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ABSTRACT: Metaproteomics has been increasingly utilized for high-
throughput characterization of proteins in complex environments and has
been demonstrated to provide insights into microbial composition and
functional roles. However, significant challenges remain in metaproteomic
data analysis, including creation of a sample-specific protein sequence
database. A well-matched database is a requirement for successful
metaproteomics analysis, and the accuracy and sensitivity of PSM
identification algorithms suffer when the database is incomplete or
contains extraneous sequences. When matched DNA sequencing data of
the sample is unavailable or incomplete, creating the proteome database
that accurately represents the organisms in the sample is a challenge. Here,
we leverage a de novo peptide sequencing approach to identify the sample
composition directly from metaproteomic data. First, we created a deep
learning model, Kaiko, to predict the peptide sequences from mass spectrometry data and trained it on 5 million peptide−spectrum
matches from 55 phylogenetically diverse bacteria. After training, Kaiko successfully identified organisms from soil isolates and
synthetic communities directly from proteomics data. Finally, we created a pipeline for metaproteome database generation using
Kaiko. We tested the pipeline on native soils collected in Kansas, showing that the de novo sequencing model can be employed as an
alternative and complementary method to construct the sample-specific protein database instead of relying on (un)matched
metagenomes. Our pipeline identified all highly abundant taxa from 16S rRNA sequencing of the soil samples and uncovered several
additional species which were strongly represented only in proteomic data.
KEYWORDS: de novo sequencing, deep learning model, metaproteomics, soil microbiome

1. INTRODUCTION
The soil microbiome is responsible for carrying out many
functions that are important on a global scale, including cycling
of carbon and other nutrients and support of plant growth.
Over the last few decades, high-throughput sequencing
technologies have made great strides in revealing the soil
microbial community composition in a variety of soil habitats
and how those communities are impacted by environmental
change. Amplicon sequencing has revealed that soil and
sediment microorganisms have a very high diversity, much
more so than other ecosystems.1 In addition, metagenome
sequencing has proven to be an extremely useful tool for
determining not only the composition of soil microbiomes but
also their putative functions. However, not all genes detected
in a metagenome survey are actively expressed, and significant
challenges remain in understanding the biological functions
that are carried out by active members of the soil microbiome.
Other meta-omics technologies, such as metatranscriptomics
and metaproteomics, have helped to close this current
knowledge gap. Metatranscriptomics provides information on

community transcription and is often used as a proxy for
assigning metabolically active members of a soil microbiome.
However, metatranscriptomics can only provide a snapshot of
gene expression at the moment of sampling. A significant
amount of post-transcriptional regulation affects protein
abundance and activity.2 Therefore, metaproteomics provides
an essential layer of information about microbiome activity by
revealing which proteins are actually produced and have passed
transcriptional and translational regulation points.3

Despite the promise of metaproteomics for elucidating
functions of elusive soil microorganisms, significant challenges
remain.4−6 An important assumption in most mass spectrom-
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etry proteomics identification algorithms is that the set of
potential proteins is known, and thus a database of these
protein sequences is a typical requirement.7−9 In environ-
mental samples, however, obtaining an accurate catalog of
organisms and their proteins is a challenge, as it is not possible
to know the organisms present in the sample beforehand.
Amplicon and metagenome sequencing of a matched sample is
often used to identify community membership; however, many
species might not be observable by sequencing.10−15

Alternatively, some metaproteomics algorithms attempt to
identify species from an exhaustive sequence database like the
113 million protein sequences in NCBI’s RefSeq.16 A final
method is a two-step search of the data, where the first step
identifies the organisms present and the second step utilizes a
database of proteins from organisms identified in the first step.
Most commonly, the first step is done with a very large
sequence database and a database search algorithm.17−19 If
using this two-step strategy, it is essential to identify the
organisms present in a sample with taxonomic precision, so
that databases include as few species as possible. Therefore,
methods for constructing an optimal metaproteomics database
are an area of significant interest.6,9

Here we present a new method to generate a protein
database directly from metaproteomic data using de novo mass
spectrometry20 to identify species from the annotated peptides
and then gather full proteomic databases for these organisms.
As currently available software tools for de novo identification
were not sufficiently accurate for environmental samples, we
first needed to train a new deep learning model with a library
of diverse organisms. To achieve this, we mined the extensive
data archive housed in the Environmental and Molecular
Sciences Laboratory resulting in a training data set including
spectra from 55 bacteria across 9 phyla. After confirming that
the new model could successfully identify organisms from soil
isolates and synthetic communities, we applied the model to
metaproteomics samples. Using a metaproteomics data set
from Kansas soil, our pipeline identified all abundant taxa
identified in traditional 16S data as well as identifying new
abundant organisms in the soil. Using the identified organisms,
we reanalyzed the metaproteomics data and identified
differential metabolic functions between species in the
microbiome.

2. METHODS

2.1. Data Generation for Kaiko

Organism Choice. The most important aspect of selecting
organisms from which to create MS/MS spectra used for
training the machine learning algorithm is the diversity of the
peptide sequence. In order for the model to generalize and
become broadly useful to any organism in any environmental
niche, the diversity of sequences must be sufficient for the
model to learn general principles. For this reason, we chose a
large number of phylogenetically diverse organisms as opposed
to extensive LC-MS/MS of a more limited number of
organisms. As such, the exact organism is less important than
their contribution to diversity. To be explicit, although we
chose bacteria commonly found in soils, we could have chosen
any organisms from any environment as long as the sufficient
number of diverse peptide/spectrum matches was generated.
Our goal was 1 million unique peptides. We identified
organisms which could be accurately sourced (e.g., available
from ATCC) and had a curated proteome available in public

repositories like Uniprot and Genbank. We made a special
effort to gather bacteria from different phyla, as the bacterial
phylal radiation event happened 3.5 billion years ago and
therefore would be most likely to provide sufficient sequence
diversity.

