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Abstract

Many psychiatric diseases stem from an inability to cope with stressful events, as chronic stressors can pre-
cipitate or exacerbate psychopathologies. The neurobiological mechanisms underlying the response to chronic
stress and the resulting anxiety states remain poorly understood. Stress neuropeptides in the extended amyg-
dala circuitry mediate the behavioral response to stress, and hyperactivity of these systems has been hypothe-
sized to be responsible for the emergence of persistent negative outcomes and for the pathogenesis of
anxiety-related and trauma-related disorders. Pituitary adenylate cyclase-activating polypeptide (PACAP) and
its receptor PAC1R are highly expressed within the central amygdala (CeA) and play a key role in stress regu-
lation. Here, we used chronic social defeat stress (CSDS), a clinically relevant model of psychosocial stress
that produces robust maladaptive behaviors in rodents. We found that 10 days of CSDS cause a significant in-
crease in PACAP levels selectively in the CeA of rats, as well as an increase in PAC1R mRNA. Using a viral
vector strategy, we found that PAC1R knock-down in the CeA attenuates the CSDS-induced body weight loss
and prevents the CSDS-induced increase in anxiety-like behavior. Notably, CSDS animals display reduced
basal corticosterone (CORT) levels and PAC1R knock-down in CeA further reduce them. Finally, the CeA
PAC1R knock-down blocks the increase in corticotropin-releasing factor (CRF) immunoreactivity induced by
CSDS in CeA. Our findings support the notion that the persistent activation of the PACAP-PAC1R system in
the CeA mediates the behavioral outcomes of chronic psychosocial stress independently of the hypothalamic-
pituitary-adrenal axis, perhaps via the recruitment of the CRF system.
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Significance Statement

Our results identify a key role for the neuropeptide pituitary adenylate cyclase-activating polypeptide
(PACAP) specifically of the central amygdala (CeA) in mediating the negative physiological and behavioral
consequences of chronic stress, independently of the hypothalamus-pituitary-adrenal axis. This system
may, therefore, represent a novel target for the treatment of stress-related psychopathologies such as anxi-
ety-related disorders and post-traumatic stress disorder (PTSD).
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Introduction
Mental disorders are an enormous global health issue

because of their high cost to society and their prevalence.
In particular, in the United States anxiety disorders repre-
sent the most common mental illness, with a lifetime prev-
alence above 30% (Baxter et al., 2013; Roehrig, 2016;
National Institute of Mental Health, 2021; Collaborators
GBDMD, 2022), while the lifetime prevalence of posttrau-
matic stress disorder (PTSD) is 6.1–9.2% (Goldstein et al.,
2016; Koenen et al., 2017). Chronic and traumatic stres-
sors play a large role in the development of psychiatric
diseases, as they can precipitate or exacerbate psy-
chopathologies (de Kloet et al., 2005; Juster et al., 2010;
Russo et al., 2012). Despite the ongoing and worsening
mental health crisis, the neurobiological mechanisms under-
lying the pathologic response to chronic stress remain poorly
understood. Multiple neurobiological systems are in-
volved in the response to stress. The brain responds to
states of threatened homeostasis by activating adaptive
responses intended to maintain the equilibrium and pre-
pare us for immediate or potential harm (Chrousos and
Gold, 1992; Tovote et al., 2015). However, when stressors
become repeated or chronic, hyperactivation of specific
neurotransmitter systems may result in the emergence of
persistent negative outcomes (Shin and Liberzon, 2010;
Duval et al., 2015; Sapolsky, 2015).
The central nucleus of the amygdala (CeA) and the bed

nucleus of the stria terminalis (BNST), both part of the ex-
tended amygdala, orchestrate the emotional component
of the behavioral response to stress (Alheid and Heimer,
1988; Koob and Le Moal, 2005). The CeA integrates sen-
sory information from the environment and projects infor-
mation to effector regions to trigger appropriate responses
to threats (Davis, 1992; Davis and Shi, 2000; Zarrindast et
al., 2008). While in a nonpathologic state the amygdala sig-
naling is tapered appropriately to the severity of the present
threat (Mathew et al., 2008), this region is instead hyperres-
ponsive in anxiety disorders (Etkin and Wager, 2007; Etkin
et al., 2009; Shin and Liberzon, 2010; Fox et al., 2015).
Pituitary adenylate cyclase-activating polypeptide (PACAP)

has been proposed to be a master regulator of the stress
response (Dore et al., 2013; Hammack and May, 2015;
Varodayan et al., 2020; Boucher et al., 2021a). PACAP, a
38-amino acid peptide belonging to the secretin/gluca-
gon/vasoactive intestinal polypeptide (VIP) superfamily,
exerts its effects mainly via its cognate receptor PAC1

(PAC1R), which binds PACAP with an affinity of 1000-
fold greater than VIP (Harmar et al., 1998; Vaudry et al.,
2009). Dense PACAP-immunoreactive fibers of nonlocal
origin are found in the capsular and lateral parts of the
CeA (CeC, CeL) and in the latero-dorsal BNST (STLD;
Piggins et al., 1996; Hannibal, 2002; Zhang et al., 2021),
while PACAP mRNA is highly expressed in hypothalamic
and brainstem nuclei (Hannibal et al., 1995; Joo et al.,
2004).
In humans, a single nucleotide polymorphism in the

