
Citation: Zhang, C.-Y.; Peng, L.-J.;

Chen, G.-Y.; Zhang, H.; Yang, F.-Q.

Investigation on the Peroxidase-like

Activity of Vitamin B6 and Its

Applications in Colorimetric

Detection of Hydrogen Peroxide and

Total Antioxidant Capacity

Evaluation. Molecules 2022, 27, 4262.

https://doi.org/10.3390/

molecules27134262

Academic Editor: Gianantonio

Battistuzzi

Received: 20 May 2022

Accepted: 30 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Communication

Investigation on the Peroxidase-like Activity of Vitamin B6 and
Its Applications in Colorimetric Detection of Hydrogen
Peroxide and Total Antioxidant Capacity Evaluation
Chun-Yan Zhang, Li-Jing Peng, Guo-Ying Chen, Hao Zhang and Feng-Qing Yang *

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China;
20155520@cqu.edu.cn (C.-Y.Z.); 20165614@cqu.edu.cn (L.-J.P.); 201918021143@cqu.edu.cn (G.-Y.C.);
20161802127@cqu.edu.cn (H.Z.)
* Correspondence: fengqingyang@cqu.edu.cn; Tel.: +86-13617650637

Abstract: The peroxidase-like activity of vitamin B6 (VB6) was firstly demonstrated by catalyzing
the peroxidase chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) at the existence of H2O2.
The influence of different factors on the catalytic property of VB6, including pH, temperature, VB6
concentration, and incubation time, were investigated. The steady-state kinetic study results indicate
that VB6 possesses higher affinity to H2O2 than natural horseradish peroxidase and some other
peroxidase mimics. Besides, the radical quenching experiment results confirm that hydroxyl radical
(•OH) accounts for the catalytic process. Based on the excellent peroxidase-like catalytic activity of
VB6, the colorimetric methods for H2O2 and gallic acid (GA) detection were developed by measuring
the absorbance variance of the catalytic system. Under the optimal conditions, the linear ranges of the
methods for H2O2 and GA determination with good selectivity are 50.0–600.0 µM and 10.0–50.0 µM,
respectively. In addition, the developed method was applied in the detection of H2O2 in milk samples
and evaluation of total antioxidant capacity of different tea infusions. This study may broaden the
application prospect of VB6 in environmental and biomedical analysis fields, contribute to profound
insight of the physiological functions of VB6, as well as lay foundation for further excavation of
small-molecule peroxidase mimics.

Keywords: vitamin B6; peroxidase-like activity; colorimetric detection; hydrogen peroxide; gallic acid

1. Introduction

Horseradish peroxidase plays a significant role in organisms for its high catalytic
performance and excellent substrate selectivity, which has been extensively applied in
various biosensors for the determination of H2O2, glucose, glutathione, dopamine, and
so on [1–4]. Nevertheless, the application of natural horseradish peroxidase is limited by
some inherent drawbacks such as high cost of preparation process, nonreusability, weak
stability towards variable temperature and pH, which may also lead to the undesirable
inaccuracy of the determination results [5,6]. Although several immobilization methods
were used to enhance their durability under harsh environmental conditions, the catalytic
activities of enzymes are always limited by the biocompatibility of the support materials,
inevitable enzyme activity loss during the immobilization and limited enzyme loading
amount [7,8]. Therefore, it is an intriguing topic to develop peroxidase mimics as an
alternative to the natural enzyme. Recently, considerable effort has been contributed to con-
structing nanomaterials-based peroxidase mimics, such as metallic oxides and salts [9–11],
some noble metals, including Pt [12], Pd [13], and Au@Pt nanoparticles [14], layered dou-
ble hydroxides [15], and quantum dots [16,17]. However, the large-scale application of
nanomaterials-based enzyme mimics is hampered by several constraints, such as envi-
ronmental pollution, weak enzyme-like activity, poor biocompatibility, heavy reliance on
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the skilled technician and sophisticated apparatus, and unavoidable enzyme-like activity
variance between batches [18,19].

