefly trained 
in the basics of echocardiography, (2) the trained students 
scanned three patients each with the help of the machine-
learning algorithm (Caption Health Inc., Brisbane, CA, 
USA), for each patient they attempted to acquire three views 
(parasternal long axis view = PLAX, apical four-chamber 
view = AP4, apical two-chamber view = AP2), (3) the same 
patients were additionally scanned by one expert cardiologist 
(MS), the acquired loops were read by three blinded expert 
cardiologists (MS, TB, PB), the average calculated LVEF 
was taken as the ground-truth LVEF (GT-EF), (4) the 171 
loops which were scanned by the students were evaluated by 
the machine-learning algorithm. If image quality was suf-
ficient, LVEF was calculated analyzing PLAX only, AP4 
only, AP2 only, and all acquired views together (“best-EF”). 
The machine’s results were compared to the experts’ GT-EF.

Patients

Fourteen consecutive patients were included in this study. 
The patients were inpatients on the general cardiology 
ward at the time of the study. The study team had no prior 
knowledge on image quality or LVEF of these patients. Only 
patients in sinus rhythm were included.

Novices and training

Nineteen echo-naïve first-semester medical students (first 
month) received a brief dedicated echo training. To provide 
basic knowledge we trained the students with a 2.5-h online 
echo tutorial (produced in cooperation between the Medi-
cal University of Vienna and www.123so​nogra​phy.com), 
teaching the basics of cardiac anatomy, such as the position 
of the heart in the chest, morphology, and topography of 
the heart chambers and valves using human anatomic speci-
mens, as well as video demonstrations of the echo cut-planes 
using a split-screen format that shows the transducer posi-
tion and the images (Fig. 3). Ten of the students (trained 
novices) received an additional 2-h hands-on training with 
the machine-learning software, which allowed each student 

Fig. 1   This schematic represents the multiple layers and nodes of a 
neural network with a sample echocardiography image being pro-
cessed in order to produce an estimate of left ventricular ejection 
fraction

http://www.123sonography.com
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to image for 30 min. The scanning for this study was per-
formed 2 and 3 days after the online and hands-on training, 
respectively.

Scanning by the novices

Scanning was performed on a Terason uSmart 3200t (Burl-
ington, MA, USA) tablet ultrasound system. The 19 nov-
ices scanned three patients each. Each student was asked 
to acquire the three views PLAX, AP4, and AP2 in each 
patient, supported by the machine-learning algorithm. The 
algorithm steers the user to the correct image through sim-
ple commands such as “tilt down”, “rotate clockwise”, etc. 
It denotes quality of the live image by displaying a visual 

score on a bar (“quality meter”), and automatically captures 
the loop with highest quality (Fig. 2). A total of 171 image 
loops were recorded by the students. Time to acquire each 
loop was recorded by the system.

Reference loops by the expert

All patients were additionally scanned with a GE S70 
(General Electric Healthcare, Chicago, IL, USA) machine 
to acquire reference images (PLAX, AP4, AP2). These 
images were read by three expert cardiologists (MS, TB, 
PB) who were blinded to the results provided by the arti-
ficial intelligence. Biplane Simpson LVEF was calculated 
for each patient by measuring end-systolic and end-diastolic 

Fig. 2   Panel a shows the 
guidance phase: The image is 
not optimal and the guidance 
message is shown (“slide medi-
ally closer to the sternum”). 
The quality meter shows that it 
has not reached the automated 
capture level. Panel b shows the 
screen when a good view has 
been obtained and automated 
capture has occurred. PLAX 
parasternal long axis view
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volumes. The three LVEF values were averaged; the average 
was used as reference value for LVEF in this study (ground 
truth EF [GT-EF]). The expert additionally scanned all 
patients with the Terason machine to allow AI calculations 
on the expert loops as well.

Image quality score

The Image Quality Score (IQS) technology provides an 
algorithmic determination of the diagnostic quality of 
an ultrasound image. The algorithm works in two stages. 
In the first stage, a Deep Convolutional Neural Network 
performs an inference over a given video clip to pro-
duce video clip embeddings. A second stage algorithm 
then takes these embeddings and produces an estimate of 
Image Quality Score (IQS) for that clip. The first stage 
algorithm was trained on a very large and diversified data-
set of more than 400,000 clips from 12,000 unique patients 
(totaling approximately 17.7 million frames). The data-
set was balanced over patient sex, age, body mass index, 
and ultrasound equipment systems. The second stage 
algorithm was trained on over 1000 unique clips for each 
view of interest (namely AP2, AP4 and PLAX) to regress 
the ground truth IQS scores collected from experienced 

echocardiographers. The second stage algorithm predicts 
an image quality score from 1 to 5 (i.e. a floating point 
number). The scale has been developed by the American 
College of Emergency Physicians [7].