Cell Culture and Sample Preparation. The growth,
sample preparation, and data collection were reported
previously.21 Cells were harvested by centrifuging at 3500 ×
g for 5 min at room temperature and washed twice with 5 mL
PBS by centrifuging at the same conditions. Cells were lysed in
a Bullet Blender (Next Advance) for 4 min at speed 8 in 200
μL of 100 mM ammonium bicarbonate (NH4HCO3) and
approximately 100 μL 0.1 mm zirconia/silica beads at 4 °C.
Lysates were transferred into clean tubes, and the remaining
beads were washed with 200 μL of 100 mM NH4HCO3. The
supernatants from the washing step were collected and
combined with the cell lysate. Resulting protein extract was
assayed by bicinchoninic acid (BCA) assay (Thermo Fisher
Scientific, San Jose, CA) following manufacturer’s instructions.
Aliquots of 300 μg of proteins were denatured and reduced
using 8 M urea and 5 mM DTT, and incubated at 60 °C for 30
min with 850 rpm shaking. Samples were then diluted 10-fold
in 100 mM NH4HCO3, and CaCl2 was added to a final
concentration of 1 mM using a 1 M stock. Trypsin was added
at 1/50 of the protein concentration, and the digestion was
carried out for 3 h at 37 °C. Digestion products were desalted
in 1 mL C18 cartridges (50 mg beads, Strata, Phenomenex).
Cartridges were activated with 3 mL of methanol and
equilibrated with 2 mL of 0.1% TFA before loading the
samples. After sample loading, the cartridges were washed with
4 mL of 5% acetonitrile (ACN)/0.1% TFA and peptides were
eluted with 1 mL of 80% ACN/0.1% TFA. Peptides were dried
in a vacuum centrifuge, resuspended in water, and assayed
using a BCA assay. Peptide concentrations were normalized to
0.1 μg/μL before randomization and analysis by liquid
chromatography−tandem mass spectrometry (LC-MS/MS).

LC-MS/MS Data Acquisition. The data acquisition was
performed as previously described in detail21 using a Waters
nanoEquity UPLC system (Millford, MA) coupled with a Q
Exactive Plus mass spectrometer from Thermo Fisher Scientific
(San Jose, CA). The LC was configured to load the sample first
on a solid-phase extraction (SPE) column followed by
separation on an analytical column. 500 ng of peptides were
loaded into the SPE column (5 cm × 360 μm OD × 150 μm
ID fused silica capillary tubing (Polymicro, Phoenix, AZ),
packed with 3.6 μm Aeries C18 particles (Phenomenex,
Torrance, CA), and the separation was carried out in a
capillary column (70 cm × 360 μm OD × 75 μm ID packed
with 3 μm Jupiter C18 stationary-phase particles (Phenomen-
ex). The elution was performed at a 300 nL/min flow rate and
the following gradient of acetonitrile (ACN) in water, both
containing 0.1% formic acid: 1−8% ACN solvent in 2 min; 8−
12% ACN in 18 min; 12−30% ACN in 55 min; 30−45% ACN
in 22 min; 45−95% ACN in 3 min; hold for 5 min in 95%
ACN and 99−1% ACN in 10 min. Eluting peptides were
directly analyzed in the mass spectrometer by electrospray
using etched silica fused tips.22 Full MS spectra were acquired
at a scan range of 400−2000 m/z and a resolution of 35,000 at
m/z 400. Tandem mass spectra were collected for the top 12
most intense ions with ≥2 charges using high-collision energy
(HCD) fragmentation from the collision with N2 at a
normalized collision energy of 30% and a resolution of
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17,500 at m/z 400. Each parent ion was targeted once for
fragmentation and then dynamically excluded for 30 s.

Peptide Identification for Training/Testing the Kaiko
Model. In the training and test sets, the true source/taxonomy
of each sample is known. To create the ground truth of
spectrum identifications, we used the correct organism’s
protein sequence database and annotated spectra with the
MSGF+ algorithm, as previously described.21 PSM results from
MSGF+ were filtered using a q-value threshold of 0.001. The
PSMs passing this filter were considered the ground truth for
the deep neural network training and testing. Because our use
of this data is for de novo spectrum annotation, we limited
peptides/spectrum matches further to exclude peptides longer
than 30 residues, as these were unlikely to have complete
peptide fragment peaks, which are important for a de novo
solution. We also filtered peptides with a precursor mass of
>3000 Da. After filtering, the total number of distinct peptides
was 1,013,498 from 5,116,305 spectra. Peptide sequences are
highly specific to each organism, and the overlap between
organisms was very low. Except for the pairs of organisms
within the same genus or species (i.e., the two different strains
of B. subtilis or the two different species within Bif idobacte-
rium), the average amount of shared peptides between any two
organisms was ∼0.17%. These arise from highly conserved
proteins like EF-Tu or RpoC for which peptides can be found
conserved across phyla.
2.2. Training Kaiko

Codebase. Kaiko is based on DeepNovo, a deep neural
network algorithm for peptide/spectrum matching.23 We
downloaded the source code for DeepNovo (https://github.
com/nh2tran/DeepNovo) and its pretrained model, which is
publicly available at https://drive.google.com/open?id=
0By9IxqHK5MdWalJLSGliWW1RY2c. As described below,
we modified the original DeepNovo codebase, keeping with
Python 2.7 and TensorFlow 1.2 as used in the original. First,
we modified the codebase to accept multiple input files for
training and testing. Our training and testing data came from
over 250 mass spectrometry files, but the original DeepNovo
was designed for only a single input file. Therefore, we added
extra command-line options (e.g., --multi_decode and
--multi_train) and the associated wrapper methods to allow
for multifile execution. A second change was done to avoid
rebuilding the Cython codes on every parameter adjustment.
For this, we replaced the Cython with the python numba
package without any loss of performance and speed. Finally, we
changed the code for spectral modeling based on domain
knowledge. Specifically, we corrected the mass calculation of
doubly charged ions and changed the bins used for isotopic
profiles within the ion-CNN model. Our new model and
software are available at https://github.com/PNNL-Comp-
Mass-Spec/Kaiko.
We trained multiple models for Kaiko, which differed

primarily in the number of peptides/spectra used during
training: ∼300 K spectra, 1 M spectra, 2 M spectra, 3 M
spectra, and the final models trained with all spectra (see
Figures S1 and S2). When training the final model on the full
data set, we adjusted the learning rate to 10−4 rather than using
the default value (10−3) of AdamOptimizer in DeepNovo.
Training our final model requires very significant computa-
tional resources and time. With the hardware used in this
project, training took ∼12 h per epoch; our final model was
achieved after 60 epochs. All training and testing were

performed on PNNL’s Marianas cluster, a machine learning
platform that is part of PNNL’s Institutional Computing.
System specifications on the nodes used in this training were as
follows: Dual Intel Broadwell E5−2620 v4 @ 2.10 GHz CPUs
(16 cores per node), 64 GB 2133 MHz DDR4 memory, and
Dual NVIDIA P100 12GB PCI-e based GPUs.

Experimental Design and Statistical Rationale. Given
that Deep Neural Networks are very sensitive to overfit during
the training procedure, we anticipated that a very large amount
of data would be required to make useful models. The original
DeepNovo was trained on 50,000 spectra, and we believed that
a significantly larger amount of data would be necessary. As
described below in Assessing Progress, we were able to quickly
determine that a model with only 300,000 spectra was overfit.
We therefore determined that we would aim for 5,000,000
spectra representing about 1,000,000 peptides in order to have
sufficient data for training the very large neural networks that
comprise Kaiko. During training we were able to determine
that this number was more than sufficient to produce a
generalized model that did not overfit to training data. Spectra
included in the training, validation, and testing set are assessed
as described above in the Data Generation section.