Recently, small molecules as peroxidase simulants have attracted tremendous at-
tentions due to their easy commercial availability, good biocompatibility, and excellent
homogeneous catalysis capacity. Since Liu et al. [20] discovered the peroxidase mimicking
property of fluorescein, a series of small-molecule peroxidase mimics such as fluorescein
derivatives [21,22], acidic amino acids [23], guanosine triphosphate (GTP) [24], ethylene
diamine tetraacetic acid (EDTA) [25], adenine phosphate [26], and vitamin B3 [18] were
successively reported possessing catalytic ability like natural peroxidase. Based on the
outstanding catalytic activity, the small molecules with peroxidase-like property were
extensively utilized to fabricate diverse sensors for the detection of bioactive substances,
antioxidant capacity evaluation, and enzyme-linked immunoassay with high sensitivity
and selectivity.

Vitamin B6 (VB6), as one of the water-soluble vitamins, is naturally present in various
foods and plays a significant role in the synthesis of serotonin, and the deficiency in
VB6 may lead to muscle weakness, irascibility, depression, and short-period amnesia [27].
Although the vital physiological actions of VB6 have been investigated extensively, there is
still no report to demonstrate its excellent catalytic activity as peroxidase mimic. Herein, the
peroxidase-like activity of VB6 was investigated in this study using the classical peroxidase
substrate 3,3′,5,5′-tetramethylbenzidine (TMB) to obtain the blue product TMB oxides
(oxTMB) in the presence of H2O2. Moreover, based on signal response variance of the
VB6-TMB-H2O2 reaction system, a facile colorimetric method for H2O2 and gallic acid
(GA) determination was established. With the increasing amount of GA addition, the blue
oxTMB fades gradually due to its strong reducibility, and thereby resulting in the decreased
readout signal. The developed method was further utilized in H2O2 detection in milk
samples and total antioxidant capacity evaluation of tea infusion. This study may facilitate
profound insight of the physiological action of VB6 and give inspirations for excavating
more small-molecule enzyme mimics.

2. Results and Discussion
2.1. Peroxidase-like Catalytic Activity of VB6

Figure 1 depicts the enzymatic activity of VB6 by catalyzing TMB at the existence
of H2O2. Generally, the typical peroxidase substrate colorless TMB can be catalytically
oxidized to blue product TMB oxide, which exhibits obvious absorption peak at 652 nm
correspondingly. As shown in Figure 2, there is neither apparent absorption at 652 nm
nor color variance of resultant solutions when VB6, TMB, and H2O2 were incubated in
pairs, respectively. In contrast, the absorbance intensity and color of reaction system
containing TMB and H2O2 is obviously boosted with the addition of VB6, which verifies
the peroxidase-like catalytic activity of VB6.
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Figure 2. UV-Vis absorption spectra and digital photograph of VB6-TMB-H2O2 (1), VB6-TMB (2),
TMB-H2O2 (3) and VB6-H2O2 (4).

2.2. Optimization of Reaction Conditions

The peroxidase-like activity of VB6 is easily influenced by the pH, temperature, VB6
concentration, and incubation time. Therefore, the factors that will influence the peroxidase-
like property of VB6 were investigated. As depicted in Figure 3A, like most of other peroxi-
dase mimics, the catalytic activity of VB6 decreases under neutral or alkaline conditions and
possesses best peroxidase-like activity at pH 4.0. In addition, the temperature-dependent
peroxidase-like activity (Figure 3B) demonstrates that the optimal temperature is 60 ◦C,
and the catalytic activity of VB6 keeps relative stable under high temperature, which may
be ascribed to the good thermostability of VB6. Furthermore, results shown in Figure 3C,D
indicate that when the VB6 concentration and incubation time were selected as 80 mM
and 30 min, respectively, the peroxidase-like activity of VB6 reaches a plateau. Therefore,
pH 4.0, 60 ◦C, 80 mM of VB6 and 30 min of incubation time were selected as the optimal
reaction conditions to carry out subsequent analysis.