To validate the algorithm, five expert registered cardiac 
sonographers reviewed a dataset of over 2400 pairs of same-
view clips from patient studies that included AP4, AP2, and 
PLAX views. The sonographers scored each pair by telling 
if the left clip was of higher quality, the right clip was of 
higher quality, or if both clips were equally good or bad. The 
difference in image quality scores produced by the algorithm 
was computed for each pair and the resulting value was then 
mapped onto either − 1 (which meant that the left clip was 
deemed of higher quality by the algorithm), 0 (if both clips 
were considered of similar quality by the algorithm), or + 1 
(which meant that the right clip was deemed of higher qual-
ity by the algorithm). The test evaluated the ability of the 
algorithm to estimate image quality differences with at least 
80% of the performance of expert sonographers, this being 
considered acceptable performance. This target was met for 
the three views (PLAX 90.4%, AP4 95.0%, AP2 83.2%.)

In this study, IQS levels were used as a threshold to select 
clips considered to have sufficient quality for the algorithm 
to accurately perform the automated LVEF measurement. 

Fig. 3   The videos include 2.5 h of video lectures, which explain cardiac anatomy in autopsy specimens (Panel a and b), recorded video demon-
strations showing the screen and the transducer position (Panel c), and echo simulators (Panel d)
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Thresholds for IQS were 3.1 for PLAX, 2.5 for AP4, and 
2.7 for AP2.

Artificial intelligence: guidance and LVEF calculation

The AI algorithm allows calculation of LVEF for each view 
(PLAX, AP4, AP2) as well as an aggregate LVEF based 
on all acquired views (“best-EF”). The “best-EF” can only 
be computed if more than one view provides diagnostic 
quality. At the time of the study, the LVEF tool was not yet 
implemented into the acquisition software. Therefore, LVEF 
calculation was not performed simultaneously but later via 
post-processing.

The algorithms for guidance and LVEF calculation were 
implemented in Python and trained using Keras (https​://
keras​.io/) with a Tensorflow (https​://www.tenso​rflow​.org/) 
backend to train and deploy the neural networks. Details 
regarding training the machine have been published previ-
ously [6].

Statistical analysis

Continuous variables are given as mean ± standard deviation 
(SD). Biases between the machine’s reads from the images 
acquired by novices and the expert and the expert-provided 
reference standard were tested using 2-tailed paired Stu-
dent’s t-tests. Bland–Altman analysis was calculated and 
is provided as plot figure. Pearson correlation coefficients 
were calculated. Root mean square deviation (RMSD) was 
calculated as a measure of differences between the GT-EF 
and the three views PLAX, AP4, AP2, as well as the best-EF 
as estimated by the AI. A p value ≤ 0.05 was considered sta-
tistically significant. SPSS Version 24 (IBM SPSS, Armonk, 
NY, USA) was used for all analyses.

Results

Patients

Fourteen consecutive patients (one female, median age 
55 years, interquartile range [IQR] 39–64, mean LVEF 
58.5% ± 13, range 26–70) were included in this study. The 
patients were inpatients at the time of the study due to a vari-
ety of cardiac diseases and interventions, such as coronary 
artery disease, pulmonary vein isolation due to paroxysmal 
atrial fibrillation (all in sinus rhythm at the time of image 
acquisition), and PFO closure. The cohort also included 
three healthy volunteers. Each of the patients was scanned 
by at least three novices.

Differences between the two groups of trained 
novices

There were no differences between those novices who 
received additional hands-on training (trained novices) 
when compared to those who received only the online-
training (data not shown). In the following, the results of 
the 19 students will be presented together.

Image quality

The software assessed the quality of the acquired images. 
If the quality score reached the diagnostic level, the 
machine performed LVEF calculations. The expert 
acquired diagnostic quality in 12/14 (86%), 14/14 (100%), 
and 14/14 (100%) patients in the PLAX, AP4, and AP2, 
respectively. The 19 novices each scanned three patients, 
with a total of 57 examinations. At least one of the three 
views PLAX, AP4, or AP2 was obtained by the novices in 
91% of the attempts. One diagnostic image was acquired in 
8/57 (14%), two of the three in 19/57 (33%), and all three 
in 25/57 (44%) of the scans (Table 1).

In total, the novices acquired diagnostic quality in 33/57 
(58%), 49/57 (86%), and 39/57 (68%) acquisitions in the 
PLAX, AP4, and AP2, respectively.