Assessing Progress. The training regimen for deep
learning is pragmatically broken up into several rounds of
iteration over the training data, called epochs. During each
epoch, a minibatch stochastic optimization was employed, in
which each batch of 128 spectra is randomly chosen and
training proceeds on each batch one at a time. The model is
trained by updating the parameters within the neural network
(weights and biases) after each batch is compared to the true
labels. While training, the error associated with the model can
be calculated as a cross-entropy loss for the probabilities of
correctly predicting the amino acid letters on the training data.
After each batch, we also randomly sample 15,000 spectra from
the validation data set (∼1% of total testing data) and compute
the loss error, which we call the validation error. Importantly,
model performance on this validation set is not used to update
the model parameters; we simply use it to independently
evaluate model performance and make a checkpoint to track
the best models. The training and validation errors after each
batch for 20 epochs of training are shown in Figure S2.
By comparing the training and validation errors, we clearly

see when the model has started to overfit. This happens when
the training error crosses over (becomes smaller than) the
validation error and continues to decrease as the validation
error levels off. This is a result of the model learning specific
features of the training data that are not generalizable. In
models built with more than 3 million spectra, no overfitting is
seen yet; models built with less than 3 million spectra quickly
overfit to the training data.
2.3. Comparing Kaiko to Other De Novo Tools

To compare the performance of Kaiko to state-of-the-art de
novo tools, we analyzed all files in the testing data sets using
DeepNovo,23 PEAKS,24 and Novor.25 As mentioned above, we
used a pretrained model for the DeepNovo to predict peptide
sequences for the test files using a “decode” option. PEAKS
Studio version 8.5 was run using the default data refinement
options on mzML formatted data.26 De novo settings were as
follows: precursor error tolerance - 20 ppm, fragment ion error
tolerance - 0.02 Da. Oxidation of methionine was set as a
variable modification. For Novor, the spectral files were
converted from mzML to Mascot generic format (MGF) using
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MSConvert.27 Novor version 1.05 was run using the following
settings: fragmentation - HCD, massAnalyzer - FT, precursor
error tolerance - 20 ppm, fragment ion error tolerance - 0.02
Da. Oxidation of methionine was set as a variable modification.
All other settings were left at their defaults. Only the best
peptide spectrum match was used in the evaluation. Please
refer to https://github.com/PNNL-Comp-Mass-Spec/Kaiko_
Publication/analysis/for_novor and /for_peaks for specific
implementation details.
2.4. Assigning Taxonomy to Unknown Samples

Proteomics data from six bacterial soil isolates was acquired
using the same sample preparation and LC-MS/MS methods
as described above. The isolates are from the natural isolate
collection at the Kristen DeAngelis laboratory at the University
of Massachusetts Amherst, and researchers at PNNL were
blinded to the identity of these isolates until after both data
generation and analysis were finished. Kaiko’s top-scoring
peptide sequence for each spectrum was used for species
identification. We filtered these peptide/spectrum matches to
include only the top 25% according to Kaiko’s quality
prediction score. We then exclude sequences shorter than 10
and longer than 17 residues. The resulting sequences were
used to search the Uniref100 protein database (https://www.
uniprot.org/uniref/) using DIAMOND28 to identify an
organism(s) containing that peptide sequence. Only database
matches of 100% were retained for species prediction. Taxon
scoring then proceeded using a two-pass procedure. In the first
pass, for each peptide sequence, all taxa possessing a 100%
match were assigned 1 hit, such that multiple taxa were often
assigned a hit from a single peptide sequence. Taxa were then
ranked by the total number of hits assigned. In the second pass,
hits were only assigned to the highest-ranking taxon with a
100% match to each predicted sequence. In this way, scoring is
assigned to the candidate most likely to be correct.
For the analysis of the simplified human intestinal

microbiota (SIHUMIx) synthetic community,29 we down-
loaded proteomic data from PRIDE accession PXD017035,
http://ftp.ebi.ac.uk/pride-archive/2020/02/PXD017035/. All
data sets corresponding to a transit time of 12 h from day 1 to
15 were downloaded and analyzed using the same method as
above to determine eight bacterial strains present in the
synthetic community.
2.5. Metaproteomics Data Analysis

Sample Preparation from Soils. Kansas prairie soil was
quickly thawed and weighed into 10 g aliquots in 50 mL
methanol/chloroform compatible tubes (Genesee Scientific,
San Diego, CA) along with 10 mL of 0.9−2.0 mm stainless
steel beads, 0.1 mm zirconia beads, and 0.1 mm garnet beads.
All beads had previously been washed with chloroform and
methanol and dried in a fume hood. Protein extraction
occurred using a modified method of the Folch extraction30

specifically for soil called Soil MPLex (Metabolite, protein,
lipid extraction).31 Here, 4 mL of ice-cold ultrapure “Type 1”
water (Millipore, Billerica, MA) was added to each sample and
transferred to an ice bucket in a fume hood. Using a 25 mL
glass serological pipet, −20 °C 2:1 chloroform:methanol (v/v)
(Sigma-Aldrich, St. Louis, MO) was added to the sample in a
5:1 ratio over sample volume (20 mL) and vigorously mixed
(by vortexing). The tubes were attached to a 50 mL tube
vortex-attachment and horizontally mixed for 10 min at 4 °C
and placed inside a −80 °C freezer for 5 min. Using a probe
sonicator (model FB505, Thermo Fisher Scientific, Waltham,

MA) inside a fume hood, each sample was sonicated with a 6
mm probe (20 kHz fixed ultrasonic frequency) at 60% of the
maximum amplitude for 30 s on ice, allowed to cool on ice,
and then sonicated once more. Samples were allowed to cool
for 5 min at −80 °C and then mixed for 60 s and centrifuged at
4500 × g for 10 min at 4 °C. The upper aqueous phase was
removed, and the interphase containing proteins that
partitioned between the methanol and chloroform phases
was collected into a separate tube and precipitated through the
addition of 5 mL of −20 °C 100% methanol. Following
methanol addition, the tube was mixed and then centrifuged at
4500 × g for 5 min at 4 °C in order to pellet the proteins. The
supernatant was decanted, and the protein pellet dried upside
down. Meanwhile, the bottom organic phase was removed, and
5 mL of −20 °C 100% methanol was added to the bottom
debris pellet, mixed, and centrifuged at 4500 × g for 5 min at 4
°C. The supernatant was removed, and the protein pellet was
dried upside down. Protein pellets from both the debris and
the interphase were frozen and lyophilized for 2 h.
Proteins from the interphase were solubilized by addition of