2.3. Kinetic Analysis

To further delve into the peroxidase-like catalytic activity of VB6, the effect of varied
TMB concentrations with fixed H2O2 concentration or vice versa on the steady-state kinetics
was investigated under optimal conditions. The results shown in Figure S1a–d confirm
typical Michaelis–Menten curves of TMB and H2O2, from which the Michaelis–Menten
constant (Km) and maximal reaction velocity (Vmax) were calculated. Notably, Km is regarded
as a significant indicator of the affinity between the enzyme and substrate, and a lower
value represents higher affinity. As summarized in Table S1, the Km of VB6 and H2O2 is
0.25 mM, which is approximately five times smaller than natural horseradish peroxidase
and some other small-molecule and nanomaterials-based peroxidase simulants, indicating
the superiority of VB6 in attracting H2O2 over other previously reported peroxidase mimics.
In addition, the Km value of VB6 taking TMB as substrate is 5.33 mM, indicating only
a small amount of TMB is needed to reach the maximum catalytic activity. However,
both Vmax values of VB6 taking H2O2 or TMB as substrate are lower than that of HRP.
Therefore, it is still a challenge to excavate small-molecule peroxidase mimics with higher
catalytic performance.
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Figure 3. Effects of (A) pH, (B) temperature, (C) VB6 concentration, and (D) incubation time on the
peroxidase-like activity of VB6. Experiments were carried out using 100 mM of VB6 dissolved in
PBS buffer (10 mM, pH = 4.0) at 60 ◦C with 4.0 mM of TMB and 0.5 mM of H2O2 as substrates. The
maximum point in each curve is set as 100%. The error bars represent the standard deviations derived
from three independent measurements.

2.4. Catalytic Mechanism Investigation

Generally, hydroxyl radicals (•OH) and superoxide radicals (O2•−) are the possible
dominant active species responsible for the catalytic activity. To investigate the possible
catalytic mechanism of the peroxidase-like activity of VB6, the radical trapping assay
by introducing different radical scavengers has been performed to investigate the main
active species in the catalytic reaction system. As shown in Figure S2, with the increase
in introduced amount of •OH scavenger isopropanol, there exhibits an obvious decline
in the relative activity of the VB6-catalyzed reaction system, which indicates that •OH is
accounted for the catalytic process. However, when increased amount of O2•− scavenger
superoxide dismutase (SOD) was added into the reaction system, no apparent absorbance
variance was observed, which demonstrates the negligible role of O2•− in the catalytic
reaction. Therefore, the catalytic mechanism of VB6 as a peroxidase mimic can be ascribed
to the •OH produced from H2O2 decomposition, and then •OH reacts with TMB to obtain
blue oxTMB product.

2.5. Determination of H2O2

Considering the intrinsic peroxidase-like activity of VB6, a facile VB6-TMB colorimetric
detection method for H2O2 determination was fabricated. Figure 4A,B demonstrate the
H2O2 concentration-response plot for the absorbance of the reaction mixture with varied
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H2O2 concentrations in the range of 50–600 µM, which intuitively represents that the
absorbance at 652 nm is enhanced as the H2O2 concentration increased. The corresponding
linear regression equation is A = 0.0012 [H2O2] + 0.2032 (R2 = 0.9937). The limit of detection
(LOD) is determined to be 12.1 µM. In Table 1, as compared with other methods based on
the nanomaterials-based peroxidase mimics, the convenient colorimetric method utilizing
VB6-TMB reaction system has the merit of a wider linear range and a lower LOD value.
In addition, as shown in Figure 4C, the color change of the VB6-TMB reaction system can
be easily distinguished by naked eyes. Therefore, the results illustrate that VB6-TMB is
promising and feasible to be used for H2O2 determination in real samples.
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Figure 4. (A) The UV-Vis absorption spectra of VB6-TMB system upon adding different concentrations
of H2O2 (50.0–600.0 µM, from bottom to top); (B) Calibration plot of the absorbance versus the
concentrations of H2O2 under the optimal conditions; (C) The corresponding digital photograph.
The error bars represent the standard deviations of three independent measurements.

