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Abstract

examined in vivo and ex vivo.

Background: Depression is one of the most common mental disorders characterized mainly by low mood and loss
of interest or pleasure. About a third of patients with depression do not respond to classic antidepressant treatments.
Recent evidence suggests that Mrp8/14 (myeloid-related protein 8/14) plays a crucial role in cognitive dysfunction and
neuroinflammatory diseases, yet its role in mood regulation remains largely uninvestigated. In the present work, we
explored the potential role of Mrp8/14 in the progression of depression.

Methods: After 4 weeks of chronic unpredictable mild stress (CUMS), depressive-like symptoms and Mrp8/14 were
determined. To verify the effects of Mrp8/14 on depressive-like behaviors, the inhibitor TAK-242 and recombinant Mrp8/
14 were used. Furthermore, the molecular mechanisms in Mrp8/14-induced behavioral and biological changes were

Results: Four-week CUMS contributed to the development of depressive symptoms. Mrp8 and Mrp14 were upregulated
in the hippocampus and serum after exposure to CUMS. Pharmacological inhibition of Mrp14 attenuated CUMS-induced
TLR4/NF-kB signaling activation and depressive-like behaviors. Furthermore, central administration of recombinant Mrp8,
Mrp14, and Mrp8/14 resulted in neuroinflammation and depressive-like behaviors. Mrp8/14-provoked proinflammatory
effects and depressive-like behaviors were improved by pretreatment with a TLR4 inhibitor. Moreover, pharmacological
inhibition of TLR4 reduced the release of nitric oxide and reactive oxygen species in Mrp8/14-activated BV2 microglia.

Conclusions: These data suggest that the hippocampal Mrp8/14-TLR4-mediated neuroinflammation contributes to the
development of depressive-like behaviors. Targeting the Mrp8/14 may be a novel promising antidepressant approach.

Keywords: Depression, Myeloid-related protein 8/14, TLR4, Stress, Neuroinflammation, Hippocampus

Background

Depression is a common mental disorder with high rates
of recurrence [1]. Unfortunately, current main antide-
pressants, such as selective serotonin reuptake inhibitors
(SSRIs) and tricyclic anti-depressants (TCAs), display
unsatisfactory response rates and various side effects
[2]. Although the etiology and pathophysiology of
depression remain unknown, recent evidence suggests
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that inflammation can affect the brain and play a vital
role in the psychopathology of depression [3, 4]. The
previous reports from our and other laboratories have
identified the underlying role of several endogenous
alarmins or damage-associated molecular patterns
(DAMPs), such as high mobility group box 1
(HMGB1) [5-7] and adenosine triphosphate (ATP)
[8], in neuroinflammation and depressive symptoms.
Myeloid-related protein-8 (Mrp8, also termed S100A8)
and myeloid-related protein-14 (Mrpl4, also termed
S100A9) are two important members of the Ca** bind-
ing S100 protein family. Mrp8 and Mrpl4 have been
identified as crucial endogenous DAMPs [9, 10]. How-
ever, compared with other DAMPs, less research has
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been conducted focusing on the effects of Mrp8 and
Mrp14. Under physiological conditions, these two proteins
exist and function mainly as a heterodimeric complex
Mrp8/14 (also termed S100A8/S100A9 or calprotectin)
[11, 12]. Mrp8/14 can be passively or actively released into
the extracellular environment, and interacts with various
membrane receptors, including Toll-like receptor 4
(TLR4), receptor for advanced glycation end products
(RAGE) and CD36 [13, 14]. Then, the alarmin Mrp8/14
affects downstream signaling through NF-kB and plays a
critical role in the inflammatory response. ABR-215757,
the inhibitor of Mrpl4, is currently assessed as a novel
treatment for systemic lupus erythematosus (SLE) and
systemic sclerosis [15]. Other evidence shows that Mrp8/
14 plays vital roles in various inflammatory diseases, such
as rheumatoid arthritis [16], psoriasis [14], shock [9],
obesity [17], and cancer [18, 19].

In the central nervous systems (CNS), Mrp8 and Mrpl4
have been found to be expressed in the microglia [20] and
neurons [21, 22]. Mrp8 stimulation results in the induction
of IL-1P and activation of NF-«B in astrocytes ex vivo [23].
Mrp8 and Mrpl4 play key roles in several chronic or acute
neurological disorders, including Alzheimer’s disease [20],
epilepsy [23], meningitis [24], and CNS injury [25]. Re-
cently, Stankiewicz and colleagues found that hippocampal
Mrp8 and Mrpl4 mRNA increased after chronic social
stress [26], which could induce depressive-like behaviors in
rodents. However, the specific role of Mrp8 and Mrpl4 in
neuroinflammation and depression is still undetected and
far from clear.

In the present study, we investigated the levels of Mrp8
and Mrpl4 expression in the hippocampus and serum after
exposure to chronic unpredictable mild stress (CUMS).
Further, the effects of Mrpl4 inhibitor ABR-215757 on
CUMS-induced neuroinflammation and depressive-like be-
haviors were assessed. Moreover, the recombinant proteins
were injected into the cerebrospinal fluid (CSF) to deter-
mine the changes of depressive-like behaviors. Finally, the
molecular mechanisms in Mrp8/14 heterodimer-induced
behavioral and biological changes were examined in vivo
and ex vivo.

