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Identification of lysine (symbol Lys or K) succinylation (Ksucc) sites centralizes

the basis for disclosing the mechanism and function of lysine succinylation

modifications. Traditional experimental methods for Ksucc site ientification are

often costly and time-consuming. Therefore, it is necessary to construct an

efficient computational method to prediction the presence of Ksucc sites in

protein sequences. In this study, we proposed a novel and effective predictor for

the identification of Ksucc sites based on deep learning algorithms that was

termed as Deep_KsuccSite. The predictor adopted Composition, Transition,

and Distribution (CTD) Composition (CTDC), Enhanced Grouped Amino Acid

Composition (EGAAC), Amphiphilic Pseudo-Amino Acid Composition (APAAC),

and Embedding Encodingmethods to encode peptides, then constructed three

base classifiers using one-dimensional (1D) convolutional neural network (CNN)

and 2D-CNN, and finally utilized voting method to get the final results. K-fold

cross-validation and independent testing showed that Deep_KsuccSite could

serve as an effective tool to identify Ksucc sites in protein sequences. In

addition, the ablation experiment results based on voting, feature

combination, and model architecture showed that Deep_KsuccSite could

make full use of the information of different features to construct an

effective classifier. Taken together, we developed Deep_KsuccSite in this

study, which was based on deep learning algorithm and could achieved

better prediction accuracy than current methods for lysine succinylation

sites. The code and dataset involved in this methodological study are

permanently available at the URL https://github.com/flyinsky6/Deep_

KsuccSite.
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1 Introduction

Protein post-translational modification (PTM) is ubiquitous

in various prokaryotes and eukaryotes, which also plays

important roles in many biological processes involving

diseases such as such as cancer, Alzheimer’s Disease (AD),

and cardiovascular disease (Wu et al., 2019; Aggarwal et al.,

2020; Ramesh et al., 2020). There currently have more than

450 known PTMs (Gao et al., 2020), among which

phosphorylation, methylation, acetylation, succinylation, and

ubiquitination have been extensively investigated. Lysine

succinylation (Ksucc) is a type of newly discovered PTM,

which was found to occur naturally on protein lysine residues

in vivo (Zhang et al., 2011). Ksucc is the process in which a

succinyl moiety covalently binds to lysine residues through

enzymatic or nonenzymatic-dependent mechanisms. This

modification adds negatively charged carboxyl groups to the

modified site and neutralizes its positive charge, thus

reconstructing the intra- and inter-molecule interactions,

which may further affect the spatial structure of the protein

and eventually lead to changes in the physicochemical properties

of the modified protein (Zhang et al., 2011). Relevant studies have

shown that Ksucc modification is widely involved in important

physiological activities such as cell differentiation and cell

metabolism (Alleyn et al., 2018), whose abnormalities are

closely related to a variety of diseases, including cancer,

metabolic diseases, neurological diseases. Therefore,

identification of Ksucc sites is crucial to reveal its

mechanisms, providing theoretical supports for the drug

design and development of relevant diseases (Zhang et al.,

2011; Park et al., 2013; Rardin et al., 2013).