Generally, H2O2 is extensively applied as a preservative agent in commercial milk,
which may take a toll on human health when excessive H2O2 residue exists in milk.
Therefore, the detection of residual H2O2 amount in commercial milk samples is meaningful.
To estimate the applicability of the VB6-TMB based H2O2 detection method, the recovery of
H2O2 by the standard addition in three brands of milk samples were measured. As shown
in Table S2, the recovery of H2O2 in commercial milk samples are in the range of 95.2% to
105.4%, and the relative standard deviations (RSD) are between 2.7% and 7.2%. Thus, the
developed colorimetric method shows high accuracy in H2O2 detection.

2.6. Gallic Acid Determination

The strong reduction ability of GA can convert the oxTMB to colorless TMB, a simple
colorimetric GA detection method based on the absorbance decline in the VB6-TMB system
was fabricated. As depicted in Figure 5A,B, with the increase in GA concentration, the
absorbance intensity of the mixture at 652 nm declines gradually. Furthermore, there is a
good linear correlation between absorbance values at 652 nm and GA concentrations within
the range of 10.0–50.0 µM. The linear regression equation is A = −0.0086 [GA] + 0.733
(R2 = 0.9956), and the LOD for GA is determined to be 4.1 µM. Compared with other
methods used for GA detection based on nanomaterials-related peroxidase simulants
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(Table 2), this colorimetric method has the advantages of a wide linear range and no
requirement of harsh synthesis conditions.
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Figure 5. (A) The absorbance spectra of VB6-TMB-H2O2 catalytic system at the existence of different
concentrations of gallic acid and (B) the linear calibration plot of absorbance against concentrations
of gallic acid; (C) Selectivity of gallic acid determination with interferences by recording the signal
response at 652 nm, including 0.05 mM of gallic acid and 2.5 mM of interferences (K+, Na+, Mg2+,
lactose, fructose, and glucose); (D) The total antioxidant capacity evaluation of different tea infusions
with gallic acid equivalent as indicator. The error bars represent the standard deviations of three
independent measurements.

The selectivity and interference assay for GA determination was performed at the
coexistence of some common interference such as metal ions (Na+, K+, and Mg2+) and
sugars (lactose, fructose, and glucose) under optimal conditions. Figure 5C indicates that
only the introduction of GA gives rise to a significant reduction of the signal response and
negligible absorbance intensity variance is observed even if the interference concentration
is 50 times higher than that of GA. These results prove the good selectivity and promising
applicability for the GA determination in practical samples.

Generally, total antioxidant capacity (TAC) is a significant indicator for evaluating
the quality of some foods and drugs with antioxidant functions. To further evaluate the
applicability of the developed method, it was implemented to evaluate the TAC capacity
in different tea infusions. GA is an important natural phenolic compound, which exhibits
strong antioxidant activity and naturally exists in various tea [28]. In this work, TAC
capacity was measured as millimolar equivalents of GA [29]. Before analysis, the tea
infusions were diluted by appropriate multiples to conform to the linear range of standard
calibration plot. As shown in Figure 5D, based on the calibration plot, the millimolar
equivalents of GA concentrations of Oolong tea, black tea, and green tea obtained from
commercial are calculated to be 2.3, 6.1, and 7.2 mM, respectively. In addition, the RSD
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values are within 5.8 to 6.3%, which confirms the good precision of the TAC evaluation by
the developed method.

Table 1. Comparisons of colorimetric detection of H2O2 by various peroxidase mimics.

Enzyme Mimics Methods Linear Range (µM) LOD (µM) Ref.