PAC1R gene is associated with PTSD symptoms in
women, a mutation which is also associated with increased
amygdala activity in response to threatening faces (Ressler
et al., 2011; Stevens et al., 2014). In rodents, central admin-
istration of PACAP into the ventricles, hypothalamus, and
extended amygdala evokes a stress-like response (Agarwal
et al., 2005; Hammack et al., 2009; Stroth et al., 2011;
Dore et al., 2013; Roman et al., 2014; Seiglie et al., 2015;
Meloni et al., 2019). Exposure to acute stressors increases
PACAP levels in both CeA and BNST (Seiglie et al., 2019),
and chronic variate stress recruits PACAP in the BNST
(Hammack et al., 2009; Roman et al., 2014). PACAP knock-
out mice display an anxiolytic profile and attenuated endo-
crine, molecular, and behavioral responses to chronic stress
(Hashimoto et al., 2001; Stroth and Eiden, 2010; Gaszner et
al., 2012; Lehmann et al., 2013; Kormos et al., 2016).
Consistent with PACAP’s ability to mediate stress re-
sponses, PACAP-immunoreactive fibers are found in close
proximity to corticotropin-releasing factor (CRF) neurons
(Hannibal et al., 1995; Légrádi et al., 1998; Missig et al.,
2014); PACAP acts as an upstream regulator of CRF and
many PACAP behavioral effects are prevented by CRF re-
ceptor antagonism (Tsukiyama et al., 2011; Dore et al.,
2013; Seiglie et al., 2015; Miles et al., 2019). In the CeA,
PACAP increases GABA release via PAC1R via a presyn-
aptic mechanism (Varodayan et al., 2020), an action that
mimics that of CRF itself (Roberto et al., 2010; Varodayan
et al., 2017).
The chronic social defeat stress (CSDS) is a clinically rel-

evant, highly translational model of psychosocial stress
based on chronic social subordination, which produces ro-
bust maladaptive behaviors (Krishnan et al., 2007; Russo
et al., 2012; Hammels et al., 2015). Indeed, defeated ani-
mals show a wide range of anxiety-like and depressive-like
behaviors, as well as physiological changes, including
decreased body weight gain (Berton et al., 2006; Krishnan
et al., 2007; Iñiguez et al., 2016). Notably, while whole body
PACAP gene deletion in mice has been shown to have no
significant effects on affective behaviors in nonstressed
mice, it instead led to a robust behavioral protection in
CSDS animals, suggesting that PACAP may mediate
the detrimental effects of CSDS (Lehmann et al., 2013).
However, where in the brain PACAP is mediating the
detrimental effects of CSDS is currently unknown.
Here, we hypothesized that the CeA PACAP/PAC1R

system is recruited by CSDS and that it contributes to the
resulting physiological and behavioral outcomes. We first
assessed the effects of CSDS on PACAP levels in the CeA
and BNST and measured PAC1R expression in CeA. We
then evaluated the functional role of PAC1R by knocking
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down this receptor in the CeA via an AAV-shRNA and
assessing its effects on body weight, anxiety-like be-
haviors, plasma corticosterone (CORT) levels, and
CeA CRF levels.

Materials and Methods
Subjects
The experimental animals (intruders) were male

Sprague Dawley rats (Envigo) weighing 301–325 g on
arrival. Rats were single-housed in 10 1/2” � 19” � 8”
wire-topped, plastic cages on a 12-h reverse light
cycle (lights off at 11 A.M.), in an AAALAC-approved
humidity-controlled and temperature-controlled vivar-
ium. Food (Envigo Teklad LM-4857012 diet) and water
were available ad libitum. Male Long–Evans retired
breeders, 400–600 g on arrival, were used as resi-
dents, and housed in 20” � 16” � 8 1/2” wire-topped,
plastic cages with ovariectomized Long–Evans fe-
males. Experimental tests were conducted during the
rats’ dark cycle. Three groups of rats were used in the
experiments; group sizes were as follow: group 1:
CSDS PACAP immunohistochemistry (IHC) experiment
[total 20 rats, eight controls (Ctrls.) and 12 CSDS]: CeA,
N = 6–11/group (17 rats); BNST/paraventricular nucleus
of the hypothalamus (PVN), N = 8–12/group (20 rats);
group 2: CSDS PACAP quantitative real-time PCR
(qPCR) experiment: N = 6–11/group (total 17 rats); group
3: AAV-PAC1R KD experiment: body weight, N = 9–12/
group (total 43 rats); light-dark test, N = 9–10/group (39
rats); plasma CORT, N = 9–12/group (44 rats); CRF IHC,
N = 6–9/group (30 rats). Procedures adhered to the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals and the Principles of Laboratory
Animal Care and were approved by the Institutional
Animal Care and Use Committee.

Social defeat stress
The CSDS paradigm was modified from the resident-in-

truder model originally designed by Miczek and colleagues
(Miczek, 1979; Tidey andMiczek, 1996). The CSDS sessions,
which occurred once a day on consecutive days between 5
and 7 P.M., consisted of an intruder rat being placed into the
home cage territory of an unfamiliar resident, which had pre-
viously been trained for high aggression (Fekete et al., 2009).
Exposure lasted until the intruder submitted (i.e., assumed a
submissive, supine position for .3 s) or, if submission did
not occur, up to 5min, in which case the intruder was moved
to a second resident and the session restarted. Upon sub-
mission, the intruder was then placed inside a wire mesh en-
closure (7 � 9 � 8.5 inches) inside the resident cage for the
remainder of the 30-min session, which allowed auditory, ol-
factory, visual, and limited physical contact (mouth/nose) but
prevented injuries. Ctrl. rats were picked up, handled, and re-
turned to their home cage for 30min.

PACAP IHC
Experimental details
A set of Ctrl. and CSDS (10d, CSDS) rats were anesthe-

tized with isoflurane and then transcardially perfused as

previously described (Iemolo et al., 2013), 24 h after the
last (10th) CSDS session. Coronal 30-mm sections were
cut on a cryostat, collected, and stored in cryoprotectant
at �20°C. Every sixth section (180mm apart) for CeA
(bregma range: �2.0 to �3.0 mm) and every fourth sec-
tion (120mm apart) for BNST (bregma range: 0.24 to
�0.24 mm) were selected and processed for IHC.