Both experimental and computational methods have made

significant contributions to the identification of Ksucc sites. In

particular, experimental methods provide a large number of first-

hand data for the study of Ksucc. However, the disadvantages are

that these methods are time-consuming and expensive, which no

longer meet the increasing needs of the fast-pacing research (Doll

and Burlingame, 2015). Therefore, with the development of

machine learning (ML) methods and the accumulation of

Ksucc experimental data, more and more attentions have been

put on computational methods with a focus on deep learning

(DL) algorithms (Hasan et al., 2019). ML based method generally

includes feature representation, feature selection, and algorithm

application. SuccFind is the first Ksucc predictor that

incorporated amino acid composition (AAC), the composition

of k-spaced amino acid pairs (CKSAAP), and evolutionary-

derived information to represent each peptide segment, after

which F-score as feature reduction and SVM as a classifier were

used to predict Ksucc sites (Xu et al., 2015). Then, pSuc-Lys (Jia

et al., 2016), succiSite (Hasan et al., 2016), succiSite2.0 (Hasan

et al., 2017), and GPSuc (Hasan and Kurata, 2018) were

indepenenlty developed to predict Ksucc sites. Both pSuc-Lys

and succiSite used random forest (RF) as the classifier but they

differed in feature representation. That is, pSuc-Lys used general

PseAAC to formulate peptide samples, while succiSite utilized

the compositions k-spaced amino acid pairs (CKSAAP), binary,

and amino acid index property as feature representation. In

addition, succiSite2.0 took the composition of profile-based

amino acid and orthogonal binary as features. GPsuc method

adopted five features to encode sequence peptides. For each

feature, the Wilcoxon rank was used as feature selection and

RF was utilized as a base classifier, and finally logistic regression

was used to integrate the results (Hasan and Kurata, 2018). There

are also many other feature selection algorithms such as the

minimum redundancy–maximum relevance (mRMR) and

sequential forward selection (SFS) that were used for the

prediction of lysine succinylation sites (Kao et al., 2020). In

terms of feature representation, in addition to the physical and

chemical properties, evolutionary information and structural

information were also used in PSSM-Suc (Dehzangi et al.,

2017), SSEvol-Suc (Dehzangi et al., 2018) and Success (López

et al., 2018). SSKM_Succ was developed to solve the reliability of

negative samples by using K-means (Ning, 2020). In 2022, Jia

et al. (Jia et al., 2022) proposed the pSuc-FFSEAmodel, which not

only used EBGW, one-hot, AAF_ DWT also adopted CBOW and

CGR to encode amino acids, and then LASSO and two-layer

stacked ensemble classifiers were utilized to construct the model.

Although classical machine learning methods have contributed

significantly to the prediction of Ksucc sites with good

interpretability, it is difficult to obtain higher-level features by

simple feature engineering, which limits the performance of the

models to some extent.

Many deep learning-based Ksucc predictors have been

proposed to further improve model performance by using

their unique feature learning capabilities. Ning et al. (Ning

et al., 2020) constructed a new tool named HybridSucc, which

combined 10 types of informative features and implemented a

hybrid-learning architecture by integrating deep-learning and

conventional machine-learning algorithms into a single

framework. Thapa et al. (2020) developed DeepSuccinylSite

based on a convolutional neural network (CNN). Huang et al.

(2021) proposed the LSTMCNNsucc model by combining long

short-term memory (LSTM) and CNN. MDCAN_lys (Wang

et al., 2021), which is a multilane dense convolutional attention

network used the cascading model of dense convolutional block

and convolutional block attention module to capture feature

information at different levels. Zhang et al. (Zhang and Wang,

2022) constructed a mixed prediction model using ensemble

learning strateg which established four basic classifiers LSTM-

CNN, CNN-LSTM, LSTM, and CNN for five features of

CKSAAP, ACF, BLOSUM62, AAindex, and one-hot, and then

selected the classifier with the best performance for each feature,

and finally integrated them. The biggest contribution of deep

learning in Ksucc site prediction is that it can automatically

extract high-dimensional features based on existing feature

representations, and even directly extract features from amino
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acid sequences. Meanwhile, although the existing models have

contributed much to the prediction of Ksucc sites, there is still

more room for the method to be improved. In this study, we

proposed a new Ksucc site predictor termed as Deep_KsuccSite,

which is based on 1D-CNN, 2D-CNN, and voting methods. In

this study, four representations including Enhanced Grouped

Amino Acid Composition (EGAAC), the Composition of CTD

(CTDC), Amphiphilic Pseudo-Amino Acid Composition

(APAAC), and Embedding encoding were used to encode

protein peptides. 1D-CNN and 2D-CNN were then used to

construct base classifiers for 1D features and 2D features,

respectively. Finally, output was obtained by voting on the

results of each base classifier. In sum, we developed

Deep_KsuccSite in this study, which was based on deep

learning algorithm and could achieved better prediction

accuracy than current methods for lysine succinylation sites.

The code and dataset involved in this methodological study are

permanently available at the URL https://github.com/flyinsky6/

Deep_KsuccSite.

2 Materials and methods

The direct fusion of feature information may cause mutual

interference and weaken the quality of features, which in turn

affects the effect of feature extraction. Therefore, in this paper,

CNN was used as the base classifier of Deep_KsuccSite, that is,

2D-CNN for embedding features, and 1D-CNN for one-

dimensional features such as CTDC and the combination of

EGAAC and APAAC. Finally, the outputs of these three base

models were voted to obtain the model output. The schematic

illustration of the structure of Deep_KsuccSite method was

shown in Figure 1. The major procedures for the development

of Deep_KsuccSite could be summarized as following: 1) Data

collection and preprocessing that were illustrated in Section 2.1;

2) Information encoding which were described in detail in

Section 2.2; 3) classifiers module based on deep learning

described in Section 2.3; 4) Performance evaluation and

validation in Section 2.4.