10 mL of SDS-Tris buffer containing 4% sodium dodecyl
sulfate (SDS), 100 mM DL-dithiothreitol (DTT) in 100 mM
Tris-HCl, pH 8.0 (Sigma-Aldrich, St Louis, MO), briefly probe
sonicated at 20% amplitude, and then incubated on a lab tube
rotator for 30 min at 300 rpm, 50 °C. Proteins from the debris
pellet were solubilized in 20 mL of SDS buffer, horizontally
vortexed for 10 min to lyse any remaining intact cells, and then
combined with the interphase proteins and mixed on the
rotator assembly for the time remaining (approximately 20
min). Following mixing, the tubes were centrifuged at 4500 × g
for 10 min, and the supernatants from each tube were
combined into a single 50 mL tube. The proteins were
precipitated by adding up to 25% trichloroacetic acid (TCA;
Sigma-Aldrich, St. Louis, MO), mixed, and placed at −20 °C
overnight. The proteins were thawed and centrifuged at 4500
× g at 4 °C for 10 min to collect the precipitated proteins. The
supernatant was gently decanted, and the protein pellet washed
through addition of 2 mL of −20 °C acetone, mixed, and then
placed at −80 °C for 5 min. Proteins were pelleted by
centrifugation for 10 min at 4500 × g at 4 °C. The acetone was
removed by gently decanting, and the wash step was repeated 2
more times. The washed pellet was then air-dried by inverting
the tube. After drying, 100−200 μL of SDS-Tris buffer was
added; the solution was transferred into 1.5 mL tubes and
incubated at 95 °C for 5 min, then cooled at 4 °C for 10 min.
The samples were centrifuged at 15,000 × g for 10 min to
pellet any remaining debris and transferred into fresh 1.5 mL
tubes in preparation for digestion using the Filter-Aided-
Sample-Preparation (FASP) digestion method.32 For protein
digestion, up to 30 μL of proteins in SDS-Tris buffer were
transferred to a 30,000 Da molecular weight cut off (MWCO)
500 μL spin filter provided in the Expedeon FASP kit
(Expedeon LTD, Cambridgeshire, UK) along with 400 μL of 8
M urea solution. The spin filter was centrifuged at 14,000 × g
for 30 min. The waste was removed from the collection tubes,
and 400 μL of 8 M urea solution was added to each sample
and centrifuged as described above, then repeated for a total of
3 urea additions. 400 μL of 25 mM NH4HCO3, pH 8, was
added and centrifuged as described above, then repeated for a
total of 2 ammonium bicarbonate washes. The spin column
was transferred into a freshly labeled collection tube, and 75
μL of NH4HCO3 was added to the filter along with 4 μL of 1
μg/μL molecular grade trypsin (Thermo Fisher, Waltham,
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MA), then incubated at 37 °C for 3 h. After digestion, 40 μL of
NH4HCO3 was added to the sample and centrifuged at 14,000
× g for 20 min. Another 40 μL of NH4HCO3 was added to the
top of the filter, mixed, and centrifuged again for 10 min. The
filter was discarded, and the collected peptides were treated
with potassium chloride (KCl) in order to ensure all the SDS
was removed.33 To accomplish this, potassium chloride was
added to the peptides in NH4HCO3 resulting in a final
concentration of 2 M KCl, and then mixed and allowed to rest
for 10 min at room temperature. To pellet the SDS, the
peptide solution containing NH4HCO3 and KCl was
centrifuged at 14,000 × g for 10 min. The supernatant was
transferred to a fresh tube without disturbing the SDS pellet,
and salts were removed using a microspin C18 column
according to the manufacturer’s instructions (the Nest Group,
Inc., Southborough, MA). Peptides from the aliquots of 10 g of
soil were combined to generate a single peptide sample. A
bicinchoninic acid (BCA) assay (Thermo Fisher Scientific,
Waltham, MA) was performed to determine the peptide
concentration.
The peptide sample was separated with a commercial Waters

(Milford, MA) XBridge 5 μm particle size C18 column (4.6
mm i.d. × 250 mm length) with an attached 20-mm-long ×
4.6-mm-i.d. guard column. Fractionation was performed at 0.5
mL/min using an Agilent 1100 series HPLC system (Agilent
Technologies, Santa Clara, CA) with two mobile phases: (A)
10 mM NH4HCO2 (pH 10.0) and (B) 10 mM NH4HCO2
(pH 10.0) with acetonitrile (10:90). A six-step gradient was
adjusted over 120 min by replacing mobile phase A with B
according to (1) 100−95% over the first 10 min, (2) 95−65%
from minutes 10 to 70, (3) 65−30% from minutes 70 to 85,
(4) then maintained mobile phase A at 30% from minutes 85
to 95, (5) re-equilibrated with 100% mobile phase A from
minute 95 to 105, and (6) mobile phase A held at 100% until
minute 120. Fractions were collected every 1.25 min (96
fractions over the entire gradient) with every 24th fraction
combined for a total of 24 final fractions (rows of a 96 well
plate were pooled by every other row). All fractions were dried
under vacuum and suspended in 25 μL H2O. A final BCA assay
was done on the fractions, and each was diluted to 0.1 μg/μL
for LC-MS/MS analysis. (See LC-MS/MS data acquisition
methods above.)

Analyzing 16S rRNA Amplicon Sequences. 16S rRNA
gene amplicon sequencing data was downloaded from https://
osf.io/4uvj7/, performed using the protocol developed by the
Earth Microbiome Project.1 Please refer to the previous
studies34,35 for 16S rRNA gene amplicon sequencing in detail.
The 16S rRNA amplicon sequences were first reprocessed by
Hundo pipeline36 (v1.2.8), a command line interface work
comprising a set of existing software together with validated
custom methods derived from QIIME.37 In brief, the
sequences were first quality filtered to remove the adaptors
and contaminated reads from Phix genomes by BBDuk2.38

The passing reads were merged and checked for chimera,
which were subjected to clustering into OTUs by VSEARCH39

using the default parameters. The abundance of each OUT was
estimated by the read coverage of the OUT representative
sequences (VSEARCH). In comparison to the Silva database40

implemented in Hundo, the NCBI database was reported with
a higher confidence of lineage assignment to lower taxonomic
levels.41 The de-replicated representative sequences of each
OUT were then annotated following the same workflow coded
in Hundo with modifications and using NCBI 16S Refseq

database (https://www.ncbi.nlm.nih.gov/refseq/targetedloci/
16S_process/, accessed on April 9, 2020) instead. The top
25 hits of each OUT representative sequence were kept and
screened for those with percent identity higher than 85% and
bit score greater than 125. For OTUs with more than one
qualified hits, we will perform the lowest common ancestor
(LCA) algorithm using an R package, taxize.42 OTUs with only
one qualified hit adopted the lineage of the hits, and the rest
were left unclassified.