Methods

Animals

Male BALB/c mice (6—8 weeks of age, 2023 g of weight)
were purchased from the Animal Center (Second Military
Medical University, Shanghai, China). All animals were
given 1-2 weeks to acclimate to colony conditions before
the experiments began. The mice were maintained under
standard conditions (humidity 52 + 2%, temperature 22 +
1 °C) with a 12-h light/dark cycle and ad libitum access to
food and water unless otherwise stated. After acclimation,
mice were randomly assigned to the control and experi-
ment groups using random numbers generated in
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Microsoft Excel (Additional file 1: Figure S1). All experi-
mental protocols were approved by the Second Military
Medical University Animal Care Committee. All experi-
ments were conducted in accordance with related guide-
lines and laws.

Drugs and reagents

ABR-215757 (quinoline-3-carboxamide) was provided by
Active Biotech AB (Lund, Sweden). Recombinant mouse
Mrp8 (E.coli derived, purity >95%, cat. no. ab108120) and
Mrpl4 (E.coli derived, purity >90%, cat. no. ab109951)
were purchased from Abcam (Abcam, Cambridge, UK). Re-
combinant mouse Mrp8/14 heterodimer (E.coli derived,
purity >95%, cat. no. 8916-S8) was obtained from R & D
SYSTEMS (R & D SYSTEMS, Minneapolis, USA). The
endotoxin level is less than 0.10 EU per 1 pg in the recom-
binant proteins. TAK-242 (C15H17CIENOA4S, cat. no.
HY-11109) was obtained from MedChem Express (Med-
Chem Express, New Jersey, USA). Anti-Mrp8 goat poly-
clonal antibody (cat. no. sc-8113), anti-Mrpl4 goat
polyclonal antibody (cat. no. sc-8115), anti-TLR4 mouse
monoclonal antibody (cat. no. sc-293072), and anti-RAGE
mouse monoclonal antibody (cat. no. sc-365154) were
purchased from Santa Cruz. Anti-MyD88 rabbit
monoclonal antibody (cat. no. 4283) and Anti- NF-kB p65
rabbit monoclonal antibody (cat. no. 8242) were obtained
from Cell Signaling Technology (Danvers, MA, USA).
Anti-Phospho-NF-kB p65 rabbit polyclonal antibody (cat.
no. AB11011) was purchased from AbSci (Nanjing, China).
Anti-iINOS rabbit monoclonal antibody (cat. no. ab205529)
was purchased from Abcam. Anti-ACTB rabbit polyclonal
antibody (cat. no. D110001-0100) was obtained from BBI
Life Science. IRDye 800CW goat anti-mouse antibody (cat.
no. 926-68070), goat anti-rabbit antibody (cat. no.
926-32211), and IRDye 680RD donkey anti-goat antibody
(cat. no. 925-68074) were provided by LI-COR Biosciences.

CUMS

As a classic animal model of depressive symptoms,
CUMS model has been widely used for more than
20 years [27]. The CUMS protocol was performed as
described previously [28]. Briefly, on a daily basis, mice
were exposed to specific unpredictable stressors, includ-
ing restraint for 2 h, cage shaking for 30 min, 45° cage tilt
for 12 h, 4 °C swimming for 5 min, 45 °C oven for
10 min, damp bedding for 12 h, and food and water
deprivation for 24 h. For the intervention experiment,
ABR-215757 or normal saline was injected (IP) daily for
the whole CUMS period. Generally, animals were housed
in group cages (4—5 mice/cage) except during some of
the manipulations (e.g., restraint stress) and tests (e.g.,
weighing and the sucrose preference test). The CUMS
procedure generally lasts for 4 weeks. Body weight was
assessed every week. Sucrose preference test and tail
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suspension test were adopted to identify the depressive-like
behaviors.

Behavioral manipulations and tests

Sucrose preference test (SPT) was performed as
described in a previous study [29]. To determine sucrose
preference, mice were provided with two bottles
(randomized placement), filled with either tap water or
1% sucrose solution (w/v). Mice were acclimated to 1%
sucrose for 48 h. The bottles were weighed both before
and after the experiment, and consumption was quantified
following overnight bottle choice. The sucrose preference
was defined as the ratio of the weight of sucrose solution
consumption to the total water intake, i.e., sucrose prefer-
ence = sucrose consumption / (sucrose consumption +
water consumption) x 100%. The test was performed in
dark phase (6-10 p.m.).

Tail suspension test (TST) was carried out according to
our previous report [30]. The mouse was suspended by the
tail using adhesive tape for 1 min for acclimation and an-
other 5 min for detection. The tail climbing behaviors were
prevented by passing mouse tails through a small plastic cy-
linder prior to suspension. The immobility time during the
latter 5-min-long suspension was recorded and analyzed by
Tail Suspension SOF-821 (Med Associates, Inc., St. Albans,
VT, USA). The experiment was conducted in the dark
without interruption. To eliminate olfactory interference,
the hooks and chambers were cleaned with 75% ethanol be-
tween two separated test sessions. Experimental grouping
was blinded to the tester assessing immobility.