2.1 Data collection and preprocessing

The Ksucc site data were downloaded from Protein Lysine

Modification Database (PLMD,http://plmd.biocuckoo.org/) that

was dedicated to protein lysine modifications (Xu et al., 2017).

The PLMD database contains 18,593 Ksucc sites sourced from

6,378 protein sequences across 14 different species. In this study,

theMus musculus data were used to construct our model because

it had the most Ksucc sites. Then, redundant protein sequences

with high similarities for each species were strictly removed using

CD-HIT with a threshold value of 0.4 to ensure squence quality

and reduce sequence biases (Huang et al., 2010). Finally, a total of

932 protein sequences including 3,342 experimentally validated

Ksucc sites were obtained as positive samples, and an equal

amount of data from protein sequences without Ksucc site

modification was obtained as negative samples by down-

sampling technique (Supplementary Table S1). The length of

each sample is L = 2N + 1, which was centered on lysine taking N

amino acids to the left and right sides. For some peptides with

lengths shorter than L, we filled them with pseudo-amino acids

(denoted by the symbol X). The determination of the length L

FIGURE 1
The overall framework of Deep_KsuccSite. The blue dashed line with arrows indicates the flow of the independent test dataset.
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was described in Section 3.1. We randomly select 75% of the data

set as the training set and the rest adata as an independent test set,

which were used to train the model and evaluate the

generalization ability of the model, respectively. Finally,

5,013 training datasets and 1,671 independent test datasets

were obtained.

2.2 Information encoding

In order to construct a predictive model, peptides need to be

transformed into feature vectors that can be recognized by

machine learning algorithms. There are many methods for the

vectorization of peptides used in the field of PTM, including

physicochemical properties, evolutionary information, structural

information and so on. In specificity, four encoding methods are

considered in this paper, namely EGAAC, CTDC, APAAC, and

Embedding Encoding. The first three methods were obtained by

iLearn_plus (Chen et al., 2020), and all of four methods were

briefly described as follows.

EGAAC calculates the enhanced grouped amino acid

composition in a fixed-length window, sliding continuously

from the N- to C-terminal of each peptide. Specifically, the

20 amino acids were classified into five categories based on

different physicochemical properties (Lee et al., 2011):

aliphatic group (g1:GAVLMI), aromatic group (g2:FYW),

positive charge group (g3:KRH), negative charged group (g4:

DE), uncharged group (g5:STCPNQ). The calculation formula is

as follows:

G(g,n)�H(g,n)
H(n) ,g ∈ {g1,g2,g3,g4,g5},n ∈ {w1,w2, . . . ,wL}

(1)
Where H(g, n) is the number of amino acids in group g within

the window n, H(n) is the length of the window n. The fixed-

length sequence window size defaults to 5 (Chen et al., 2018).

CTDC features represent the distribution patterns of

amino acids for specific structural or physicochemical

properties in a protein or peptide sequence. CTDC refers to

the composition of CTD descriptors that are computed by the

following procedures: 1) transforming amino acid sequences

into sequences for structural or physicochemical properties; 2)

according to Tomii and Kanehisa’s major amino acid index

clustering, 20 amino acids were divided into three groups for

each of the seven different physicochemical properties,

detailed calculation of which could be seen in previous

studies (Chen et al., 2020; Gu et al., 2020). In fact, CTDC

has been successfully applied to the prediction of G protein-

coupled receptors (Gu et al., 2020).

APAAC descriptor has the same form as the amino acid

composition but contains more information related to the

sequence order of the protein and the distribution of

hydrophobic and hydrophilic amino acids along its chain.

Embedding Encoding method. The essence of the

embedding encoding is word embedding, which is very

important in the field of natural language processing (Grohe,

2020). It can help us find the relationship between words that are

difficult to detect, and this idea is currently getting more and

more attention in the protein field, because There are many

analogies between amino acid sequences and natural languages.

For example, sequences are regarded as sentences, and amino

acids are regarded as words. Therefore, each amino acid can be

vectorized by embedding representation, and finally the

representation of the entire sequence can be obtained by

integration. In particular, the 20 amino acid residues and one

pseudo residue are first converted into integers from 0 to 20, and

then a vector representation of each integer (length 21) is

obtained by training through the embedding layer in Keras.