Cu2(OH)3Cl-CeO2 Colorimetric 20–50 10 [30]
MMT-CeO2 Colorimetric 9–500 7.8 [31]
CoS Colorimetric 50–800 20 [32]
GO-FeTPyP Colorimetric 20–500 72 [33]
Fe-Ag2S Colorimetric 10–150 7.82 [34]
Fe3O4@AuNPs Colorimetric 40–5500 11.1 [35]
Zr-MOF-PVP Colorimetric 10–800 2.16 [36]
VB6 Colorimetric 50–600 12.1 This work

Cu2(OH)3Cl-CeO2: A nanomaterial of the chemical composition Cu2(OH)3Cl-CeO2; MMT-CeO2: CeO2-montmorillonite
(MMT) nanocomposites; GO-FeTPyP: supramolecular assemblies of tetrapyridylporphyrin (TPyP) and its metallic
complexes with graphene oxide (GO); Fe-Ag2S: Fe-doped Ag2S nanocomposites; Fe3O4@AuNPs: AuNPs dis-
tributed on the surface of Fe3O4 particles; Zr-MOF-PVP: Zr-based MOFs capped with polyvinylpyrrolidone;
VB6: vitamin B6.

Table 2. Comparisons of determination of gallic acid based on different peroxidase mimics.

Sensors Methods Linear Range (µM) LOD (µM) Ref.

Poly-Glu/rGO Electrochemistry 1–17 0.53 [37]
CPE/MWNT Electrochemistry 0.5–15 0.3 [38]
CDs/CoOOH Fluorescence 2–60 1.2 [39]
NaErF4:Tm@SiO2@ZIF-8 Fluorescence 0–30 0.35 [40]
LaFeO3 Colorimetric 0.6–36 0.4 [41]
VB6 Colorimetric 10–50 4.1 This work

Poly-Glu/rGO: the electro-polymerisation of glutamic acid on reduced graphene oxide (rGO) modified paraffin
impregnated graphite electrode; CPE/MWNT: CPE-carbon paste electrode, MWNT-multiwalled carbon nanotube;
CDs/CoOOH: Carbon dots/CoOOH nanoflakes; NaErF4: Tm@SiO2@ZIF-8: a core-shell structured upconversion
nanoparticles@zeolitic imidazolate frameworks (ZIF-8) fluorescent nanoprobe; LaFeO3: Perovskite mesoporous
lanthanum ferrite (LaFeO3); VB6: vitamin B6.

3. Materials and Methods
3.1. Chemicals and Materials

Pyridoxine hydrochloride (VB6), D(+)-Lactose, D(+)-Glucose, and superoxide dis-
mutase (SOD) were obtained from Yuanye Biological Technology Co., Ltd. (Shanghai,
China). TMB was purchased from Titan Scientific Co., Ltd. (Shanghai, China). Anhydrous
ethanol was bought from Chongqing Chuandong Chemical Co., Ltd. (Chongqing, China).
H2O2 (30% in water), isopropanol, fructose, sodium chloride, magnesium sulfate heptahy-
drate, and potassium chloride were obtained from Chengdu Chron Chemicals Co., Ltd.
(Chengdu, China). The Oolong tea was purchased from Chongqing Yinrong Trading Co.,
Ltd. (Chongqing, China). The black tea and green tea were purchased from Unilever Food
Co., Ltd. (Shanghai, China). The water used in all experiments was purified by a water
purification system (ATSelem 1820A, Antesheng Environmental Protection Equipment Co.,
Ltd., Chongqing, China).

3.2. Peroxidase-like Catalytic Activity of VB6

The peroxidase-like catalytic activity of VB6 was validated through a typical oxidation
reaction of chromogenic substrate TMB in the presence of H2O2. In detail, VB6 (80 mM)
was mixed homogenously with TMB (4 mM) and H2O2 (0.5 mM), and the reaction system
was incubated at 60 ◦C for 30 min. Subsequently, the absorbance (intensity) at 652 nm
of the blue solution due to the oxidation of TMB was determined by a UV-5500 UV/VIS
spectrophotometer (Metash, Shanghai, China).