PACAP staining
PACAP IHC was performed as previously described

(Seiglie et al., 2019; Ferragud et al., 2021). Free-floating
sections were washed in Tris-buffered saline (TBS) after
every incubation. Sections were incubated in 0.3% hydro-
gen peroxide for 10min to block endogenous peroxi-
dases. Sections were then blocked for 1 h in 3% normal
goat serum, 0.4% Triton X-100 and then transferred into
an anti-PACAP primary antibody (Peninsula Labs, 1:8000)
in blocking solution for 24 h at 4°C. Sections were then in-
cubated in secondary antibody (1: 500, biotinylated anti-
rabbit, Vector Laboratories) in blocking solution for 2 h at
room temperature and finally incubated in an avidin–biotin
horseradish peroxidase ABC solution (Vector Laboratories)
in blocking solution for 1 h. Sections were then processed
using a diaminobenzidine substrate kit (Vector Laboratories)
until reaction was complete and mounted onto slides and
allowed to dry overnight. The following day, slides were de-
hydrated and coverslipped using DPX mountant (Electron
Microscopy Sciences).

Quantification of PACAP staining
Using the Stereo Investigator software (MicroBrightField),

10� objective pictures of sections containing either the CeA
or the BNST were taken using an Olympus BX-51 micro-
scope equipped with a Retiga 2000R live video camera
(QImaging), a three-axis MAC6000 XYZ motorized stage
(Ludl Electronics), and a personal computer workstation.
Chromogen PACAP pictures were taken in bright field
under a preset exposure and gain, to standardize the
images. For each image, area contours were drawn
corresponding to CeC and CeL for CeA and to the latero-
dorsal part of the BNST (STLD), where PACAP immunore-
activity is observed. Densitometry analysis was performed
using ImageJ software (NIH); mean optical density of signal
was calculated by subtracting the background signal and
then by normalizing the value to the traced area.

Brain punching and qPCR
Tissue PAC1R and CRF mRNA levels were determined

as previously described (Cottone et al., 2009; Sabino et
al., 2011; Dore et al., 2013). Rats were anesthetized with
isoflurane and brains were quickly removed and coronally
sliced in a brain matrix; 1-mm diameter bilateral punches
containing the CeA were collected on an ice-cold stage.
Total RNA was prepared from tissue using the RNeasy Lipid
Mini kit (QIAGEN); total RNA was quantified by Nanodrop
1000 (Thermo Scientific) and then reverse transcribed with
QuantiTect Reverse Transcription kit (QIAGEN), which in-
cludes a DNA removal step. For qPCR, Roche Light Cycler
480 Master-plus Sybr Green mix (Roche Applied Science)
was used. Reactions (10ml) were conducted in a 96-well
plate Realplex2 machine (Eppendorf). The primers (0.5 mM
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final concentration, Sigma), synthetized with a standard de-
salting purification, were the following: PAC1R, CAT GGT
CAT CTT GTG CCG CTT CC and GAC TGC TGT CCT GCT
CGG CGT ACA (94°C 15 s; 70°C 8 s); CRF, TGC TCG GCT
GTC CCC CAA CT and CTG CAG CAA CAC GCG GAA
AAA (95°C 10 s; 59.2°C 5 s; 72°C 10 s); Cyclophilin A
(CypA), TAT CTG CAC TGC CAA GAC TGA GTG and CTT
CTT GCT GGT CTT GCC ATT CC (95°C 20 s; 58°C 15 s; 72°
C 20 s). Standard curves were constructed using se-
quenced PCR products. Results were analyzed by second
derivativemethods and then normalized to CypA expression
levels. Standards and samples were run in duplicate. Gene-
specific amplification was determined bymelting curve anal-
ysis as one peak at the expected melting temperature and
by agarose gel electrophoresis.

Intracranial AAVmicroinfusion procedure
Rats (N = 46) were anesthetized with 3–5% isoflurane

and placed in a stereotaxic frame (Kopf Instruments) for
bilateral AAV microinfusion into the CeA. Briefly, a 2 ml,
22-gauge Hamilton microsyringe was lowered 8.4 mm
from skull surface into the CeA (AP �2.64, ML 64.2) with
the incisor bar set at �3.3 mm below the interaural line
(flat skull), according to the Paxino’s and Watson’s rat
brain atlas (Paxinos and Watson, 2007). Either a PAC1R
knock-down adeno-associated viral vector (AAV1-CAG-
GFP-rADCYAP1R1-shRNAmir, “AAV-PAC1R-shRNA”) or
a Ctrl. virus (AAV1-CAG-GFP, “AAV-GFP”) was infused at
a rate of 0.2 ml/min over the course of 5min (total volume:
1 ml per side). The needle was kept in place for an addi-
tional 10min following infusion to prevent backflow. The
ability of this specific AAV-shRNA construct to knock-
down PAC1R expression in rats was previously confirmed
(Minnig et al., 2021, 2022). After surgeries, rats were al-
lowed at least threeweeks of recovery before the start of
the CSDS procedure to allow for maximum transfection.
At the end of testing, viral placement and spread were
verified in a blind manner as assessed by GFP signal;
only rats with correct viral location and satisfactory
spread in both sides of the CeA were included in the
data analysis (14 rats were excluded). Body weights
were recorded before surgery, before the start of the
CSDS protocol, and then every 1–2 d during the 10 d of
CSDS.

Light-dark test
The light–dark transfer test was performed as described

previously (Bourin and Hascoët, 2003), 14–18 h after the
seventh CSDS session. The test apparatus was a Plexiglas
rectangular box (50� 50cm) divided into two unequal com-
partments by a black partition with a small opening at the
base. The smaller compartment (1/3) was kept dark (;0 lx),
while the larger compartment (2/3) was illuminated (20 lx) by
a 75W light bulb located above. Rats were placed in the
center of the dark compartment facing toward the partition
at the beginning of the test, after seven consecutive defeats.
The sessions were recorded and the latency to enter the
light compartment as well as the percent (%) of time spent

in the light compartment during the 10-min test were scored
by individuals blind to the treatments.