Finally, each peptide is represented as a 33*21 two-

dimensional matrix.

2.3 Base classifier

CNN, one of the representative algorithms of deep learning,

is a feed-forward neural network with deep structure and

convolution computation. Its powerful representation learning

capability has led to successful applications in image processing,

natural language processing, biological information, and other

fields (Alom et al., 2019; Hesamian et al., 2019). According to the

format of input data, CNN can be classified into 1D-CNN and

2D-CNN (Kiranyaz et al., 2021). In this study, two base classifiers

based on 1D-CNN and 2D-CNN were constructed for different

features.

2.3.1 1D-CNN classifier
Traditional 2D-CNN are specialized for processing 2D data,

such as images and videos. As an alternative, 1D-CNN has been

recently developed (Kiranyaz et al., 2021). It has been shown that

1D-CNNs outperform 2D-CNNs in processing 1D signals in

certain applications, e.g., patient EEG (Yildirim et al., 2018),

high-power circuit, power engine fault detection (Eren et al.,

2018), etc. In this study, CTDC, EGAAC and APAAC were 1D

features with dimensions of 39, 24 and 145, respectively. Taking

CTDC features as an example (Figure 2), it could be see that the

positions of the 23rd, 27th, 29th, 32nd, and 34th features show

obvious maximum values, and the positions of 20, 26, 28, 33, and

39 all show obvious minimum values. This suggests that they

have they have good timing sequential characteristic and could

thus be classified with 1D-CNN.

The structure of the 1D-CNN used in this paper mainly

consisted of a Convolution Layer, a Dropout Layer, and a Fully-

Connected Layer. Among them, there were 64 Convolution

Layers with a step size of 2. In order to avoid overfitting, the

Dropout Layer retained 40% of the connections, whilethe Fully-

Connected Layer contained 32 units. Finally, the final output was
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calculated using the SoftMax activation function. Both

convolutional and fully connected layers used rectified linear

units (ReLu) as the activation function, and the optimizer was

Stochastic Gradient Descent (SGD). The detailed structure and

parameter settings were shown in Table 1, while the parameter

range and settings of 1D-CNN were shown in Supplementary

Table S2.

2.3.2 2D-CNN classifier
In this section, considering the advantages of CNN for

feature extraction of 2D data such as images, 2D-CNN is used

to construct a classifier for embedding encoding to reduce

information loss during feature propagation, which was first

proposed in previous study (Thapa et al., 2020). The

framework of 2D-CNN was shown in Figure 3, which

included an Input Layer, a Convolution Layer, a Pooling

Layer, a Dropout Layer, a Flatten Layer, a Fully-Connected

Layer, and an Output Layer. In this paper, we used 17*3 and

3*3 matrices with sliding windows for convolutional operations

and used ReLu as the activation function for the normalized

results.

To improve the operation efficiency and reduce the risk of

overfitting, the Maxpooling Layer and Dropout Layer were

embedded in the convolution module. Since the probability

distribution of all classes needs to output, the Flatten Layer

achieves the transition from the Convolutional Layer to fully-

connected Layer by converting the matrices generated by

Convolutional Layers into a vector. If the operations of the

convolution, pooling, and activation function layers are

understood as mapping the original data to the feature space

of the hidden layer, then the fully-connected layer plays the role

of mapping the learned “distributed feature representation” to

the sample marker space. Here, two fully-connected layers in our

DL model, denoted as Fc1 and Fc2, had 768 and 256 neurons,

respectively. ReLu was also used as the activation function.

Finally, the SoftMax activation function was used in the

output layer to calculate the final output. The hyperparameter

settings used for each layer were shown in Table 2.

2.4 Performance evaluation

To evaluate the performance of Deep_KsuccSite, we adopted

several common statistical methods in this paper, including

accuracy (Acc), sensitivity (Sen), precision (Pre), Matthew’s

correlation coefficient (MCC) and F1 score. Detailed

definitions were given below:

Acc � TP + TN
TP + FP + TN + FN

(2)

FIGURE 2
Schematic illustration of the sequence diagram of CTDC that showed the time sequence feature of the data type.

TABLE 1 Architecture and hyperparameter settings for 1D-CNN. The
size column describes the kernel size of the convolutional layer,
the size of the largest pooling layer, and the fully connected layer.