Sample collection

After weighing and behavioral tests, mice under general
anesthesia were fixed on a heated pad. Blood was col-
lected from left ventricle. Then, mice were perfused
transcardially with ice-cold saline for about 3 min.
Hippocampi were isolated on ice, temporarily frozen in
liquid nitrogen, and stored at — 80 °C. Blood samples
were allowed to stand for 30 min at room temperature
and centrifuged at 4000 rpm for 15 min. The super-
natant serum was collected and stored at — 80 °C. Cell
samples were prepared as stated below.

Enzyme-linked immunosorbent assay

Mouse serum Mrp8 and Mrpl4 were determined using
enzyme-linked immunosorbent assay kits (ELISAs, cat.
no. CSB-EL020641MO and CSB-EL020642MO) from
CUSABIO and CusAb (Wuhan, China). All the assays
were performed according to the manufacturer’s instruc-
tions. The detection range was 0.625-40 ng/mL for
Mrp8, 0.45-30 ng/mL for Mrpl4. The ELISA Kkits also
have high precision, including high intra-assay precision
(CV < 8%) and inter-assay precision (CV < 10%).
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Western blot

The frozen mouse hippocampi and BV2 microglia were
homogenized in ice-cold RIPA buffer (Beyotime Institute
of Biotechnology, Nantong, Jiangsu, China) containing
1 mM protease inhibitor PMSF (Beyotime Institute of Bio-
technology) and 10% PhosSTOP phosphatase inhibitor
(Roche, Indianapolis, IN, USA). Protein concentration in
the lysate was determined with the BCA assay (Beyotime
Institute of Biotechnology). Then, samples were mixed
with 5x loading buffer and heated at 100 °C for 10 min.
Protein samples were separated by 10-15% sodium dode-
cyl sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis
and transferred to polyvinylidene difluoride membranes
(Millipore, Billerica, USA). After two-hour blocking with
5% nonfat milk at room temperature, membranes were in-
cubated with primary antibodies overnight at 4 °C. After
washing, membranes were further incubated with fluores-
cent second antibodies for 1 h at room temperature.
Bands were visualized using Odyssey Infrared Imaging
System (LI-COR, Inc., Lincoln, NE, USA) and quantified
with National Institutes of Health (NIH) Image ] software.

Stereotaxic surgery

Intracerebroventricular (ICV) cannulation was operated for
ICV injection as described previously [6]. Briefly, after
anesthesia, the dorsal aspect of the skull was shaved and
swabbed with 75% ethanol. The mice were subsequently
fixed on a stereotaxic apparatus (RWD Life Science, Shen-
zhen, China). A guide cannula was vertically implanted in
the right ventricle according to the following stereotaxic
coordinates: anteroposterior — 0.6 mm; mediolateral -
1.1 mm; and dorsal ventricular — 2 mm. Then, a matched
syringe needle was placed into the cannula, and the syringe
was removed at 3 min after injection. To verify entry into
the right ventricle before our main experiments, 5 uL of
trypan blue dye was injected into the cannula, and the
mouse brain was cut into slices for observing. Before the
initiation of following experiments, animals were allowed
2 weeks to recover after operations.

Drug administration for animals

Mrpl4 inhibitor ABR-215757 was dissolved and pre-
pared as recommended by Active Biotech. Other drugs
were dissolved or diluted using sterile endotoxin-free
isotonic saline. ABR-215757 (10 mg/kg body weight
[31]) was administrated through intraperitoneal (IP) in-
jection once a day during CUMS period. Recombinant
mouse Mrp8 (3 pg, 6 pL [32]), Mrpl4 (3 pg, 6 pL), and
Mrp8/14 heterodimer (3 pg, 6 pL) were injected via ICV
administration. Recombinant proteins were diluted using
normal saline for ICV injection. The control mice were
treated with 6 pL normal saline (Additional file 1: Figure
S1). This dose was selected based on a previous report
[32], which showed recombinant Mrp8 promoted TLR4
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activation in PBMCs and microglia. Behavioral tests
were conducted 24 h after the recombinant protein
treatment. TLR4 inhibitor TAK-242 was injected (IP,
3 mg/kg body weight [6]) 30 min prior to rMrp8/14 ad-
ministration (Additional file 1: Figure S1). These inhibi-
tors (ABR-215757 and TAK-242) can permeate the
blood—brain barrier [33].

Real-time RT-PCR

The levels of gene expression of inflammatory cytokines
were determined by real-time RT-PCR. Brain tissue was
stored in liquid nitrogen, and BV2 microglia were washed
twice with ice cold PBS and then processed for RNA ex-
traction. Total RNA was extracted from the hippocampus
or BV2 microglia utilizing a standard method of TRIzol
reagent (Invitrogen, Carlsbad, CA, USA). After quantifica-
tion, 2 pg of total RNA was used for cDNA synthesis using
PrimeScript® RT Master Mix (TaKaRa, Shiga, Japan).
Primer sequences were tested for sequence specificity using
Primer-BLAST in NCBIL. As tabulated in Additional file 2:
Table S1, the primers used in this study were obtained
commercially from Sangon Biotechnology (Shanghai,
China). The RT-PCR amplification was performed using
2 uL of ¢cDNA and MaximaTM SYBR Green/ROX qPCR
Master Mix (Fermentas, Waltham, MA, USA) on an
Applied Biosystems 7500 (Life Technologies Corporation.,
Carlsbad, CA, USA). Melting curve analysis was utilized to
verify primer specificity, and a comparative threshold cycle
method was adopted to determine the fold changes of each
gene expression relative to B-actin.