Plasma CORTmeasurement
Plasma levels of CORT were determined as previously

described (Cottone et al., 2009; Fekete et al., 2011; Dore
et al., 2013; Iemolo et al., 2016). Blood was sampled from
the rats’ tails 14–18 h after the ninth CSDS session and col-
lected in tubes containing 0.5 M EDTA, pH 8.0 (Invitrogen,
ThermoFisher Scientific). Plasma was obtained after blood
centrifugation, and it was stored at �80°C until levels of
CORT-like immunoreactivity were determined using a com-
mercially available radioimmunoassay kit, according to the
manufacturer’s instructions (MP Biomedicals). Intraassay
and interassay coefficients of variation were,10%.

CRF IHC
Rats from the PAC1R KD experiment were euthanized

24 h after the last (10th) CSDS session. After transcardial
perfusion, coronal 30-mm sections were cut on a cryostat,
collected, and stored in cryoprotectant at �20°C. Every
sixth section (180mm apart) of the CeA (bregma range:
�2.0 to �3.0 mm) were processed for IHC. Slices were
pretreated with 100 mM urea (pH 9.5) for 10min at 95°C
followed by 10min in an iced water bath. Sections were
placed for 1 h in blocking solution (3% normal donkey
serum, 0.4% Triton X-100) and subsequently incubated
overnight at room temperature with a cocktail of two
primary antibodies in blocking solution, an anti-CRF
(1:200, Santa Cruz) and an anti-GFP (1:1500, Abcam).
Sections were then incubated with the secondary anti-
bodies donkey anti-rabbit Alexa Fluor 488 and donkey
anti-goat Cy3 (Jackson ImmunoResearch) 1:400 in block-
ing solution for 2 h at room temperature. Sections were
mounted onto glass slides, coverslipped with Vectashield
mounting medium (Vector Laboratories), and stored at
4°C.

Quantification of staining
Pictures of sections containing the CeL, where CRF

immunoreactivity is mostly concentrated in, were taken as
described above. CRF immunofluorescence pictures were
captured through the Texas Red Filter cube (Olympus)
under a preset exposure and gain. Densitometry analy-
ses were performed using ImageJ software (NIH); im-
ages were converted to 8-bit and adjusted using the
auto threshold Triangle algorithm. Once converted,
mean density of the tracing for immunohistochemical
signal was calculated and normalized based on the
size of the tracing area.

Statistical analysis
Three-way ANOVA was used on body weight change data

and on light-dark test data, with Defeat and AAV-shRNA as
between-subject factors and Time as a within-subject factor.
Two-way ANOVAs were used on CRF density data,
with Defeat and AAV-shRNA as between-subject fac-
tors. Pairwise post hoc comparisons were made using
Newman–Keuls test; Student’s t test was used when
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comparing two groups. Significance was set at p� 0.05.
The software/graphic packages used were SigmaPlot 11.0
and Statistica 7.0.

Results
Effects of CSDS on PACAP levels in the CeA and BNST
Rats were subject to 10 daily consecutive sessions of ei-

ther a CSDS procedure or a Ctrl. procedure, and brains
were collected 24 h after the last session for PACAP IHC.
As shown in Figure 1A, CSDS caused a significant increase
in PACAP levels (immunoreactivity) in the CeA (t(15) =
�6.93, p � 0.001). Indeed, using densitometry, we found
that CSDS animals showed a 23.3% increase in PACAP
levels in the CeA, compared with nondefeated, Ctrl. ani-
mals. Conversely, CSDS did not alter PACAP levels in the
BNST [t(18) = 0.05, not significant (n.s.)], as shown in Figure

1C (0.6% increase). Interestingly, CSDS significantly re-
duced PACAP levels in the PVN (t(18) = 3.62, p � 0.01;
Extended Data Fig. 1-1). Representative images of
PACAP immunoreactivity are shown in Figure 1B,C,E,F.
The PACAP immunoreactivity in the CeA consists of fi-
bers and is restricted to CeC and CeL, while in the BNST
fiber staining is restricted to BSTLD, and therefore these
were the subdivisions quantified. Interestingly, a single
SDS increased PACAP levels in both CeA and BNST
(Extended Data Fig. 1-2). Briefly, when a cohort of rats
(N= 8–9/group) was subject to a single social defeat
session (single SDS) or a Ctrl. procedure, and PACAP
immunoreactivity assessed 24 h later, a Single SDS was
found to cause a significant increase in PACAP immuno-
reactivity in both the CeC/CeL (t(15) = �3.98, p � 0.001,
47.2%; Extended Data Fig. 1-2A) and the STLD (t(14) =
�2.72, p � 0.05, 27.5%; Extended Data Fig. 1-2B).

Figure 1. Rats were subject to 10 daily consecutive sessions of either a CSDS procedure or a Ctrl. procedure, and brains were col-
lected 24 h after the last session for PACAP IHC in (A–C) CeA (CeC/CeL) and (D–F) BNST (STLD). N = 6–11/group. Representative
10� images of the staining in the (B) CeA and (E) BNST of Ctrl. and CSDS animals. 20� (left) and 40� (right) images of a represen-
tative PACAP staining in (C) CeA and (F) BNST. Bars represent mean 6 SEM; ***p, 0.001 versus Ctrl. CeA: CeC, capsular part;
CeL, lateral part; CeM, medial part of the CeA. BNST: STLP, lateral division posterior part; STLD, lateral division dorsal part of the
BNST. Extended Data Figure 1-1 shows the effects of 10d of CSDS on PACAP immunoreactivity in the PVN. Extended Data Figure
1-2 shows the effects of a single SDS session on PACAP immunoreactivity in the CeA and BNST.
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Effects of CSDS on PAC1R and CRFmRNA levels in
the CeA
A separate set of rats was subject to 10 daily consecu-

tive sessions of either a CSDS procedure or a Ctrl. proce-
dure, and brain punches containing the CeA were
collected 24 h after the last CSDS session. Using qPCR,
we found that CSDS rats display higher levels of PAC1R
mRNA in CeA, compared with Ctrl. rats (131.9%, t(16) =
2.11, p , 0.05) CRF mRNA in CeA was found to be unaf-
fected by CSDS (t(16) = 0.06, n.s.). We did not quantify the
PACAP transcript because PACAP is not synthetized in
this region and fibers are of nonlocal origin.