Constructing Protein Database for Metaproteomic
Data Analysis with Kaiko. Raw mass spectrometry files were
converted to the PSI open format mzML26 using msConvert,27

which were converted to MGF files compatible with the Kaiko
model. After performing Kaiko prediction, as used for assigning
taxa to the unknown samples, we used Kaiko’s top 25% scoring
peptide sequences predicted from each sample to identify the
most likely candidate organisms using DIAMOND over the
Uniref100 database. The protein database was constructed by
aggregating all the reference sequences associated with the top
100 bacterial organisms from the Uniref100 into a single fasta
(8.2GB).

Peptide Identification and Functional Analysis with
the Constructed Database. Against the protein database
constructed from the Kaiko prediction, MSGF+ was performed
to identify peptide sequences with the false discovery rate
(FDR) cutoff. The search parameters and values or settings
were as follows: PrecursorMassTolerance, 20.0 ppm; Iso-
topeErrorRange, (−1, 1); TargetDecoyAnalysis, true; Frag-
mentationMethod, as written in the spectrum; InstrumentID,
0; Enzyme, Tryp; NumTolerableTermini, 2; MinPeptide-
Length, 6; MaxPeptideLength, 50; MinCharge, 2; MaxCharge,
5; and NumMatchesPerSpec, 1. PSM results from MSGF+
were filtered using MSnID43 (v1.20.0). Filters based on the
cleavage patterns for the trypsin were applied, e.g.,
nuIrregCleavages==0 and numMissCleavages<=2. Optimizing
the MS/MS filter was applied to achieve the maximum number
of identifications within a given FDR upper limit threshold.
The Nelder−Mead method was employed for parameter
optimization (MS-GF:SpecEValue and absParentMassEr-
rorPPM), and for 1% peptide FDR, SpecEValue ≤1.0e-11,
and 11 ppm mass window with the ppm offset adjustment were
determined. For functional annotation for metaproteomics,
Unipept44 (v4.6.3, https://unipept.ugent.be/datasets, accessed
on May 23, 2022) was used with “Equate I and L”, “Filter
duplicate peptides”, and “Advanced missed cleavage handling”
options via Unipept Desktop (v1.2.5).
2.6. Data Availability

The mass spectrometry proteomics data for this benchmark set
are split into two separate depositions, for the training and
testing data sets, respectively. The training data set consists of
spectra from 51 organisms and has been deposited to the
ProteomeXchange Consortium via the PRIDE45 partner
repository with the data set identifier PXD010000. The testing
data set consists of spectra for 4 organisms and has been
deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the data set identifier PXD010613. The
metaproteomics data set has been deposited to the MassIVE
Repository with the accession identifier MSV000086336.
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3. RESULTS

3.1. New Model for De Novo MS/MS Identification

Using a large and environmentally diverse set of mass
spectrometry proteomics data, we sought to improve on
peptide/spectrum identification where no protein sequence
database is available. We adapted a deep neural network
structure23 and trained a new model called Kaiko, after the
Japanese deep ocean submersible used to explore the Marianas
Trench. For training and validation, we used 4,604,540 spectra
and 927,316 peptides from 51 distinct bacteria (Figure 1A,
Table S1). After training, we evaluated the accuracy of Kaiko
for PSM identification against spectra in the test data set
consisting of spectra from four additional organisms not used
in model training (511,765 spectra and 90,048 peptides).
Kaiko achieved an average accuracy of 33% over all testing files

and organisms, a significant improvement over other de novo
algorithms (Figure 1B). When considering the top five
spectrum annotations, average accuracy exceeded 41%.
Deep neural networks, like Kaiko, require very large training

data sets for parameter optimization. The proteomics data used
in training, validation, and testing come from 55 distinct
bacteria and contain more than 1 million unique peptides (see
Methods). The specific bacteria chosen for this set of 55 is less
important than their contribution to diversity of peptide
sequences, which is required for the model to fully generalize.
Although we used microbes frequently found in soils, this does
not constrict Kaiko’s utility to only soil microbes or only
bacteria. After training, we demonstrate that the Kaiko model
achieves generality (Figures S1 and S2) and is not limited by
taxonomic divisions or environmental niche. Training Kaiko
with an extensive diversity of peptide sequences allowed the

Figure 1. Training, validation, and testing of a new de novo peptide identification algorithm. (A) Bacteria represented in training and testing data
and shown in a phylogenetic tree built from the multiple sequence alignment of rplB is shown for all organisms in the training (white nodes) and
testing (red nodes) data sets. The size of the node is scaled to represent the number of spectra used. (B) Accuracy of spectrum annotation for four
de novo spectrum annotation tools. (C) For each peptide sequence length, the accuracy of spectrum annotation is shown for each of the four
algorithms.
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model to successfully identify organisms in taxonomic phyla
where no training data existed (see section 3.2).
We looked at model performance as a function of peptide

length (Figure 1C). Most algorithms performed well with short
peptides, length <8. Unfortunately, these peptides are
infrequent in bottom-up proteomics data samples (Figure
S3). Kaiko exhibited significantly improved accuracy at all
lengths, but especially for the most common peptide lengths
(10−15 residues), where it achieved an accuracy of ∼30−60%.
We note that Kaiko had high accuracy at very long peptide
lengths of 15 and above. Although these peptides are extremely
difficult to annotate de novo, they are valuable for predicting
phylogeny, as the long sequences are more likely to be
uniquely mapped to a small taxonomy range.
3.2. Organism Identification via De Novo Proteomics

Proteomics identification of natural bacterial isolates often
requires de novo spectrum annotation. In section 3.1, Kaiko
was trained and tested on the ability to identify a correct PSM.
To demonstrate the ability of our deep learning-based
algorithm to annotate spectra from an unknown organism
and also to accurately identify the unknown organism, we
obtained bottom-up proteomics data from six microbes
isolated from soil and attempted to identify the sample. For
each sample, we annotated the proteomics data with Kaiko and
used DIAMOND28 to identify the closest sequences in the
UniProt database46 (see Methods). We then plotted the
organisms that had the most matching spectra and inferred the
organism for the sample.
For four samples, a matched proteome database became

public during our investigation; however, this was still blinded
from our analysis. In each of these cases, we identified the exact
species as the source of the sample (Table S2). This included
two Verrucomicrobia: Opitutus sp. GAS368 and Verrucomi-
crobium sp. GAS474. The other two isolates with a matched

genome were from the order Rhizobiales: Afipia sp. GAS231
and Rhizobiales bacterium GAS188. The Afipia sample also
contained spectra which mapped to neighboring Bradyrhi-
zobium species, which could be from shared gene content,
contamination, or previously unidentified coculturing. We
emphasize that Kaiko’s training/validation data did not include
any organisms from the phylum Verrucomicrobia; thus, the
correct identification of these two newly isolated microbes
demonstrates that the model properly generalized and is not
limited to the taxonomy of its training data.
For two samples, there is no sequenced genome, a very