Cell culture and treatment

A murine microglial cell line BV2 was obtained from
American Type Culture Collection (ATCC, Rockville,
MD, USA). Cells were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM; Life Technologies/Gibco,
Grand Island, NY, USA) supplemented with 10% fetal
bovine serum (FBS, Life Technologies/Gibco) at 37 °C in
an incubator with 95% air and 5% CO,. For nitric oxide
(NO) assay and Western Blot, cells were seeded onto
6-well culture plates. For real-time RT-PCR and reactive
oxygen species (ROS) assay, cells were seeded onto
12-well culture plates. After treatment with TAK-242
(1 uM) for 30 min, cells were administrated with rMrp8/
14 (0.5 pg/mL) for 24 h. Then, the supernatants were
collected for NO assay, and cells were used for Western
Blot, real-time RT-PCR, and ROS assay.

Determinations of NO and ROS

NO of cell supernatant was detected using Griess Reagent
(Beyotime Institute of Biotechnology, Haimen, China) ac-
cording to the manufacturer’s instructions. Samples and
standards were added into a 96-well plate, and then Griess
Reagent I and II were added successively. The absorbance
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was determined at a wavelength of 540 nm using a micro-
plate reader. ROS was determined by a Reactive Oxygen
Species Assay Kit (Beyotime Institute of Biotechnology).
In brief, after washing, cells were incubated with fluores-
cent probe DCFH-DA (10 pM, Beyotime Institute of
Biotechnology) for 20 min at 37 °C in an incubator. Then,
the extracellular DCFH-DA was cleared, and images were
obtained using a fluorescence microscope (Carl Zeiss) at
the 488 nm excitation wavelength and 525 nm emission
wavelength.

Statistical analysis

All data were presented as mean + standard error of the
mean (SEM). Normality and homogeneity of variance were
assessed before comparisons using Kolmogorov—Smirnov
test and Levene’s test. Statistical analyses were carried out
with Student’s ¢ test when comparing between two vari-
ables, and one-way or two-way ANOVA followed by LSD
post hoc tests when comparing among multiple variables.
Omnibus F values with degrees of freedom were reported
for each ANOVA. Differences were considered statistically
significant only when p <0.05. All the analyses were per-
formed with IBM SPSS 21.0 (IBM Corp., Armonk, N.Y.).

Results

CUMS-induced depressive-like behaviors associated with
the increases of Mrp8 and Mrp14 in the hippocampus
and serum

Behavioral tests and body weight were measured after
CUMS period (Additional file 1: Figure Sla). Coinciding
with previous studies [6, 27], 4-week CUMS could induce
the depressive-like behaviors in rodents. Specifically, the
body weight was significantly attenuated in CUMS-exposed
mice compared with control mice (Fig. 1a; £y = 3.63, p <
0.01, 29.18+£0.53 vs. 25.78+0.41). CUMS significantly
decreased the sucrose preference, indicating the impaired
sensitivity to reward and anhedonia, which is a core symp-
tom of major depression (Fig. 1b; fg =251, p=0.02,
81.65+5.57 vs. 57.87+7.66). The stressed mice also
showed longer immobility duration in the TST (Fig. 1lc
tas) =222, p=0.04, 44.87 £3.05 vs. 57.98 +5.05). On the
other hand, the results of ELISA showed that relative to the
control group, serum Mrp8 (Fig. 1d; fp0) =2.15, p=0.04,
4.93 £0.35 vs. 6.04 +0.37) and Mrpl4 (Fig. 1e; £0) = 2.96,
p<0.01, 449 £0.08 vs. 4.77 £ 0.06) were slightly upregu-
lated after CUMS intervention. Western blot revealed that
hippocampal Mrp8 (Fig. 1f and g; #4) = 3.00, p = 0.01, 0.91
+0.26 vs. 2.14 +0.31) and Mrp14 (Fig. 1f and h; ¢4y =541,
<001, 1.10+0.03 vs. 1.46 +0.08) were also increased.
Collectively, these data demonstrate that CUMS elicited
depressive-like behaviors and increased Mrp8 and Mrpl4
protein in both serum and hippocampus.
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Fig. 1 CUMS induced depressive-like phenotypes and upregulated the expression of Mrp8 and Mrp14 in the hippocampus and serum. a After 4-
week chronic unpredictable mild stress (CUMS), mice had a lower body weight than control mice (n = 14-15 mice/group). b, ¢ CUMS resulted in
depressive-like behavior, including decreased sucrose preference (n =10 mice/group) and increased immobility time in tail suspension test (TST)
(n=10 mice/group). d, e Protein levels of Mrp8 (d) and Mrp14 (e) were slightly but statistically significantly increased in the serum of CUMS-
exposed mice (n=10-11 mice/group). f Representative images of western blot. Proteins were extracted from the hippocampus. g, h The
quantitative analyses revealed that both Mrp8 (n =3 mice/group) and Mrp14 (n = 3 mice/group) were increased in the hippocampus of stress
mice. *p < 0.05, **p < 0.01 between two groups