PAC1R knock-down in the CeA attenuates chronic
social defeat-induced reduction in body weight gain
Before the beginning of the CSDS paradigm (i.e., 26–

33d after AAV infusion), body weight did not significantly
differ between the AAV-GFP and AAV-PAC1R-shRNA
group (average 6 SEM, AAV-GFP: 376.06 3.4 g, AAV-
PAC1R-shRNA: 378.86 3.1 g; t(44) = 0.61, n.s.). Figure 3A
shows a representative viral spread in the CeA. As shown
in Figure 3B, in animals infused with a Ctrl. AAV (GFP
groups), CSDS induced a reduction in body weight gain
(white squares), compared with nondefeated, Ctrl. ani-
mals (white circles; CSDS: F(1,39) = 100.98, p � 0.001).
Knocking down PAC1R in the CeA threeweeks before the
start of the CSDS procedure was able to significantly at-
tenuate the CSDS-induced reduction in body weight
across the entire 10d defeat period (red squares, CSDS 1
AAV-PAC1R-shRNA) compared with CSDS-GFP, without
affecting body weight change in nondefeated, Ctrl. ani-
mals (red circles, Ctrl. 1 AAV-PAC1R; AAV Type � CSDS:
F(1,39) = 5.38, p � 0.05; AAV Type: F(1,39) = 7.57, p � 0.01).
Figure 3C shows the cumulative body weight gain of the
four groups of animals in the 10-d period.

Effects of PAC1R knock-down in the CeA on CSDS-
induced anxiety-like behavior
CSDS induced anxiety-like behavior, as measured by a

reduction in time spent in the light compartment of a light-

dark test box in CSDS-GFP animals compared with Ctrl-
GFP animals, as shown in the time course in Figure 4A.
Knock-down of PAC1R in the CeA was able to reverse
this heightened anxiety across the 10min of the test (AAV
Type � CSDS: F(1,35) = 4.65, p � 0.05). Indeed, CSDS 1
AAV-PAC1R-shRNA animals spent significantly more
time in the light compartment compared with CSDS 1
AAV-GFP animals and were no different from the Ctrl. 1
AAV-GFP group. Figure 4B shows the time spent in the
light compartment by the four groups of animals in the cu-
mulative 10min.
Furthermore, knock-down of PAC1R in the CeA signifi-

cantly decreased the latency to first exit the dark com-
partment of the box induced by chronic social defeat, as
shown in Figure 4C (AAV Type � CSDS: F(1,35) = 8.65, p �
0.01).

Effects of PAC1R knock-down in the CeA on plasma
CORT levels
CSDS induced a pronounced reduction in plasma circu-

lating CORT levels (CSDS: F(1,40) = 14.74, p � 0.001) and
knock-down of PAC1R in the CeA caused a further reduc-
tion in CORT levels (AAV Type: F(1,40) = 4.43, p � 0.05), as
shown in Figure 5. PAC1R knock-down did not differen-
tially affect CORT levels in the Ctrl. and CSDS group re-
gardless of CSDS exposure (AAV type � CSDS: F(1,40) =
0.75, n.s.). Indeed, the plasma CORT concentration for
the Ctrl. 1 AAV-GFP group was 42.16 6.3 ng/ml, this
value was 25.16 5.1 ng/ml in the CSDS 1 AAV-GFP
group and the lowest (8.16 1.2 ng/ml) in the CSDS 1
AAV-PAC1R-shRNA group.

Effects of PAC1R knock-down in the CeA on CSDS-
induced increases in CRF
Rats infused with either AAV-GFP or AAV-PAC1R-

shRNA and subject to either CSDS or a Ctrl. procedure
were euthanized 24 h after the last CSDS session and the
brains collected for CRF IHC. As shown in Figure 6A,
CSDS caused an increase in CRF immunoreactivity in the
CeA (Defeat: F(1,26) = 7.30, p � 0.05). However, the knock-
down of PAC1R in the CeA significantly attenuated social

Figure 2. Rats were subject to 10 daily consecutive sessions of either a CSDS procedure or a Ctrl. procedure, and brain punches
containing the CeA were collected 24 h after the last session for assessment of gene expression using qPCR: (A) PAC1R and (B)
CRF mRNA levels in the CeA. N = 6–11/group for PAC1R, 8–12/group for CRF. Bars represent mean 6 SEM; *p, 0.05 versus Ctrl.
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defeat-induced increase in CRF (AAV-PAC1R � CSDS:
F(1,26) = 4.12, p � 0.05). Representative images of CRF
IHC in the CeA are shown for the CSDS-GFP (Fig. 6B) and
the CSDS-AAV-PAC1R group (Fig. 6C).

Discussion
Our findings were the following: (1) PACAP levels were

increased in the CeA, but not the BNST, following CSDS;
(2) reducing PAC1R levels in the CeA via a viral vector
containing a short hairpin RNA significantly attenuated
CSDS-included body weight loss; (3) CeA PAC1R knock-
down abolished CSDS-induced heightened anxiety-like
behavior; (4) CeA PAC1R knock-down prevented CSDS-
induced local increase in CRF levels. Collectively, the re-
sults of the present study reveal an important role for
PACAP and PAC1R of the CeA in regulating the physio-
logical and behavioral responses to chronic psychosocial
stress.
The finding that PACAP immunoreactivity levels is high-