Layer no. Layer type Size Activation

0 Input L —

1 CONV 64*2 Relu

6 Flatten — —

Dropout 0.4

7 Fc1 32 Relu

8 Output 2 SoftMax

9 Optimizer SGD

Frontiers in Genetics frontiersin.org05

Liu et al. 10.3389/fgene.2022.1007618

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1007618


FIGURE 3
Schematic illustration of the architecture of the 2D-CNN, which contains an Input Layer, a Convolution Layer, a Pooling Layer, a Dropout Layer,
a Flatten Layer, a Fully-Connected Layer, and an Output Llayer.
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Sen � TP
TP + FN

(3)

Pre � TP

TP + FP
(4)

F1 � 2 × Pre × Sen

Pre + Sen
(5)

MCC � (TP × TN) − (FP × FN)������������������������������������������(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)√
(6)

Here, TP means the number of correctly predicted positive

samples. TN means the number of correctly predicted negative

samples. FP means the number of incorrectly predicted positive

samples. FN means the number of incorrectly predicted negative

samples (Crooks et al., 2004).

When the data set is balanced, accuracy indicates the

percentage of the correctly predicted outcomes in the total

sample. Sen refers to the percentage of true positive samples

correctly classified, Pre refers to the probability of actually being

positive among all predicted positive samples, F1 is the harmonic

mean of Pre and Sen, MCC is essentially a correlation coefficient

describing the correlation between the actual category and the

predicted category, and it takes values in the range [-1,1] (Forbes,

1995). In addition, the receiver operating characteristic curve

(ROC) and the area under ROC curves (AUC) were also used to

assess the performance. OC calculates the range of sensitivities

and specificities by setting different thresholds for continuous

variables, which is a composite indicator of sensitivity and

specificity (Fawcett, 2006). The average AUC value shows the

overall performance, with larger values being better (Lobo et al.,

2008).

3 Results and discussion

3.1 Selection of window size

The choice of window size has a direct impact on the

performance of Deep_KsuccSite. If the window is too small, it

is easy to ignore the global nature. Considering that the window

with lengths greater than 40 may form structural domains and

lead to model bias (Taylor, 1999), existing studies use windows in

the range of 21–51 (Ning et al., 2020; Zhang et al., 2020; Zhu et al.,

2020; Huang et al., 2021; Tasmia et al., 2021; Wang et al., 2021).

Therefore, we analyzed the model performance when the length

was between 21 and 39. The Acc and AUC values corresponding

to the different windows of the Deep_KsuccSite on the training

data set were shown in Figure 4. It could be seen that the highest

values were obtained when the window reached 33 for both AUC

(81.5%) and Acc (73.8%), respectively.

3.2 Performance evaluation and
comparison

To evaluate the performance of Deep_KsuccSite, 5-, 8- and 10-

fold cross-validations were performed on the training dataset. The

ROC curves for n-fold cross-validations were shown in Figure 5. The

results showed that the AUC values were 0.8026, 0.8149, and

0.7973 for 5-,8-, and 10-fold cross-validations, respectively. The

high consistency of different cross-validation results indicated the

robustness of Deep_KsuccSite.

To verify the generalization capability of Deep_KsuccSite, the

performance of Deep_KsuccSite was compared with other reported

and publicly available Ksucc predictors. Although many servers or

source code were released along with previous studies, only a few

were available. In this study, four models were used to compare with

Deep_KsuccSite, namely pSuc-FFSEA (Jia et al., 2022),

DeepSuccinyISite (Thapa et al., 2020), SuccinSite (Hasan et al.,

2016), and GPSuc (Hasan and Kurata, 2018). Among them, Both

GPSuc and SuccinSite used Random Forest, and GPsuc developed

generic and 9 species-specific Ksucc site classifiers by aggregating

multiple complementary features, while SuccinSite was developed by

integrating three sequence encoding methods. DeepSuccinyIsite

proposed a novel embedding encoding to represent peptide

segments based on CNN. Since most of the methods only

provided web servers, we evaluated them on the independent test

set, and the comparison results were presented in Table 3, in which

the Pre of Deep_KsuccSite was only slightly lower than the Pre of

DeepSuccinyIsite by 0.36%. Except for that, Deep_KsuccSite

outperformed all the other methods in terms of the evaluation

indices including Acc, Sen, Pre, F1, MCC, and AUC values.