Table 1   Successful capture of diagnostic image quality loops includ-
ing the scanning time for each view

The percentage numbers are referring to the number of scans per-
formed in each group. The examiner scanned all 14 patients, the nov-
ices each scanned three patients
PLAX parasternal long axis view, AP4 apical four chamber view, AP2 
apical two chamber view, s seconds, SD standard deviation

Expert Trained novice Novice

Number of success-
ful captures of the 
view

N = 1 examiner
14 scans

N = 10
30 scans

N = 9
27 scans

 PLAX, n (%) 12 (85.7) 17 (56.7) 16 (59.3)
 AP4, n (%) 14 (100) 25 (83.3) 24 (88.9)
 AP2, n (%) 14 (100) 21 (70) 18 (66.7)

Number of successful captures per patient
 0, n (%) 0 (0) 3 (10) 2 (7.4)
 1, n (%) 0 (0) 4 (13.3) 4 (14.8)
 2, n (%) 2 (14.3) 10 (33.3) 9 (33.3)
 3, n (%) 12 (85.7) 13 (43.3) 12 (44.4)

Time to capture the view
 PLAX, s (± SD) 48 (± 38) 191 (± 113) 186 (± 143)
 AP4 s (± SD) 20 (± 13) 230 (± 174) 181 (± 132)
 AP2 s (± SD) 30 (± 19) 141 (± 89) 140 (± 89)

https://keras.io/
https://keras.io/
https://www.tensorflow.org/
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Time for image acquisition

Time to acquire each loop was compared. For the novices, 
time to acquire PLAX, AP4, and AP2 was 189 (± 127), 
207 (± 156), and 141 (± 88) seconds, and for the expert 
48 (± 38), 20 (± 13), and 30 (± 19) seconds (difference 
between the groups p < 0.001), (Table 1).

LVEF results: bias and correlation

Automated measurements of loops acquired by the novices 
were in excellent agreement with the experts’ GT-EF. This 
was reflected by a bias of 1.35% (± 5.63), with a correlation 
coefficient of r = 0.79 (p < 0.001) in the PLAX views, a bias 
of 3.05% (± 8.1) and r = 0.87 (p < 0.001) in the AP4 views, 
a bias of 3.94% (± 7.8) and r = 0.84 (p < 0.001) in the AP2 
views, and a bias of 3.02 (± 5.7) and r = 0.92 (p < 0.001) in 

Fig. 4   Bland Altman plots and correlation diagrams depicting the 
interrelation of ground-truth left ventricular ejection fraction (GTEF) 
with the artificial intelligence derived calculations. Panel a Paraster-
nal long axis view (PLAX) and GTEF. Panel b Apical 4-chamber 

view (AP4) and GTEF. Panel c Apical 2-chamber view (AP2) and 
GTEF. Panel d Best-LVEF = Multiplane ejection fraction (mean of all 
available view if more than one view could be obtained) and GTEF
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the “best-LVEF” algorithm (Fig. 4). For PLAX, AP4, AP2, 
and “best-EF”, RMSD was 5.3%, 8.4%, 9.2%, and 6.5% for 
the novices and 6.7%, 9.1%, 6.8%, and 6.2% for the expert.

Discussion

In this study we could show that minimal online training in 
combination with a machine-learning algorithm can guide 
echo-novices to acquire diagnostic echo studies. An artificial 
intelligence algorithm can produce an LVEF estimation from 
these captured images that is in agreement with an expert 

echocardiography specialist. This finding has the potential 
to change the clinical practice of echocardiography.

Initially a highly specialized diagnostic tool performed 
only by cardiologists, echocardiography has already spread 
to other medical specialties. With a drop in cost, size, and 
availability of ultrasound scanners, echocardiography is now 
being performed also in primary and emergency care set-
tings. It has been speculated that in the near future hand-
held-ultrasound will replace the stethoscope [8]. However, 
this raises concerns that the level of training of health care 
professionals performing ultrasound is not sufficient to 
yield accurate and reliable results. It is of particular con-
cern that inaccurate quantification of LVEF may lead to 

Fig. 4   (continued)
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false decisions, which could potentially harm patients and 
increase health care cost.

To truly bring echocardiography to the forefront of 
medicine it is therefore important to reduce training time, 
improve the learning curve, and to use standardized analyz-
ing tools, which make the technique less operator dependent. 
Regarding LVEF, it is important to provide accurate calcula-
tions with high reliability.