er in the CeA, but not in the BNST, of CSDS rats is a sig-
nificant one as, to our knowledge, selective increases in
CeA PACAP levels as a result of any type of chronic stress
have not been reported before. This increase was ob-
served 24 h after the last social defeat session, suggest-
ing that the effect does not dissipate shortly after the end
of the defeat session. Notably, a single SDS session
caused an elevation in PACAP levels in both CeA and
BNST (see Extended Data Fig. 1-2), in line with previous
reports showing that a single 10-min footshock session
increases PACAP immunoreactivity in both brain regions
(Seiglie et al., 2019). While the PACAP increase in BNST
following acute SDS appears, therefore, to be transitory in
nature and to undergo habituation with repeated ses-
sions, the PACAP increase in CeA is instead persistent,
suggesting that CeA PACAP recruitment could mediate
the effects of CSDS. In this study, PACAP immunoreactiv-
ity in both the CeA and BNST appeared as fibers and cell
bodies positive for the peptide were not visible, as re-
ported before (Köves et al., 1991; Piggins et al., 1996;
Hannibal, 2002; Seiglie et al., 2019). In line with the lack of
PACAP mRNA in these regions, the majority of these fi-
bers have been proposed to represent afferent projec-
tions from other brain areas, and in particular the lateral
parabrachial nucleus (lPBn), a critical source of the pep-
tide in CeA and BNST (Missig et al., 2014, 2017).
Interestingly, the chemogenetic activation lPBn-BNST
PACAP projection has recently been shown to enhance
anxiety-like behavior (Boucher et al., 2021b), while the ef-
fects of the direct stimulation of the lPBn-CeA PACAP
pathway has not yet been reported. Importantly, we found
using qRT-PCR that CSDS significantly increased PAC1R
levels in the CeA, suggesting that chronic exposure to this
psychosocial stress also upregulate the receptor.
To test the functional relevance of CSDS-induced in-

crease PACAP levels and increase in PAC1R expression
in CeA, a viral vector approach was used to test the effects
of knocking down PACAP selective receptor PAC1R, which
is highly expressed in this area (Joo et al., 2004), on the out-
comes of CSDS. Stress can have profound effects on body
weight. Acute and chronic stressors inhibit food intake and

Figure 3. Rats were bilaterally microinfused into the CeA either a
PAC1R knock-down adeno-associated viral vector (AAV-PAC1R-
shRNA) or a Ctrl. virus (AAV-GFP), and body weight was recorded
every 1–2d over the course of the CSDS (or Ctrl.) paradigm. A,
Representative image of viral spread in CeA (GFP). Effect of bilat-
eral CeA PAC1R knock-down on (B) body weight change across
days and (C) cumulative 10-d body weight change. N = 9–12/
group. Bars represent mean 6 SEM; **p� 0.01, ***p� 0.001 ver-
sus Ctrl. 1 AAV-GFP; #p�0.05, ##p�0.01 versus CSDS 1 AAV-
GFP.
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cause significant weight loss (Krahn et al., 1990; Martí et al.,
1994). In this study, CSDS reduced body weight gain
throughout the stress exposure period, consistent with pre-
vious findings (Bhatnagar et al., 2006; Krishnan et al., 2007;
Becker et al., 2008; Pulliam et al., 2010; Venzala et al.,
2012). We found that CeA PAC1R knock-down significantly
attenuated the stress-induced reduction in body weight
gain, suggesting that the PACAP released in CeA follow-
ing CSDS contributes to the reduced body weight gain.
Notably, the PAC1R knock-down had no effect on body
weight gain in Ctrl., unstressed rats, indicating that the
role of the PAC1R system in this specific brain region in
the regulation of body weight is specific to changes be-
cause of the stressors, rather than pure ingestive behav-
ior/metabolism. Although we did not measure food intake
in this study, previous studies have shown that, in models
of chronic stress, the reduction in body weight gain is a re-
sult of stress-induced hypophagia (Iio et al., 2012, 2014).
Our data showing a role of PACAP in stress-induced body
weight changes are in line with a previous study showing
that chronic administration of the PAC1R/VPAC2R an-
tagonist PACAP(6–38) is able to block chronic variable
stress-induced changes in weight gain (Roman et al., 2014),

as well as with another study showing that PACAP knock-
out mice are significantly protected from the effects of
chronic restraint stress on weight loss (Mustafa et al., 2015).
The induction of anorexia is a well-documented effect of
PACAP (Mounien et al., 2009; Dore et al., 2013; Resch et al.,
2013; Kocho-Schellenberg et al., 2014); our results are con-
sistent in particular with previous report that intra-CeA infu-
sion of PACAP causes anorexia and reduced body weight
gain (Iemolo et al., 2015).
The mechanism by which PAC1R blockade counteracts

body weight loss is not completely clear. Exogenous CRF
administration suppresses food intake and its release dur-
ing stress contributes to stress-induced hypophagia via
activation of CRFR1, as shown by the ability of CRFR1 an-
tagonists to block stress-induced inhibition of feeding be-
havior (Smagin et al., 1999; Griebel et al., 2002; Chotiwat
and Harris, 2008). Based on these actions of CRF, and
considering that PACAP has been shown to be upstream
of CRF for several of its actions (Tachibana et al., 2003;
Maruyama et al., 2006; Dore et al., 2013), we can specu-
late that the effect of PAC1R knock-down on CSDS-in-
duced body weight change may involve the inhibition of
the CRF/CRFR1 system. However, it is worth noting that

Figure 4. AAV-GFP and AAV-PAC1R-shRNA rats were subject to either CSDS or a Ctrl. procedure to assess the effects of bilateral
CeA PAC1R knock-down on anxiety-like behavior in the light-dark box test on (A) time spent in the light compartment across time,
(B) total time spent in the light compartment in the 10-min test, and (C) latency to first leave the dark compartment. N = 9–10/group.
Bars represent mean 6 SEM; *p�0.05, **p�0.01, ***p�0.001 versus Ctrl. 1 AAV-GFP; #p� 0.05, ##p�0.01, ###p� 0.001 versus
CSDS 1 AAV-GFP.
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the anorexigenic effect of PACAP in nonstressed condi-
tions does not appear to involve CRF (Dore et al., 2013;
Iemolo et al., 2015). Another possible mechanism could
be the inhibition of the melanocortin and BDNF systems,
as PACAP’s anorectic effects have been shown to involve
the activation of MC4R and TrkB in the CeA (Iemolo et al.,
2015). PAC1R knock-down in the CeA did not, however,
completely block the effects of CSDS on body weight
change, suggesting that other brain areas and/or other
systems are likely also involved in this phenomenon, or
that the degree of PAC1R knock-down attained in CeA
was insufficient to observe a full reversal.
CSDS has large effects on behavior. In general, de-