TABLE 2 The hyperparameter settings of each 2D-CNN layer.

Layer no. Layer type Size Activation

0 INPUT 33*21 —

1 CONV 64*17*3 Relu

2 MaxPooling 2*2 -

3 CONV 128*3*3 Relu

4 MaxPooling 2*2 —

5 Dropout 0.5 —

6 Flatten — —

7 Fc1 768 Relu

Dropout 0.5

8 Fc2 256 Relu

Dropout 0.5

Output 2 Softmax

9 Optimizer Adam
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3.3 Ablation experiments

Deep_KsuccSite is a model obtained by voting on different

features or feature combinations corresponding to base

classifiers, so the voting strategy, feature combination method,

and base classifier are all factors that affect the performance of the

model, and we conduct 3 types of ablation experiments on

independent test data respectively.

3.3.1 Voting ablation experiment
The Deep_KsuccSite model was obtained by voting on the

three base classifiers. To demonstrate the effectiveness of voting,

we compared the model performance using different voting

strategies for the base classifiers separately on independent

test data, and the results were shown in Figure 6 and

Supplementary Table S3. As one can see in Figure 6, the

performance of the models obtained from different voting

strategies varied slightly on the independent test data. Among

them, the model voting on the three models achieved the best

performance in almost all evaluation metrics with 71.87%,

70.40%, 73.57%, 43.85%, and 78.03% for Acc, Pre, F1, MCC,

and AUC, respectively. It was noteworthy that CTDC-based

Model 1 had the best Re with a value of 82.10%.

3.3.2 Feature combination ablation experiment
Many studies improved the model performance by

combining multiple features, but we speculated that direct

information fusion might cause mutual interference,

weakening feature quality and affecting model performance.

To verify this speculation, we compared the performance of

different feature combinations on independent test data, and the

results were shown in Figure 7 and Supplementary Table S4.

As seen in Figure 7, there was no significant correlation

between the number of features and the performance. Among

these feature combinations, the combination of EGAAC,

APAAC and CTDC (dark blue bars in Figure 7) had the best

performance, while the performance of the combination of all

four features was not outstanding and lower than many other

feature combinations. Deep_KsuccSite effectively avoided this

problem by selecting the best model for each class of special and

FIGURE 4
The Acc and AUC values corresponding to different window sizes of Deep_KsuccSite on the training data set. (A) AUC corresponding towindow
size. (B) ACC corresponding to window size. For both of the two parameters, highest values were achieved when the window size reached to 33.

FIGURE 5
The comparision ROC curves of 5-,8-,10-fold cross-
validation of the Deep_KsuccSite on the training data set. Blue, red
and yellow curves indicated the ROC curves of 5-,8-,10-fold
cross-validation, which had AUCs of 0.8026, 0.8149, and
0.7973, respectively.
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then integrating the results of each model. For this reason, we

compared the above optimal feature combinations with

Deep_KsuccSite on independent test data, the results of which

were shown in Figure 8.

As shown in Figure 8, Deep_KsuccSite outperformed the best

combination found in Figure 7 on all evaluation metrics, especially

on the MCC index. This further confirmed that simply integrating

multiple features did not fully utilize the information of each feature.

Choosing the appropriate model for each feature to integrate could

improve the overall performance.

3.3.3 Model architecture ablation experiment
As mentioned above, Deep_KsuccSite used CNN as the base

classifier. To verify the effectiveness of CNN, we replaced it with

SVM and LSTM. Among them, SVM is a classical machine

learning model, which is good at dealing with small sample high-

dimensional data and successfully applied in many PTM

prediction studies (Ju et al., 2016; Chou, 2019), and LSTM is

a RNN model that is good at dealing with time-series data. For

the four features studied in this paper, the embedding feature

needed to be vectorized into 1D features before use. The SVM

classifier used kernel function, the parameters c and g were

determined by five-fold cross-validation and grid search.

LSTM used SoftMax as the activation function, and the

remaining parameters were obtained by training. For a fair

comparison, we used the same training and independent test

data for these three models. Their comparison on the

independent test data was shown in Table 4.

As shown in Table 4, Deep_Ksucc outperformed the model

based on SVM and LSTM in all evaluation metrics, with SVM

coming second, and LSTM probably being the least suitable for

those features. The main reason may be that large amount of

information was lost when the embedding features were directly

transformed into 1D data, and also many features did not have

obvious temporal characteristics, so neither SVM nor LSTM

could obtain better results.