Artificial intelligence and machine-learning promise to 
provide methodologies, which aid in image optimization, 
analysis, and interpretation [9]. In this study, we tested a new 
machine-learning algorithm which applies artificial intel-
ligence both in helping echo-naïve novices to acquire loops 
of diagnostic quality and in assisting the observer by esti-
mating LVEF. Opposed to conventional methods which use 
endocardial border tracing, the algorithm applies “pattern 
recognition” to mimic the human approach of “eyeballing”.

Artificial intelligence assisting echo‑naïve students 
to acquire diagnostic images

Untrained users often struggle with the acquisition of diag-
nostic echo images. Currently, the method requires highly 
trained specialists to perform and interpret the study. Mul-
tiple strategies have been proposed to standardize optimal 
image acquisition in echo. This includes position localizers, 
3D echocardiography, and mechanical steering arms. How-
ever, these methodologies are complex, expensive, and can-
not be used bedside and in emergency settings.

The new system tested in this study applies an inbuilt 
machine-learning algorithm that guides the operator to the 
correct transducer position, detects when the optimal image 
orientation and image quality is achieved, and automatically 
saves the best image, thereby guaranteeing that the best loop 
is acquired. Once stored, the algorithm provides an estima-
tion of LVEF.

In our study, we recruited 19 random first-semester medi-
cal students in the first month of their studies on a first-come 
first-serve basis. None of them had previous knowledge of 
ultrasound. We trained the novices with a 2.5 h online teach-
ing tool in anatomy of the heart and in basics of echocardi-
ography. An additional 2-h hands-on training was performed 
with 10 of the students.

Time to acquire diagnostic images was—as expected—
significantly longer for the novices when compared to the 
expert. It took the novices between 2.5 and 4 min to acquire 
each individual loop, the expert needed a mean of 32 s. 
However, it must be stressed that the novices have never 
previously imaged a patient. Diagnostic image quality (at 
least one of the three views) could be obtained in most 
patients (91%). This demonstrates that the system allows 
even novices with minimal training to perform an echo study 

of sufficient quality for LVEF assessment, though naturally 
not with the same results as an expert.

This finding can have direct implications on scenarios 
such as the current COVID-19 pandemic. Depending on 
the hospital setting, the number of imaging specialists is 
limited. Ideally, bed-side ultrasound is performed in conta-
gious patients to reduce the number of exposed health care 
professionals. The guidance system allows a one-stop-shop 
approach where one person not necessarily trained in ultra-
sound performs multiple tasks, including acquisition of echo 
loops, which can be read by an expert in a remote room.

Artificial intelligence to estimate left ventricular 
ejection fraction

When performed by humans, echocardiography and its 
measurements are subjective and greatly influenced by the 
level of expertise [5, 10]. Since its first description there 
have been concerns about the reproducibility of LVEF due 
to significant intra-observer, inter-observer, and inter-insti-
tutional variability of measurements [11–13]. Standardized 
training of novices can reduce this bias [14, 15].

LVEF itself has many limitations, especially in patients 
with moderate or poor image quality where endocardial 
tracing and volumetric measurements are difficult to per-
form [4]. In our study, the “best-LVEF” showed a bias of 
3.02% ± 5.7 in loops acquired by first semester medical 
students. The results did not differ significantly from those 
performed by an expert cardiologist (2.3% ± 6.0).

It is important to stress, that the machine-learning meas-
urements are not based on endocardial tracing and volume 
calculation but they mimic the human eye and give a true 
eyeballing estimate. Thus, it represents the cumulative 
knowledge and experience of a senior cardiologist. The 
machine will eyeball with the same algorithm in every sin-
gle calculation, thereby allowing standardizing this highly 
subjective method. The ability to estimate LVEF not based 
on volumetric parameters also offers the possibility to derive 
LVEF in patients where optimal (non-foreshortened) views 
cannot be obtained.

Recently, other studies could show the feasibility of a 
deep learning algorithm estimating two-dimensional LVEF, 
as well as three-dimensional right ventricular ejection frac-
tion [16, 17]. In addition, pacemaker leads can be detected, 
cavity volumes can be estimated, and age, sex, and weight 
can be predicted [18]. Other groups trained their algorithm 
to detect patients with hypertrophic cardiomyopathy, amy-
loid heart disease, pulmonary arterial hypertension, and 
heart failure with preserved ejection fraction [19, 20].