feated animals show signs of lower wellbeing, including a
heightened anxiety-like state, as measured with a variety
of tests (Kinsey et al., 2007; Bailey et al., 2009; Wohleb et
al., 2011; Hanke et al., 2012; Iñiguez et al., 2014; Macedo
et al., 2018). Here, we observed that CSDS induced anxi-
ety-like behavior, as evidenced by reduced time spent in
the light compartment of a light-dark box and of the in-
creased latency to first exit the dark compartment. The
light-dark test is based on an approach-avoidance con-
flict between exploration of a novel environment and
avoidance of brightly lit, open spaces and it is sensitive to
states of stress as well as anxiogenic/anxiolytic drugs
(Crawley and Goodwin, 1980; Crawley, 1985; Merlo Pich
and Samanin, 1989; Young and Johnson, 1991; Chaouloff
et al., 1997). PAC1R knock-down in the CeA was able
to prevent this CSDS-induced anxiety-like behavior,
suggesting that CeA PAC1R activation mediates this
behavioral effect of CSDS. Our results are in line with
previous observations with whole body PACAP dele-
tion, showing that CSDS-exposed PACAP knock-out

mice have markedly attenuated CSDS-induced emotional
deficits, compared with wild-type Ctrl. mice (Lehmann et
al., 2013). PAC1R knock-down in the CeA had no effect on
anxiety-like behavior in Ctrl., unstressed rats. This result is
consistent with the profile observed with PAC1R antago-
nists in previous studies (Seiglie et al., 2019) and suggest
that endogenous PACAP is not released in CeA under
basal, unstressed condition, and that instead this system
becomes activated in response to a high-intensity or
chronic stress. This profile shows similarities with CRFR1
antagonists, which display efficacy in exploration-based
models of anxiety under stressed, but not in nonstressed
testing conditions (Okuyama et al., 1999; Gilligan et al.,
2000; Griebel et al., 2002; Heinrichs et al., 2002; Zorrilla et
al., 2002; Lelas et al., 2004; Ising et al., 2007; Zorrilla and
Koob, 2010). The viral vector approach has clear advan-
tages over the classical pharmacological approach in this
specific case, in that it allows to skip the issue of poor se-
lectivity of available PAC1R antagonists and allows to
reach a constant blockade of PAC1R during the course of
the CSDS exposure, without the need for repeated intra-
cranial injections.
We also assessed the effect of CeA PAC1R knock-

down on plasma CORT levels in both unstressed and
CSDS animals. We found lower basal CORT levels in
CSDS rats compared with Ctrls., is in line with previous
preclinical reports showing reduced baseline CORT levels
and blunted hypothalamic pituitary adrenal (HPA) axis re-
activity following CSDS, predator exposure models, and
immobilization paradigms (Liberzon et al., 1997; Beitia et
al., 2005; Harvey et al., 2006; Arndt et al., 2009; Zoladz et
al., 2015), and consistent with what observed clinically in
PTSD patients (Yehuda et al., 1993; Yehuda, 2001). The
hyporeactive HPA axis characteristic of PTSD is thought
to be because of enhanced negative feedback sensitivity
via increased glucocorticoid receptor responsiveness
(Yehuda et al., 2009; Hartmann et al., 2012; Schöner et
al., 2017). Notably, the reduced basal CORT levels in
CSDS rats may be in agreement with the reduced PACAP
levels we found in the PVN; since PACAP in this brain re-
gion has been shown to mediate stress-induced activa-
tion of the HPA axis as well as elevations in CRF mRNA
(Stroth and Eiden, 2010; Lehmann et al., 2013), PACAP
reductions in PVN by CSDS may be responsible for
the lower basal CORT levels. Interestingly, CeA PAC1R
knock-down further decreased basal CORT levels, in both
unstressed and CSDS rats. While this is in line with previ-
ous report that exogenous intra-CeA administration of
PACAP elevates plasma CORT levels (Iemolo et al., 2016);
it also suggests that the reversal of the CSDS-induced
heightened anxiety-like behavior is not a consequence of its
effects on the HPA axis, as PAC1R knock-down did not
“normalize” CORT levels in CSDS animals, but rather a cu-
mulative effect of CSDS and CeA PAC1R knock-down was
observed. These results are in agreement with the notion
that the behavioral response to stress is mediated by the ex-
tended amygdala and occurs independently of HPA axis
activation (Britton et al., 1986; Dunn and Berridge, 1990;
Menzaghi et al., 1994; Koob and Heinrichs, 1999) and with
previous findings that the anxiogenic and the HPA activating

Figure 5. AAV-GFP and AAV-PAC1R-shRNA rats were subject
to either CSDS or a Ctrl. procedure to assess the effects of bi-
lateral CeA PAC1R knock-down on plasma CORT levels. N = 9–
12/group. Bars represent mean 6 SEM; ***p , 0.001 versus
Ctrl groups; #p�0.05 versus AAV-GFP groups.
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effects of PACAP administration involve different mecha-
nisms (Dore et al., 2013).
The CeA is a very heterogeneous structure with a rich