3.3. Kinetic Tests of VB6

The kinetic tests of the peroxidase-like catalytic reaction were carried out by fixing
the concentration of one substrate (H2O2 or TMB) while changing the concentration of
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another. The reaction systems were incubated at 60 ◦C for 30 min and the absorbance of
reaction mixture were recorded. Then, the kinetic parameters, including vmax and Km, were
determined through plotting the Lineweaver–Burk curve.

ν = vmax [S]/(Km + [S]) (1)

where ν is the initial reaction rate, vmax represents the maximum reaction rate, Km indicates
the Michaelis–Menten constant, and [S] denotes substrate concentration.

3.4. Detection of H2O2 and GA

Taking advantage of the excellent peroxidase-like activity of VB6, a facile colorimetric
assay for H2O2 and GA determination was fabricated. The detection of H2O2 was per-
formed according to the following steps. The absorbance intensity of the reaction system
containing 80.0 mM of VB6, 4.0 mM of TMB, and varied concentrations of H2O2 (0–0.5 mM)
were recorded at 652 nm after incubation at 60 ◦C for 30 min. To verify the feasibility of
H2O2 detection in real samples, three different brands of milk were selected as practical
specimens. Prior to the assay procedure, 3.0 mL of each sample was centrifuged at 6745× g
for 15 min by three times to achieve protein and fat elimination. Subsequently, the clear
filtrate of each sample was diluted 10 multiples with phosphate buffer.

The detection of GA was carried out according to the following steps. In brief, 80.0 mM
of VB6, 4.0 mM of TMB, 0.5 mM of H2O2 and different concentrations of GA solutions
were homogeneously blended and incubated at 60 ◦C for 30 min, and the absorbance
intensity at 652 nm of the resultant solution was measured for GA detection. To validate
the applicability of GA determination in real samples, three kinds of tea were chosen as
actual samples. Before analysis, each sample of Oolong tea, black tea, and green tea (1.0 g)
was soaked with boiling pure water (20.0 mL) three times, and then the tea infusion was
collected together, followed by filtration through 0.22 µm filter membranes. Subsequently,
the infusion of each tea was diluted with phosphate buffer by appropriate multiples to fit
the linear range of the calibration plot.

The limit of detection (LOD) was calculated by the following equation: LOD = 3δ/k,
where δ is the standard deviation of blank measurement, and k is the slope between the
absorbance of solution versus H2O2 or GA concentration.

4. Conclusions

In summary, this work firstly demonstrates the inherent peroxidase-like activity of
VB6, which is favorable of H2O2 decomposition to generate •OH and further catalyze the
oxidation of colorless TMB to the blue product oxTMB. Furthermore, the kinetic assay
indicates that the affinity between H2O2 and VB6 is higher than that of natural horseradish
peroxidase. Based on this discovery, a simple colorimetric method for the determination
of H2O2 and GA was successfully established with a wide linear range and low detection
limit. Compared with most of other nanomaterials-based peroxidase simulants and natural
horseradish peroxidase, VB6 has the advantages of superior biocompatibility, higher stabil-
ity, and good catalytic activity at a high temperature and no requirement of complicated
preparation processes. Therefore, VB6 has a broad application prospect in analysis fields.
Besides, this study may contribute to the profound insight of the physiological functions of
VB6 and lay foundation for further excavation of more small-molecule peroxidase mimics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27134262/s1, Figure S1: Reaction velocity under 4.0 mM
of TMB with varied concentrations of H2O2 (A) and the corresponding double-reciprocal plots of
VB6-catalyzed activity (B); Reaction velocity under 0.5 mM of H2O2 with varied concentrations of
TMB (C) and the corresponding double-reciprocal plots of VB6-catalyzed activity (D). Error bars
represent the standard deviation of three independent measurements; Figure S2: Effects of various
active scavengers during the catalysis of TMB by VB6; Table S1: Kinetic parameters (Km and vmax) of

https://www.mdpi.com/article/10.3390/molecules27134262/s1
https://www.mdpi.com/article/10.3390/molecules27134262/s1
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different small-molecule and nanomaterials-based peroxidase mimics; Table S2: H2O2 detection in
different brands of milk samples [21–23,32,42].
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