This study demonstrates that the machine-learning algo-
rithm can also obtain LVEF calculations from a parasternal 
view using a PLAX. This opens the window to include many 
more views into the calculation of LVEF, circumventing the 
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limitation of biplane and apical methods where not all myo-
cardial segments are included. The “best-LVEF” algorithm 
includes all acquired images (at this time PLAX, AP4, AP2) 
into the assessment. This could ultimately lead to a true 
global LVEF with far more clinical relevance than a biplane 
Simpson LVEF calculated through volumetric assumptions 
from an area traced by a human being or calculated from a 
semiautomatic method (“Auto-EF”). Thus, neural network 
trained algorithms might revolutionize the application of the 
parameter LVEF in the future.

A unique finding of this study is the ability of the algo-
rithm to allow estimation of global LVEF from PLAX only. 
The PLAX has traditionally been excluded as a view from 
which LVEF should be calculated. The main reason being 
that opposed to the apical long axis (which has the same 
image orientation) it does not display the apical segments 
[21]. At the same time, in daily clinical practice, every 
operator will already eyeball global function in PLAX when 
starting to evaluate a dataset of echo loops. Therefore, it 
comes without surprise that a machine learning algorithm 
trained on tens of thousands of echo studies can give an 
estimation of LVEF when only confronted with a PLAX. 
Patients e.g. with apical aneurysm or inferior scars will have 
overestimated LVEF by this method, at the same time values 
for the general population will be quite reliable. In general, 
the more regional abnormalities are present, the more views 
are needed to account for true global ejection fraction. Thus, 
the inclusion of PLAX in this algorithm might lead to better 
reliability of the parameter LVEF.

The combination of a loop acquisition system with a data 
analysis software has the potential to revolutionize the train-
ing and practice of echocardiography. Clearly, the system not 
only allows less experienced operators to perform diagnostic 
quality studies but is also helpful in the training process 
itself. Similar to a human instructor the algorithm guides the 
hand of the trainee and thereby assists in hand–eye coordina-
tion. Our study also suggests that trainees with and without 
initial hands-on instruction perform equally well. The guid-
ance algorithm in itself serves as hands-on instruction.

By relying less on highly trained personnel, more patients 
can be brought to the exam. Concerns that unexperienced 
observers will make wrong estimations on ventricular func-
tion can be alleviated by the fact that machine-learning 
based calculations increase accuracy and standardize image 
quality. Nevertheless, it must be emphasized, that at least at 
this time the automated diagnosis only includes assessment 
of LVEF, other pathologies might be missed. Therefore, this 
technique does not replace a regular echo exam. As the auto-
mated capture technique produces optimal image quality, 
this would allow a second reading, though. This may be a 
target for a more advanced AI algorithm in the future.

The findings of this study are hypothesis generating: 
In the future, general internists e.g. working in dialysis or 

oncology, might perform screening studies which select 
those patients who need urgent TTE performed by cardi-
ologists, and at the same have the opportunity to document 
stable LVEF in patients who would need but—in current 
clinical practice—do not receive several follow-up TTE 
studies (especially in oncology). This can lower the thresh-
old to perform TTE, thereby improving the level of patient 
care. More data is needed to test these visions.

Limitations

This study included only a small number of novices and 
patients. However, since each novice performed multiple 
views and scanned three patients each, we believe the data 
is robust enough to draw the outlined conclusions and for-
mulate our visions.

Our data does not represent the full spectrum of differ-
ent ejection fractions. Thus, it is not entirely clear how the 
system performs in the various categories of left ventricular 
dysfunction. Therefore, the results of this study are primarily 
hypothesis generating. They must be studied and reproduced 
in future studies with a wider spectrum of pathologies.

A success rate of 58% capturing the PLAX view with—
at the same time—significantly higher success rates in the 
AP2 and AP4 views seems unusual. From our own teaching 
experience, the latter ones would be expected to be harder to 
obtain. One reason could be that two of the included patients 
had hard to obtain imaging conditions for the PLAX. This 
is also reflected by the fact that the expert failed to acquire 
diagnostic PLAX images in these two patients. Another rea-
son might be the limited hands-on training. A reasonable but 
still modest amount of hands-on training might help improve 
the success rates. Future studies with larger numbers of 
patients and novices will help understand this matter better.

Only one female patient was included in the study. In 
males identification of chest landmarks are oftentimes easier 
than in females which might have led to a bias in analysis of 
the guidance system. This needs to be focused on in future 
prospective studies.

Conclusion

This pilot study shows first evidence that a machine-learning 
algorithm can guide ultrasound-novices to acquire diagnos-
tic echo loops and provide an automated LVEF calculation 
that is in agreement with a human expert. This has the poten-
tial to transfer the method and the parameter into other set-
tings apart from a highly specialized echo lab.
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