CUMS activated TLR4 signaling pathway but did not
affect RAGE protein expression

TLR4 signaling pathway has been shown to have a pivotal
role in stress-induced neuroinflammation [34] and major
depressive disorder [35]. To validate whether TLR4 signal-
ing pathway is activated in the hippocampus of stressed
mice, we detected the protein level of TLR4, MyD88, and
the NF-kB p65 phosphorylation. Stress exposure increased
TLR4 (Fig. 2a and d; t4)=3.18, p=0.03, 1.00 +0.04 vs.
1.22 +£0.06) but not MyD88 (Fig. 2a and e; ¢4y =053, p=
0.62, 1.00 £ 0.11 vs. 1.06 + 0.04) at the protein level. CUMS
also activated the phosphorylation of NF-kB p65 (Fig. 2b
and f; £y =3.74, p=0.02, 1.00 £ 0.14 vs. 1.66 + 0.11). Con-
versely, RAGE expression remained unaffected (Fig. 2c and
g tay=0.92, p=041, 1.00 £ 0.06 vs. 1.06 + 0.03). Taken to-
gether, CUMS activated TLR4/NF-kB signaling pathway
but did not affect the expression of RAGE.

ABR-215757 improved depressive-like behaviors and
inhibited TLR4/NF-kB signaling activation induced by
CUMS

To further investigate the functional role of Mrpl4 in
the development of depressive symptoms, the inhibitor

ABR-215757 was injected daily during the CUMS period
(Additional file 1: Figure S1b). As shown in Fig. 3a, the
body weight of mice in CUMS group was significantly
lower than control or vehicle mice (F(19) = 4.54, p = 0.01;
post hoc: vehicle vs. CUMS, p=0.03, 2844 +1.29 vs.
26.84 + 1.78), while CUMS could not significantly decrease
body weight of ABR-215757-treated mice (post hoc:
ABR-215757 vs. CUMS + ABR-215757, p =0.06, 28.44 +
1.29 vs. 27.16 + 1.08). However, ABR-215757 did not sig-
nificantly rescue body weight of stressed mice (post hoc:
CUMS vs. CUMS + ABR-215757, p = 0.66, 26.84 + 1.78 vs.
27.16 + 1.08). Besides, ABR-215757 increased the sucrose
preference (Fig. 3b; F(; 36) = 5.67, p = 0.02; post hoc: CUMS
vs. CUMS + ABR-215757, p <0.05, 57.28 £4.79 vs. 76.31
+4.26) and decreased the immobility duration in TST
(Fig. 3¢; F(1,26) = 6.91, p < 0.01; post hoc: CUMS vs. CUMS
+ ABR-215757, p<0.001, 6221 +6.70 vs. 32.12+5.15).
We also found that ABR-215757 alleviated TLR4 expres-
sion (Fig. 3d and g; F(1 12 = 7.85, p < 0.01; post hoc: CUMS
vs. CUMS + ABR-215757, p=0.02, 1.36 £ 0.05 vs. 1.14 +
0.04) and p65 phosphorylation (Fig. 3e and h; F(; 12) = 9.68,
p <0.01; post hoc: CUMS vs. CUMS + ABR-215757, p =
0.03, 1.33+0.06 vs. 1.13+£0.07) after CUMS exposure.
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The RAGE expression did not change significantly among
these groups (Fig. 3f and i; F,12)=0.72, p=0.56, 091 +
0.03 vs. 1.07 £0.09). Thus, ABR-215757 could alleviate
CUMS-induced depressive-like behaviors and TLR4/
NE-«B signaling activation.

Central injection of Mrp8, Mrp14, and Mrp8/14 induced
depressive-like behaviors, proinflammatory cytokines
production, and TLR4/NF-kB signaling activation