realistic situation for environmental samples. To evaluate the
proteomics-based organism identification, we attempted to
derive the true sample identity by 16S sequencing. Isolate 02
cannot be definitively assigned to a genus within NCBI’s
taxonomy based on 16S sequencing, but it is close to multiple
genera within the family Acidobacteriaceae. In Uniprot, there is
no genome or associated proteome for this organism.
Therefore, the species attribution from our pipeline will simply
be to the nearest organism (which might be quite distant, as
the 16S data indicates that the closest match is most likely a
different genus). Using Kaiko’s peptide annotations, we
identified two potential candidates for the sample: Acid-
obacterium capsulatum and Silvibacterium bohemicum (both
Acidobacteriaceae). However, both species had significantly
fewer peptide hits matching their proteome and, therefore,
were weaker matches than expected. This weak attribution and
splitting between organisms within the same family are
consistent with the isolate’s ambiguous taxonomic assignment.
The final sample, Isolate 01, was suggested to be a
Gemmobacter by 16S sequencing. Peptide hits from Kaiko
identified this sample as Rhodobacter sp. 24-YEA-8, which is
within the same family as Gemmobacter (Rhodobacteraceae).
With the difficulties surrounding bacterial taxonomic classi-

Figure 2. Overview of the metaproteomics data analysis leveraging de novo spectrum identification based on the Kaiko model. Peptides are
identified using Kaiko and used to infer community composition (steps 1−3). In step 4, the spectra are reanalyzed using a database search
algorithm, e.g., MSGF+, and the protein sequence database created in step 3. This yields a final list of peptide identifications which can be used for
functional analysis.
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fication and the uncertainty of species designation, this is still a
close match.
As a final demonstration of Kaiko’s ability to accurately

identify organisms, we processed proteomics data from a
synthetic community of known composition�the Simplified
Human Intestinal Microbiota or SIHUMIx,29 which consisted
of eight bacteria and represented common metabolic activities
found in the human gut. Using our pipeline, we identified
seven of the eight organisms as an exact match. A final
organism with the average relative abundance of 0.08%,
Clostridium butyricum was only resolved at the level of genus.
Thus, even in multiorganism mixtures, Kaiko can confidently
identify organisms directly from proteomic data�even when
the organisms are from a taxonomic division or environmental
niche that was not part of Kaiko’s training set.
3.3. Building a Protein Database without Metagenomics

In metaproteomics data analysis, constructing a protein
sequence database is a critical component for protein
identification,47,48 as identification sensitivity suffers as data-
base size increases.49 Given the success of Kaiko in identifying
unknown organisms, we derive the organisms present in a
sample directly from Kaiko’s analysis of metaproteomics data,
thus enabling confident peptide identification when the
genomic information is limited or unavailable (Figure 2).
This set of organisms and their respective proteins can then be
used in a second-pass database search to take advantage of a
database algorithm’s natural sensitivity advantage.50

To demonstrate this de novo-based metaproteomics pipeline,
we analyzed metaproteomic data acquired from pooled
samples of native soils collected in three sites located in
Kansas.34,51 To identify species, the Kaiko model and
DIAMOND were employed to determine the most dominant
organisms, and whole proteomes were retrieved from UniProt
(see Methods). 6410 unique taxa IDs were identified in total,
and 224 taxa had more than 5 matched peptides. These taxa
included well-known bacterial phylotypes consistently detected
as a core component of soil ecosystem such as Proteobacteria,
Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi,
Verrucomicrobia, Bacteroidetes, Gemmatimonadetes, Firmi-
cutes, and Armatimonadetes.52,53 In addition, our pipeline
revealed globally abundant fungal classes such as Agaricomy-
cetes, Sordariomycetes, Eurotiomycetes, Leotiomycetes, and
Mortierellomycetes.53,54 This identification of fungal compo-
nents of the soil microbiome demonstrates a significant
advantage of metaproteomics over 16S metagenomics which
is strictly limited to bacteria.
To evaluate the taxa annotation from the Kaiko model, we

also identified taxa using 16S rRNA data from the same
samples (see Methods). 243 unique taxa IDs were determined
for 3,693 OTUs. All of the highly abundant phyla detected by
16S were also detected by Kaiko (Table 1). Several phyla
uniquely found by Kaiko are known to be present in
environmental soils.45,55−59 For example, Candidatus Roku-
bacteria is distributed globally in diverse terrestrial ecosystems,
including soils and the rhizosphere,55 and Candidatus
Tectomicrobia has also been detected in soils.45

To construct the protein database from the identified
organisms, we selected the 100 most abundant bacterial taxa,
resulting in a protein database containing 17,448,135 protein
clusters (UniRef sequences) from 12 bacterial phyla. We note
that the 100 taxa identified by proteome data consist of 91
species, 1 genus, 7 strains, and the remaining 1 had no

phylogenetic rank. Unfortunately, the 16S taxa annotations
were often resolved only to a phylum or class level; relatively
few taxa from 16S data were able to be narrowly identified at
the level of genus or species. Therefore, using a 16S data set to
create a metaproteomic database would include hundreds of
species within a broad taxonomic category, such as phylum,
and would dramatically increase the size of the protein
sequence database and significantly reduce the sensitivity of
the proteomics database tools.
3.4. Soil Metaproteomic Data Analysis
Using the protein database generated by Kaiko, we reanalyzed
the mass spectra from the soil samples using the database
search tool MSGF+ and identified 20,089 unique peptides
from 23,381 PSMs with 1% peptide FDR (see Methods). We
performed functional annotations with these identified
peptides using Unipept44 and found 1059 Enzyme Commis-
sion (EC) numbers matched to 7161 peptides (36%).
Functions in the top 20 EC numbers (Table S3) included
various enzymatic functions for transcription and translation,
energy production, and signaling. 618 EC numbers were
mapped to KEGG metabolic pathways, extensively covering
carbohydrate and amino acid metabolism, as well as the
metabolism of cofactors, vitamins, and xenobiotics.
Among identified peptides, 10,784 peptides were highly

conserved sequences and therefore were assigned to bacterial
phyla. 2972 of these phyla-affiliated peptides were linked to
578 EC numbers (Figure S4). These highly conserved peptides
were assigned to ubiquitous bacterial functions commonly
detected across most phyla, such as DNA-directed RNA
polymerase (EC:2.7.7.6), H(+)-transporting two-sector AT-

Table 1. Relative Abundance of the Top 20 Bacterial Phyla
Detected from 16S and Kaikoa