TABLE 3 Comparison of Deep_KsuccSite with existing predictors of GPSuc, SuccinSite, and DeepSuccinyIsite on the independent test data.

Method Acc(%) Sen(%) Pre(%) F1 (%) MCC AUC(%)

GPSuc (Hasan and Kurata, 2018) 51.58 35.05 52.84 42.14 4.54 —

SuccinSite (Hasan et al., 2016) 56.38 29.31 64.42 40.29 16.05 —

DeepSuccinyIsite (Thapa et al., 2020) 69.42 67.84 70.76 69.27 38.90 69.44

pSuc-FFSEA (Jia et al., 2022) 58.93 37.93 68.75 48.89 21.47 59.71

Deep_KsuccSite 71.87 77.03 70.40 73.57 43.85 78.03

Note: Bold number means the best value achieved for a specific parameter when compared all the methods in the table.

FIGURE 6
Line charts of voting results for different base models on independent test data. Model 1 denoted base classifier based on CTDC, Model
2 denoted base classifier based on the combination of APAAC and EGAAC, and Model 3 denotee based classifier based on embedding encoding. (A)
Voting results for different combinations of models. (B) ROC curves and AUC values for different combinations of models.
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FIGURE 7
The comparison of Acc and AUCof different feature combinations based onCNN. Feature a denoted APAAC, feature b denotes CTDC, feature c
denoted EGAAC, and feature d denoted embedding encoding. According to the results, the combination of a, b and c (EGAAC, APAAC and CTDC)
showed the best performance.

FIGURE 8
The comparison of best feature combinations (EGAAC, APAAC andCTDC) andDeep_KsuccSitemethod on independent test data. According to
the results, the Deep_KsuccSite method showed consistent better performance than the best feature combinations.
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3.4 Biological insights into ksucc
prediction

To further observe the differences between Ksucc and non-

Ksucc peptides, two Sample logos with t-test (p-value < 0.05) was

used to analyze the frequency of sequence occurrence at each

position (Crooks et al., 2004). As seen in Figure 9, there was a

significant difference in sequence preferences between Ksucc and

non-Ksucc peptides. Aspartic acid (D), phenylalanine (F), and

alanine (A) were significantly more abundant in the Ksucc

peptides. Non-Ksucc amino acids were abundant in arginine

(R), leucine (L), and glutamate (E). Meanwhile, lysine (K) was

enriched in different positions of Ksucc and non-Ksucc peptides.

Therefore, we believed that the differences between these two

peptides could be used as a way to distinguish them.

4 Conclusion

In this study, Deep_KsuccSite, a novel and effective predictor for

predicting Ksucc sites, was developed. Considering the EGAAC,

APAAC, CTDC, and Embedding Encoding of proteins,

Deep_KsuccSite constructed two base classifiers based on CTDC,

the combination of EAGGC and APAAC using 1D-CNN, and a

base classifier based on embedding encoding using 2D-CNN, and

then voted on those three base classifiers. K-fold cross-validation

and independent tests showed that Deep_KsuccSite could be used as

a powerful tool to assist in identifying Ksucc sites. In addition, the

ablation experiment results based on voting, feature combination,

and model architecture showed that Deep_KsuccSite could leverage

information from different features to build an effective classifier.

The code involved in this study was freely available at https://github.

com/flyinsky6/Deep_KsuccSite. In the future, we will carry out

further research in three aspects. First of all, the introduction of

more protein feature representations to the PTM prediction field,

such as protein structure information, evolution information, more

physical and chemical properties, etc., will be conducted. For some

protein structures that have not been identified yet, we can use the

prediction results of SPIDER3 (Heffernan et al., 2017), PSRSM

(Zhao et al., 2020), or Nnessy (Krieger and Kececioglu, 2020).

Secondly, advanced techniques from natural language processing

(NLP) can be introduced to extract protein features, such as

Transformer and Bert (Vaswani;, 2017). Many feature embedding

methods from the NLP domain have been proved to have good

applications in the bioinformatics domain, especially in feature

extraction (Ofer et al., 2021). Finally, more effective and

interpretable models will be explored in both traditional machine

learning and deep learning fields in order to facilitate the

understanding of the biological meanings of the prediction results.
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