To determine whether Mrp8, Mrp14, and Mrp8/14 affected
the development of depressive-like behaviors, recombinant
Mrp8, Mrpl4, Mrp8/14, and vehicle reagent were injected
(ICV) to mice (Additional file 1: Figure S1c). Mice adminis-
trated with Mrp14 and Mrp8/14 presented lower sucrose
preference (Fig. 4a; F(336) = 3.44, p = 0.03; post hoc: vehicle
vs. Mrp8, Mrp14, and Mrp8/14, all p < 0.05, 83.17 + 7.02 vs.
59.90 + 6.83, 55.03 +7.08, 53.09 £ 8.82). All of the recom-
binant Mrp8, Mrp14, and Mrp8/14 treatment could result
in a longer immobility duration (Fig. 4b; F315)=3.16, p =
0.05; post hoc: vehicle vs. Mrp8, p=0.03; vehicle vs.
Mrpl4, p = 0.02; vehicle vs. Mrp8/14, p = 0.02, 45.02 + 3.11
vs. 6540 +6.08, 6591 +545, 68.61+7.92). Besides, we
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found that the mRNA levels of inflammatory cytokines
(TNF-«, IL-1pB, IL-6) were elevated in the hippocampus
after being challenged by any of these recombinant proteins
(Fig 4c; F3,14) = 20.54, p <0.001 for TNF-a, 1.00 +0.10 vs.
6.17 £ 047, 2.70 + 0.31, 3.76 + 0.71; F314) = 24.70, p < 0.001
for IL-1f, 1.00 £ 0.26 vs. 13.60 +0.97, 4.54 + 1.14, 4.67 £
1.93; F314y=7.59, p<0.01 for IL-6, 1.00 £ 0.22 vs. 1.13 +
0.08, 1.72 + 0.14, 2.09 £ 0.23). Microglia activation has been
suggested to be mainly responsible for depression [36, 37].
The results of RT-PCR indicated that recombinant proteins
could upregulate IBA-1 gene expression (Fig. 4c; F314) =
7.79, p <0.01; post hoc: vehicle vs. Mrp8, p = 0.03; vehicle
vs. Mrp14, p < 0.01; vehicle vs. Mrp8/14, p <0.001, 1.00 +
0.25 vs. 2.76 +0.31, 3.30 £ 0.57, 4.85+0.79). After these
recombinant proteins treatment, the hippocampal TLR4
level (Fig. 4d and g; F5,12) = 9.13, p < 0.01; post hoc: vehicle
vs. Mrp8, p =0.02; vehicle vs. Mrpl4, p < 0.01; vehicle vs.
Mrp8/14, p <0.001, 1.00 £ 0.04 vs. 1.23 + 0.05, 1.34 + 0.03,
1.41 +0.09) and p65 phosphorylation (Fig. 4e and h; F(3 1
=10.29, p <0.01; post hoc: vehicle vs. Mrp8, p =0.03; ve-
hicle vs. Mrpl4, p <0.01; vehicle vs. Mrp8/14, p <0.001,
1.00+0.03 vs. 1.60+0.13, 1.90+0.22, 2.34+0.24) were
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elevated. No significant differences were found in RAGE
expression among the four groups (Fig. 4f and i; F312) =
151, p=0.26, p<0.001, 1.00 £ 0.09 vs. 1.12+0.12, 1.25+
0.07, 1.01+0.10). Collectively, central administration of
Mrp8, Mrp14, and Mrp8/14 induced depressive-like behav-
iors, enhanced TLR4/NF-kB signaling pathway, and pro-
moted the generation of proinflammatory cytokines.

TAK-242 attenuated Mrp8/14-induced depressive-like
behaviors, p65 phosphorylation, and proinflammatory
cytokines production in vivo

Since Mrp8/14 heterodimer is the most abundant form
[11, 12], we conducted further studies in vivo and ex vivo
using Mrp8/14 instead of Mrp8 and Mrpl4. To elucidate
whether TLR4 was a mediator in Mrp8/14-evoked
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depressive-like behaviors, mice were pretreated with TLR4
inhibitor TAK-242 before the ICV injection of recombin-
ant Mrp8/14 (Additional file 1: Figure S1d). As expected,
compared with the recombinant Mrp8/14-group mice, the
recombinant Mrp8/14 + TAK-242-group mice had signifi-
cantly higher sucrose preference (Fig. 5a; F(223)=4.99, p =
0.01; post hoc: Mrp8/14 vs. Mrp8/14 + TAK-242, p < 0.01,
53.30 £8.19 vs. 73.40 + 6.48) and shorter immobility time
in the tail suspension test (Fig. 5b; Fo3)=5.24, p =0.01;
post hoc: Mrp8/14 vs. Mrp8/14 + TAK-242, p < 0.01, 94.91
+8.56 vs. 66.88 +3.69). The NF-kB p65 phosphorylation
evoked by recombinant Mrp8/14 was inhibited by
TAK-242 treatment (Fig. 5¢ and d; Fp9) = 18.21, p < 0.001;
post hoc: Mrp8/14 vs. Mrp8/14 + TAK-242, p < 0.001, 1.45
+0.09 vs. 0.95 + 0.06). We further detected the changes of
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the expression of proinflammatory cytokines. The results
showed that relative to the recombinant Mrp8/14 group,
the mRNA levels of proinflammatory cytokines in the
hippocampus of recombinant Mrp8/14 + TAK-242 were
reduced significantly (Fig. 5e; post hoc: Mrp8/14 vs.
Mrp8/14 + TAK-242, all p<0.05; 10.16 +2.06 vs. 577 +
1.14 for TNF-a, 10.16 + 1.15 vs. 4.83 + 1.30 for IL-1f, 1.65
+0.24 vs. 1.08+0.13 for IL-6). Moreover, Mrp8/14-in-
duced hippocampal IBA-1 overexpression was attenuated
by TAK-242, which was shown by the RT-PCR assay of
IBA-1 (Fig. 5€; F(2,20) = 43.71, p < 0.001; post hoc: Mrp8/14
vs. Mrp8/14 + TAK-242, p<0.01, 342+0.27 vs. 240+
0.19). Taken together, pretreatment of TAK-242 could
inhibit the Mrp8/14-induced depressive-like behaviors
and neuroinflammation.