Phylum

Read
counts
by 16S

Peptide
counts
by

Kaiko

Relative read
counts %

total reads at
the phylum

level

Relative
Peptide

counts % By
Kaiko at the
phylum level

Proteobacteria* 40778 4903 34.6 38.1
Actinobacteria* 16501 3949 14.0 30.7
Acidobacteria* 18562 1010 15.7 7.8
Firmicutes* 6761 634 5.7 4.9
Chloroflexi* 767 479 0.7 3.7
Bacteroidetes* 9712 467 8.2 3.6
Planctomycetes* 11427 321 9.7 2.5
Candidatus

Rokubacteria*
- 266 - 2.1

Verrucomicrobia* 11841 237 10.0 1.8
Cyanobacteria 489 162 0.4 1.3
Gemmatimonadetes* 869 61 0.7 0.5
Nitrospirae* 18 44 - 0.3
Candidatus

Tectomicrobia*
- 43 - 0.3

Deinococcus-
Thermus

- 32 - 0.2

Spirochaetes - 32 - 0.2
Elusimicrobia - 15 - 0.1
Tenericutes 99 15 0.1 0.1
Armatimonadetes 75 13 0.1 0.1
Ignavibacteriae 16 6 0.01 0.05
Chlamydiae 2 4 0.00 0.03
aA dash in the table represents the corresponding phylum was “not
detected”. The asterisk (*) indicates that some taxa in the
corresponding phyla are used to construct the protein DB.
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Pase (EC:7.1.2.2), with a cytochrome as acceptor (EC:1.1.2.-),
glutamine synthetase (EC: 6.3.1.2), polyribonucleotide nucle-
otidyltransferase (EC:2.7.7.8), superoxide dismutase
(EC:1.15.1.1), and protein-synthesizing GTPase (EC:3.6.4.-).
In particular, EC numbers of highly ranked peptide counts
were mainly detected in abundant phyla (Proteobacteria,
Actinobacteria, and Acidobacteria), and functional information
was biased by the common and abundant proteins.
We next examined the mapped EC numbers to identify

metabolic functions for specific taxa (Figure 3). By mapping
the taxonomic affiliation of the enzymatic reactions within
metabolic pathways, it was possible to determine which
metabolic pathways were shared or unique among the
represented phyla. EC numbers involved in carbon metabolism
were often found in organisms from multiple phyla and
represent basic functions from glycolysis, carbon fixation, the
TCA cycle, etc. Enzymes and metabolic functions for 362 EC
numbers were represented by only a single phylum and are
shown with different colors in Figure 3. The two most
abundant phyla detected in the metaproteomics data were
Proteobacteria and Actinobacteria. It is clear from the
functional mapping of peptides that these two phyla utilize
distinct metabolic routes. For example, purine metabolism
contains numerous enzymes which are exclusively found in
either Actinobacteria or Proteobacteria (Figure S5). Significant
divergence between these two dominant taxa was also seen in
enzymes related to amino acid metabolism.
Finally, we examined the peptides and biological functions

associated with species unique to the Kaiko database, i.e.,
species not found in the 16S rRNA sequences. 92 peptides
were identified in Candidatus Rokubacteria and mapped to EC
numbers. Biological functions associated with seven EC
numbers were exclusive to Candidatus Rokubacteria: thio-
redoxin-dependent peroxiredoxin (EC:1.11.1.24), pyrroloqui-
noline-quinone synthase (EC:1.3.3.11), thioredoxin-disulfide
reductase (EC:1.8.1.9, selenocompound metabolism), 3-
oxoadipate enol-lactonase (EC:3.1.1.24, benzoate degrada-
tion), inositol-phosphate phosphatase (EC:3.1.3.25, inositol

phosphate metabolism and streptomycin biosynthesis), 1,4-
dihydroxy-2-naphthoyl-CoA synthase (EC:4.1.3.36, Ubiqui-
none and other terpenoid-quinone biosynthesis), and
nicotinate phosphoribosyltransferase (EC:6.3.4.21, nicotinate
and nicotinamide metabolism).

4. DISCUSSION AND CONCLUSION
Although genome and metagenome sequencing have greatly
expanded the number of species that contain a sequenced
genome and therefore an annotated proteome, there are still
significant practical and financial barriers that prevent
laboratories from always having an assembled and well-
annotated genome for samples taken from nature. Yet,
metaproteome spectrum identification tools rely on a protein
sequence database. Therefore, tools which can create a
proteome database for environmental samples without
requiring sequencing data are a significant benefit to the
microbiome community. One option for creating a proteome
database without using sequencing data utilizes a de novo
interpretation of metaproteomics data to identify organisms
present in the sample. A significant drawback of current de
novo tools is their poor performance on spectra from diverse
organisms (see Figure 1). Algorithms which are only exposed
to a limited number of organisms,20,23 or those that focus only
on human data,25 will be inadequate when faced with the vast
sequence diversity of microbial proteins found in soil and
environmental samples.
To assist in the analysis of metaproteomic data, we have

created a pipeline for generating the proteome sequence
database directly from the metaproteomic data. A key element
in our pipeline is a new de novo spectrum annotation tool,
Kaiko, which has significantly improved accuracy compared to
other de novo algorithms. This improvement comes from a
deliberate focus on training the algorithm with mass
spectrometry data from dozens of diverse environmental
bacteria. Moreover, our training data set size is dramatically
larger than comparable de novo tools in terms of the number of

Figure 3. Distribution of bacterial functions in the metabolic pathway map. Several metabolic steps are shared among multiple phyla (dark gray).
Other colors indicate unique EC numbers and their associated metabolic function found only in a specific phylum.
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peptides and spectra, which was essential for overcoming an
overfit model. We evaluated Kaiko by using it to identify the
taxonomy of bacterial soil isolates, including samples from
phyla where no training data existed. Thus, it is better
equipped for evaluating metaproteomics data where identifying
spectra from diverse organisms is essential. Indeed, our
algorithm was able to confidently identify numerous fungi
from metaproteomics data, despite having never been trained
on eukaryotic peptides. Thus, we believe that Kaio will work
well for any organism.
When using Kaiko as part of our database generation

pipeline to identify soil community composition, we were able
to identify all abundant species from 16S data, and also new
species with significant proteomic evidence which were not
seen in the sequencing data. Indeed, 5 of the top 16 taxa
(>30%) identified in the metaproteomics data were not
identified in sequencing data. These “hidden microbes”
represent bacteria that are known to play an important role
in community metabolism and function,55 including secondary
metabolite biosynthesis60,61 as seen in our Candidatus
Rokubacteria data.
A second significant advantage of inferring community

composition directly from metaproteome data is the level of
taxon specificity. Using metaproteome data, we could narrow
taxon identification to species or strain (98%). However, taxa
identified using 16S data for these same samples frequently
were only able to distinguish broad taxonomic levels.
Unfortunately, spectrum identification algorithms generally
suffer a significant sensitivity loss when working with large
protein databases.49 Therefore, methods which specify
community composition in broad taxonomic terms will yield
poor results, compared to a method which is able to narrowly
define organisms present in the community.
As metaproteomics data analysis continues to mature,