diversity of cell types and complex circuitry (Ciocchi et al.,
2010; Haubensak et al., 2010; Ahrens et al., 2018;
McCullough et al., 2018), and the PACAP neurocircuit
mechanisms in the CeA are so far not well understood.
Using IHC, we found that CSDS resulted in a significant
increase in CRF levels in the CeA. This observation is in
line with previous findings showing elevated CRF and ele-
vated CRF receptor binding in the CeA following chronic
psychosocial stress (Fuchs and Flügge, 1995; Albeck et
al., 1997). PAC1R knock-down in the CeA was able to sig-
nificantly prevent the increases in CRF levels caused by
CSDS, suggesting that CRF activation may be the down-
stream mechanism mediating the detrimental effect of
PAC1R upregulation and hyperactivity. While CSDS-GFP
animals had about a 75% increase in CeA CRF compared
with their nonstressed counterparts, CSDS-PAC1R knock-
down rats had only a 10% increase from their nonstressed
counterparts and, most striking, 45% less CRF in the CeA
compared with the defeated-GFP rats. CeA PAC1R knock-

down had no effect on CeA CRF levels in nonstressed
Ctrls. CRF in the CeA is expressed both in neuronal cell
bodies made locally as well as in terminals originating also
from afferent brain regions; since our data showed that
CSDS does not affect CeA CRF mRNA, we focused on
CRF terminals and used densitometry to quantify CRF
staining, as fiber staining is very evident and limited CRF-
immunoreactive neurons can be detected unless animals
are previously treated with an axonal transport blocker
(Wang et al., 2011). Central administration of PACAP has
been shown to augment CRF expression and CRF neuro-
nal activation in the hypothalamus (Grinevich et al., 1997;
Li and Sawchenko, 1998; Agarwal et al., 2005; Norrholm et
al., 2005) as well as CRF peptide levels in the CeA (Dore et
al., 2013), whole-body PACAP deletion prevents the in-
crease of CRF expression by prolonged stress (Stroth and
Eiden, 2010). We speculate that PACAP may affect local
CRF release via a presynaptic action on CRF terminals in
the CeA. In support of the former hypothesis, Varodayan et
al. (2020) found that, in the medial subdivision of CeA (CeM),
PACAP increases CeM GABA signaling via a presynaptic
mechanism of action on PAC1R which, in microcircuits

Figure 6. AAV-GFP and AAV-PAC1R-shRNA rats were subject to either CSDS or a Ctrl. procedure and were then euthanized to as-
sess the effects of bilateral CeA PAC1R knock-down on (A) CRF immunoreactivity in the CeL (optical density). N = 6–9/group.
Representative CRF staining in the CSDS 1 AAV-GFP and CSDS 1 AAV-PAC1R groups (B, C). Bars represent mean 6 SEM;
**p� 0.01 versus Ctrl. 1AAV-GFP; #p� 0.05 versus CSDS 1 AAV-GFP. CeC, capsular part; CeL, lateral part; CeM, medial part of
the CeA.
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containing multiple GABAergic neurons, can result in a dis-
inhibition of inhibitory neurons and an increase in net CeM
stimulatory output. Interestingly, a similar presynaptic in-
crease in GABA release has been shown for CRF in the
same model (Cottone et al., 2009; Roberto et al., 2010; Cruz
et al., 2012; Varodayan et al., 2017). Therefore, our results
are in line with a proposed involvement of the local CRF sys-
tem in the effects of PACAP in the CeA, although future ex-
periments will need to test this hypothesis directly. Another
hypothesis that could be tested in future studies is that
PACAP released in CeA during stress may activate the
PKCd neuronal population, whose activation elicits aver-
sion, anxiety, and nociception (Cai et al., 2014; Botta et
al., 2015; Wilson et al., 2019; Chen et al., 2022). Future
experiments will be needed to determine the cell-types
and circuits activated by PACAP, to better understand
how this neuropeptide fits into this structural and func-
tional complexity.
These results point to a key role of CeA, and not BNST, in

the effect of this specific type of chronic stressor. Although
the areas activated following social defeat have been de-
scribed, the role of specific brain areas in CSDS-induced
emotional dysregulation remains unclear. Specifically in the
context of the extended amygdala, it has been proposed
that chronic stress, and the anxiety-related behaviors re-
sulting from it, is related more to the functioning of the
BNST than the amygdala (Davis et al., 1997; Walker et al.,
2009; Ressler, 2010). Our data suggest instead that this no-
tion that CeA is involved in short-term, phasic fear while the
BNST would mediate sustained fear may not always be ac-
curate, perhaps depending on the specific type and pattern
of stress (and, accordingly, while here CSDS selectively in-
creases PACAP in CeA, chronic variable stress has been
shown to selectively increase PACAP in BNST; Hammack
et al., 2009; Lezak et al., 2014). Our results are consistent
with the extensive preclinical and human literature suggest-
ing that a hyperreactive amygdala is key to an exaggerated
perception of the threat, and to anxiety and mood disorders
in general (Roozendaal et al., 1997; Whalen et al., 2001;
Davidson et al., 2002; Frodl et al., 2008; Admon et al., 2009;
Pitman et al., 2012). In addition, circuits mediating anxiety/
aversion versus fear conditioning are recently beginning to
be differentiated, which may have played a role in the appa-
rent discrepancy (Ciocchi et al., 2010; Haubensak et al.,
2010; Cai et al., 2014; Meloni et al., 2019; Wilson et al.,
2019; Chen et al., 2022). In addition, our data are a further
demonstration that while the magnitude of the HPA stress
response is limited by negative feedback mechanisms, the
enhanced amygdala activity following chronic stress can
trigger a positive feedback loop which potentiates anxiety
and avoidance, therefore potentially promoting the devel-
opment of stress-related pathologies (McEwen, 2017). A li-
mitation of this study is that it was performed exclusively in
male subjects because historically the CSDS model was
developed in males; future studies will be needed to deter-
mine either the generalizability or the selectivity of the ef-
fects using female animals.
Altogether, these results suggest that chronic psycho-

social stress recruits the PACAP/PAC1R system of the
CeA in rats and that it mediates its negative physiological

and behavioral consequences, independently of the HPA
axis. Perturbations of the CeA PACAP-PAC1R system
may, therefore, mediate the aberrant stress responses
characteristic of anxiety-related disorders and PTSD,
perhaps via a modulation of CRF release. PACAP and
PAC1R represent potential important therapeutic targets
for these psychopathologies.
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