TAK-242 attenuated Mrp8/14-induced microglia activation
and inflammatory cytokines production ex vivo

To further verify the effects of TAK-242 on recombinant
Mrp8/14-induced microglia activation, we performed ex-
periments using BV2 microglia. Two of the most important
molecules released by activated microglia are the bioactive
free radical NO [38] and ROS [39]. The increase of iNOS
expression in both protein level and mRNA level was
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attenuated by pretreatment of TAK-242 in BV2 cells
(Fig. 6a; F(1,12) =26.66, p <0.001; post hoc: Mrp8/14 vs.
Mrp8/14 + TAK-242, p <0.001, 1.60 £0.12 vs. 0.78 + 0.04;
Fig. 6b; F(111)=14.19, p<0.001; post hoc: Mrp8/14 vs.
Mrp8/14 + TAK-242, p < 0.001, 1.34+ 0.13 vs. 0.63 + 0.04).
The production of NO was also significantly decreased
after TAK-242 administration (Fig. 6¢; Fy11)=17.81, p<
0.01; post hoc: Mrp8/14 vs. Mrp8/14 + TAK-242, p = 0.03,
5.17 +0.36 vs. 4.00 * 0.30). Moreover, our data showed that
TAK-242 reduced the generation of ROS induced by re-
combinant Mrp8/14 (Fig. 6d). Thus, Mrp8/14-induced
microglia activation was mediated by TLR4.

Discussion

Clinical and animal studies suggest that neuroinflamma-
tion is a key component of depressive symptoms [3, 4, 40,
41]. As DAMPs, Mrp8 and its binding partner Mrp14 are
upregulated after chronic stress exposure [26] and impact
numerous inflammatory diseases [42]. Our findings
showed that Mrp8 and Mrpl4 increased with
depressive-like behaviors in CUMS-treated mice. Pharma-
cological inhibition of Mrp14 attenuated CUMS-induced
TLR4/NF-«B signaling activation and depressive-like be-
haviors. Central injection of these recombinant proteins
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could evoke depressive-like behaviors, TLR4/NF-«B sig-
naling activation as well as microglia activation. Effects of
recombinant Mrp8/14 were attenuated by TLR4 inhibitor
TAK-242. Therefore, these findings suggest that the dys-
function of Mrp8/14-TLR4 signaling in the hippocampus
can result in neuroinflammation and depressive-like be-
haviors (Fig. 7).

We conducted the present study focusing on the
hippocampus, which is a key brain region in the devel-
opment of depression [43, 44]. As expected, four-week
CUMS provoked depressive-like behaviors, including de-
creased sucrose preference and increased immobility
time in TST. A forced swimming test is not adopted for
examining the behavioral change because immobility in
this test is adaptive and does not reflect depressive
symptoms [45]. We found both Mrp8 and Mrpl4 were
increased in the hippocampus and serum of stressed
mice. This finding matches up with the previous report
of chronic stress that upregulated Mrp8 and Mrpl4
mRNA [26]. According to previous studies [20, 22], ex-
cessive Mrp8 and Mrpl4 may be released from hippo-
campal neurons and microglia. Thus, extracellular
Mrp8/14 can further affect other adjacent astrocytes and
microglia. Indeed, extracellular Mrp8/14 can potentiate
astrocyte and microglia activation, and then, directly and
indirectly affect neurons [21, 23]. Although it is not en-
tirely clear whether intracellular homodimers of Mrp8
and Mrp14 exist, the heterodimeric complex of Mrp8/14
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is the most abundant form and seems to be indispens-
able [13]. Unfortunately, no commercial ELISA kit or
antibody is provided for specifically detecting Mrp8/14
heterodimer in rodents. We tried to make up for this
limitation by administrating recombinant Mrp8/14 het-
erodimer in the following experiments. Future studies
focusing on the formation mechanism of Mrp8/14 het-
erodimer and the functional difference between the
monomer and heterodimer are urgently needed.

To fulfill its proposed function as an endogenous
DAMP protein, extracellular Mrp8/14 can be recognized
by pattern recognition receptors (PRRs), such as TLR4
and RAGE [13]. As reported in a previous study [34],
TLR4/NF-kB signaling was activated in CUMS-exposed
mice. Besides, no significant differences were found in
RAGE receptor expression between control mice and
stressed mice. In contrast to our results, a previous study
demonstrated chronic mild stress (CMS) significantly
downregulated hippocampal RAGE protein [46]. The rea-
sons for the discrepancy are unclear, but the different spe-
cies and stress protocol may be two possible reasons. In
the present study, we adopted four-week unpredictable
CMS using BALB/c mice at 6-8 weeks of age, while the
other study performed three-week CMS using Sprague—
Dawley rats at 5-7 weeks of age. RAGE receptor may
change differently between mice and rats. Furthermore,
the effects of stress may be alleviated because the rats may
adapt to the stressor. This is why we choose unpredictable
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CMS protocol. Different stress intensity may result in dif-
ferent responses of RAGE receptor.

In Mrpl4~~ mice, Mrp8 is not expressed, but the tran-
scription of Mrp8 is not altered [13]. Thus, Mrp8 may be
influenced by Mrpl4 on the protein level. The FDA ap-
proved drug, ABR-215757, has been reported as an inhibi-
tor of Mrpl4. ABR-215757 contributes to the reduction of
inflammatory response by blocking the interaction with
TLR4 and RAGE [47]. Our results verified that expression
and activation of hippocampal TLR4 signaling were sup-
pressed by ABR-215757 compound, while ABR-215757 did
not affect the expression of RAGE. Downstream TLR4/
NF-kB signaling pathway was not determined in the
present study since plenty of evidence has indicated the
activation of TLR4/NF-kB signaling pathway in
stress-induced neuroinflammation [34, 48]. As a result of
TLR4 signaling blocking, the depressive-like behaviors were
successfully rescued by ABR-215757 treatment. These re-
sults suggest that CUMS-provoked depressive-like behav-
iors are mediated by hippocampal Mrp14 or Mrp8/14.