progress will happen in multiple areas, e.g., more sensitive
peptide ID algorithms, improved protein inference for
multiorganism mapped peptides, and functional analysis of
pathways with multiple participating organisms. However, a
central feature in all of this work is the original identification of
spectra, and currently the best algorithms require a protein
database. Thus, the creation of a protein sequence database is a
pivotal step in metaproteomics data analysis. The most
important future improvement in creating a protein sequence
database will come from greater coverage and greater
specificity in the identification of community membership.
De novo proteomics offers one avenue for this, which is
independent of advances made in sequencing technologies.
Improving the accuracy of de novo tools, especially with regard
to diverse environmental sequences, will be a significant benefit
to metaproteomics. We envision continued improvements in
peptide identification will be obtainable in the near future with
larger and more diverse training data sets becoming available,
and increasingly sophisticated learning models, furthering the
utility of this approach for database building.
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Ratkowsky, D.; Pritsch, K.; Põldmaa, K.; Piepenbring, M.; Phosri, C.;
Peterson, M.; Parts, K.; Pärtel, K.; Otsing, E.; Nouhra, E.; Njouonkou,
A. L.; Nilsson, R. H.; Morgado, L. N.; Mayor, J.; May, T. W.;
Majuakim, L.; Lodge, D. J.; Lee, S.; Larsson, K. H.; Kohout, P.;
Hosaka, K.; Hiiesalu, I.; Henkel, T. W.; Harend, H.; Guo, L. D.;
Greslebin, A.; Grelet, G.; Geml, J.; Gates, G.; Dunstan, W.; Dunk, C.;
Drenkhan, R.; Dearnaley, J.; De Kesel, A.; Dang, T.; Chen, X.;
Buegger, F.; Brearley, F. Q.; Bonito, G.; Anslan, S.; Abell, S.;
Abarenkov, K. Global Diversity and Geography of Soil Fungi. Science
(1979) 2014, 346 (6213), 1256688.
(55) Becraft, E. D.; Woyke, T.; Jarett, J.; Ivanova, N.; Godoy-
Vitorino, F.; Poulton, N.; Brown, J. M.; Brown, J.; Lau, M. C. Y.;
Onstott, T.; Eisen, J. A.; Moser, D.; Stepanauskas, R. Rokubacteria:
Genomic Giants among the Uncultured Bacterial Phyla. Frontiers in
Microbiology 2017, 8 (NOV), 2264.
(56) Wang, W.; Wang, J.; Ye, Z.; Zhang, T.; Qu, L.; Li, J. Soil
Property and Plant Diversity Determine Bacterial Turnover and
Network Interactions in a Typical Arid Inland River Basin, Northwest
China. Frontiers in Microbiology 2019, 10, 2655.
(57) Ogwu, M. C.; Srinivasan, S.; Dong, K.; Ramasamy, D.;
Waldman, B.; Adams, J. M. Community Ecology of Deinococcus in
Irradiated Soil. Microbial Ecology 2019, 78 (4), 855−872.
(58) Li, H. Y.; Wang, H.; Wang, H. T.; Xin, P. Y.; Xu, X. H.; Ma, Y.;
Liu, W. P.; Teng, C. Y.; Jiang, C. L.; Lou, L. P.; Arnold, W.; Cralle, L.;
Zhu, Y. G.; Chu, J. F.; Gilbert, J. A.; Zhang, Z. J. The Chemodiversity
of Paddy Soil Dissolved Organic Matter Correlates with Microbial
Community at Continental Scales. Microbiome 2018, 6 (1), 1−16.
(59) Deng, J.; Yin, Y.; Zhu, W.; Zhou, Y. Variations in Soil Bacterial
Community Diversity and Structures among Different Revegetation

Types in the Baishilazi Nature Reserve. Frontiers in Microbiology 2018,
9 (NOV), 2874.
(60) Crits-Christoph, A.; Diamond, S.; Butterfield, C. N.; Thomas,
B. C.; Banfield, J. F. Novel Soil Bacteria Possess Diverse Genes for
Secondary Metabolite Biosynthesis. Nature 2018, 558 (7710), 440−
444.
(61) Hug, L. A.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Sharma,
R.; Hettich, R. L.; Wilkins, M. J.; Williams, K. H.; Singh, A.; Banfield,
J. F. Critical Biogeochemical Functions in the Subsurface Are
Associated with Bacteria from New Phyla and Little Studied Lineages.
Environmental Microbiology 2016, 18 (1), 159−173.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00334
J. Proteome Res. 2022, 21, 2023−2035

2035

https://doi.org/10.1093/NAR/GKAA1100
https://doi.org/10.1016/j.jbiotec.2017.06.1201
https://doi.org/10.1016/j.jbiotec.2017.06.1201
https://doi.org/10.1021/acs.jproteome.7b00894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.7b00894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/pmic.201200352
https://doi.org/10.1002/pmic.201200352
https://doi.org/10.1002/pmic.201200352
https://doi.org/10.1002/mas.21406
https://doi.org/10.1002/mas.21406
https://doi.org/10.1038/s41598-020-67878-7
https://doi.org/10.1038/s41598-020-67878-7
https://doi.org/10.1038/s41598-020-67878-7
https://doi.org/10.1126/SCIENCE.AAP9516
https://doi.org/10.1126/SCIENCE.AAP9516
https://doi.org/10.1016/j.jprot.2018.11.011
https://doi.org/10.1016/j.jprot.2018.11.011
https://doi.org/10.1016/j.jprot.2018.11.011
https://doi.org/10.1126/SCIENCE.1256688
https://doi.org/10.3389/fmicb.2017.02264
https://doi.org/10.3389/fmicb.2017.02264
https://doi.org/10.3389/fmicb.2019.02655
https://doi.org/10.3389/fmicb.2019.02655
https://doi.org/10.3389/fmicb.2019.02655
https://doi.org/10.3389/fmicb.2019.02655
https://doi.org/10.1007/s00248-019-01343-5
https://doi.org/10.1007/s00248-019-01343-5
https://doi.org/10.1186/s40168-018-0561-x
https://doi.org/10.1186/s40168-018-0561-x
https://doi.org/10.1186/s40168-018-0561-x
https://doi.org/10.3389/fmicb.2018.02874
https://doi.org/10.3389/fmicb.2018.02874
https://doi.org/10.3389/fmicb.2018.02874
https://doi.org/10.1038/s41586-018-0207-y
https://doi.org/10.1038/s41586-018-0207-y
https://doi.org/10.1111/1462-2920.12930
https://doi.org/10.1111/1462-2920.12930
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