Furthermore, recombinant Mrp8, Mrp14, and Mrp8/14
heterodimer were administrated by ICV injection to de-
tect their effects on behaviors and the underlying mechan-
ism. The results showed that depressive-like behaviors
and TLR4/NF-«B signaling activation were observed in all
the three protein-administrated mice. However, we did
not find any effects of these recombinant proteins on
RAGE expression. These findings are in line with our pre-
vious results using a CUMS animal model. It should be
noted that the recombinant proteins were used at high
doses in this study. Central injection of these recombi-
nants at lower doses may not induce neuroinflammation
and depressive-like behaviors in mice.

Mrp8/14 can induce the release of IL-6, IL-8, IL-1f, and
TNEF-a in monocytes or bone marrow cells [9, 49]. As the
primary immune cells of the CNS, primed microglia act as
the major contributors to neuroinflammation [50].
Microglial alterations contribute to the development of
depressive-like behaviors [37], and minocycline (an inhibi-
tor of microglia activation) treatment ameliorates
depressive-like behaviors in rodents [51, 52]. Even, to some
extent, depression can be considered as a microglial disease
(microgliopathy) [36]. Therefore, we also tested microglial
alternation and the subsequent neuroinflammation. All of
the three recombinant proteins could induce the overex-
pression of IBA-1 and proinflammatory cytokines (TNF-q,
IL-1B, IL-6) in hippocampus associated with the
depressive-like behaviors. This is partly supported by an-
other report, which indicates that Mrp8 induces hippocam-
pal microglia activation and exerts proinflammatory effects
in a tibial fracture surgery mice model [32].

Next, we further verified whether the recombinant
proteins-induced depressive-like behaviors were mediated
by TLR4 signaling and microglia activation. Although all of
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Mrp8, Mrpl4, and Mrp8/14 seem to be effective, we
choose Mrp8/14 heterodimer for this issue. The main rea-
son is that the heterodimer is the most abundant form [11,
12]. Besides, Mrp8 or Mrpl4 may also have effects by bind-
ing the other partner and forming Mrp8/14 heterodimer.
The results demonstrated that TLR4 inhibitor TAK-242
could attenuate Mrp8/14-induced depressive-like behaviors
and the upregulation of proinflammatory cytokines. Thus,
Mrp8/14 may have effects via modulating TLR4 signaling
pathway. Here, our results did not include a group of
TAK-242 as our previous study has indicated that TAK-242
administration does not affect the behavioral consequences
compared to the control group [6]. To minimize the use of
animals, we did not assign the group of TAK-242 alone
administration. It should be noted that RAGE may also be
involved in the behavioral and biological changes induced
by Mrp8/14 despite its expression is unchanged. Recently,
Franklin and colleagues found that microglial RAGE
contributed to chronic stress-induced priming of
depressive-like behavior [53]. Another in vitro study indeed
has demonstrated that RAGE but not TLR4 associates with
Mrp8/14 in colon tumor cells [54]. This issue could be
addressed in future experiments by using RAGE knockout
animals in various models of depressive symptoms.

As two indicators of microglia activation, NO and ROS
have been suggested to contribute to the development of
depressive symptoms [55-58]. iNOS-mediated NO synthe-
sis and NOX1/NADPH oxidase-mediated ROS generation
play crucial roles in the pathophysiological processes of
depressive-like behaviors [55-57]. On the other hand,
microglia activation may depend on TLR4 signaling in di-
verse animal models [59, 60]. Our results showed the ROS-
and iNOS-mediated NO generations were markedly en-
hanced after Mrp8/14 treatment in BV2 microglia. The in-
hibition of TLR4 attenuated these effects of Mrp8/14.
These results suggest that Mrp8/14-induced microglia acti-
vation depends on TLR4 signaling. The generation of NO
and ROS derived from activated microglia may promote
the depressive symptoms. The inhibition of TLR4 may pro-
vide beneficial antidepressant effects via suppressing micro-
glia activation. Moreover, the products (NO, ROS, and
inflammatory cytokines) from activated microglia may
affect neurons and amplify neuroinflammation (Fig. 7).

Conclusions

In conclusion, we identify a vital molecule contributing to
the development of depressive symptoms and augment
neuroinflammation. Our results validate that Mrp8/14
takes a critical role in CUMS-provoked neuroinflamma-
tion and depressive-like behaviors. The Mrpl4 inhibitor
ABR-215757 effectively ameliorates depressive symptoms
and TLR4/NF-«B signaling activation. Central injection of
bioactive recombinant protein confirms the role of Mrp8/
14 in proinflammatory cytokines overexpression and the
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development of depressive-like behaviors. These Mrp8/
14-induced cellular, biochemical, and behavioral changes
depend on TLR4 signaling. Our results further reinforce
the neuroinflammation hypothesis of depression. These
findings also provide new sights into the underlying mo-
lecular mechanism of depression and raise a novel anti-
depressant approach by targeting the aberrant Mrp8/14
function.
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