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ABSTRACT: Our second-order algebraic-diagrammatic construc-
tion [ADC(2)]-based double-hybrid (DH) ansatz (J. Chem. Theory
Comput. 2019, 15, 4440. DOI: 10.1021/acs.jctc.9b00391) is
combined with range-separation techniques. In the present scheme,
both the exchange and the correlation contributions are range-
separated, while spin-scaling approaches are also applied. The new
methods are thoroughly tested for the most popular benchmark
sets including 250 singlet and 156 triplet excitations, as well as 80
oscillator strengths. It is demonstrated that the range separation for
the correlation contributions is highly recommended for both the genuine and the ADC(2)-based DH approaches. Our results show
that the latter scheme slightly but consistently outperforms the former one for single excitation dominated transitions. Furthermore,
states with larger fractions of double excitations are assessed as well, and challenging charge-transfer excitations are also discussed,
where the recently proposed spin-scaled long-range corrected DHs fail. The suggested iterative fourth-power scaling RS-PBE-P86/
SOS-ADC(2) method, using only three adjustable parameters, provides the most robust and accurate excitation energies within the
DH theory. In addition, the relative error of the oscillator strengths is reduced by 65% compared to the best genuine DH functionals.

1. INTRODUCTION

Nowadays, density functional theory (DFT) is one of the most
popular tools in quantum chemistry, which offers an appropriate
compromise between accuracy and computational time. The
performance of the functionals for different ground-state
properties is well-known through comprehensive benchmark
studies;1−5 however, their applicability in a black box manner is
often in question. Accordingly, one of the most essential
requirements from the community is the development of robust
approaches for general applications.
To investigate time-dependent properties of molecular

systems, such as excitation energies, oscillator strengths,
polarizabilities, and chiroptical properties, time-dependent
DFT (TDFFT) is the most common choice.6−11 It can be
derived from DFT through the linear-response formalism, and
similar to ground-state calculations, its computational demands
are fairly low. However, the formally exact theory suffers from
the same drawbacks as the ground-state analogue. That is, the
wrong long-range (LR) behavior of the exchange-correlation
(XC) functionals is well-known, which causes significant
problems for weak interactions, Rydberg and charge transfer
(CT) states, or π → π* excitations of conjugated systems.12−16

Consequently, adequate results cannot be expected from
TDDFT using pure XC functionals. For semiquantitative
accuracy, at least hybrid functionals are recommended, where
the XC energy contains a Hartree−Fock (HF) exchange
contribution as well. This inclusion improves the results;

however, hybrid functionals can still fail for challenging cases,
and their general usage requires further developments.
To remedy the wrong LR behavior, a range-separated (RS)

scheme was proposed by Savin and co-workers17,18 where the
Coulomb operator is split into LR and short-range (SR)
components. For hybrid functionals relying on this ap-
proach,19−25 the LR (SR) part of the exchange energy is
dominantly covered by the LR HF (SR DFT) energy, while the
DFT correlation contribution is left unaltered. The improve-
ments over the standard hybrids have been demonstrated in
excellent studies.1,2,26−29 Besides the aforementioned problem,
only states dominated by one-electron excitations can be
modeled within TDDFT. To cure this problem, an alternative
choice can be the so-called dressed TDDFT formalism.30−33 For
such approaches, the explicit inclusion of double and higher
excitations was elaborated which enables the better description
of transitions with larger fractions of double excitations.34−36

The performance of density functional approximations can
also be improved by combining them with wave function
methods. In the case of double-hybrid (DH) approaches,37 a
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hybrid Kohn−Sham (KS) calculation is carried out, and a
second-order Møller−Plesset (MP2)-like correction evaluated
on the KS orbitals is added to the XC energy. The
parametrization of the first DHs were based on empirical
considerations,37−39 while nonempirical approaches40−45 were
later derived from the adiabatic connection formalism. As it was
pointed out later, functionals using empirical parametrization
aremore suitable for ground-state applications.3 Spin-scaled DH
variants46−54 were also proposed, where theMP2 contribution is
replaced by the spin-component-scaled (SCS)55 or scaled-
opposite-spin (SOS)56 MP2 correction. The DH approximation
was extended to excited states by Grimme and Neese.57 In their
approach, a hybrid TDDFT calculation is performed, and
subsequently, the second-order contribution is added a posteriori
relying on the configuration interaction singles (CIS)58 with
perturbative second-order correction [CIS(D)]59 method.
Later, several DH functionals were adapted to excited-state
calculations,60,61 and the most encouraging ones were also
combined with spin-scaling techniques.62,63 The accuracy and
efficiency of DH functionals have been demonstrated in
numerous studies, and their superiority to conventional DFT
methods has been proven.1,2,4,5,54,64−67

Besides CIS(D), the second-order algebraic-diagrammatic
construction [ADC(2)] method68 can also be considered as a
natural excited-state extension of the MP2 method. It was
elaborated through the diagrammatic perturbation expansion of
the polarization propagator and the Møller−Plesset partitioning
of the Hamiltonian. Over the past decade, the scope of ADC(2)
has been significantly extended by Dreuw and co-workers,69−75

Köhn and co-workers,76,77 and Haẗtig andWinter.78,79 Recently,
we have shown that an excited-state DH analogue can also be
defined relying on it.80 We have also demonstrated that the
ADC(2)-based DHs outperform the CIS(D)-based ones,
especially for excited states with larger fractions of double
excitations and transition strengths.
The RS and DH approaches can also be utilized together. The

first attempts in this direction were made by Ángyań and co-
workers,81,82 while the necessary technicalities were elaborated
by Toulouse et al.83,84 and Stoll and co-workers.85−87 Inspired
by these studies, several RS-DH approaches were proposed for
ground-state53,88 and excited-state calculations89,90 as well. The
more approximate form of the theory, the family of the so-called
long-range corrected (LC) functionals, is also noteworthy where
solely the exchange contributions are range-separated.46,91−94

For such functionals, an excited-state analogue was recently
proposed by Goerigk and co-workers.95−98

In this paper, we combine our ADC(2)-based DH ansatz80

with range-separation techniques. First, we give a brief overview
of the corresponding theories. Thereafter, we assess the different
XC kernels and compare the standard, LC-DH, and RS-DH
functionals. In this section, the role of range separation is
emphasized. Finally, we demonstrate the robustness of our
ansatz through numerous benchmark calculations using only
high-quality reference values. These excitation energies and
oscillator strengths were calculated at the coupled-cluster (CC)
level including triple excitation corrections, such as the CC3,99

CCSDR(3),100 and CCSDT-3101 approaches. We note that
several terms are used in this study with similar meanings.
Accordingly, to help the reader, these terms are used
consistently. In the case of genuine functionals, the CIS(D)-
based approach is referred to. For standard functionals, no range
separation is invoked for the XC energy. These functionals can

also be named the global ones. If the method is original, no spin-
scaling techniques are applied to the correlation contributions.

2. THEORY AND METHODOLOGY
2.1. Energy Expressions in Genuine DH Theory. In the

very first approach of the standard DH theory,37 the ground-
state XC energy is expressed as
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where EX
DFT and EX

HF denote the semilocal DFT and exact HF
exchange energies, respectively, and EC

DFT stands for the DFT
correlation energy contribution, while EC

MP2 is the MP2
correlation energy. The expression contains three adjustable
parameters as the ratio of the HF and DFT contributions to the
exchange energy is handled by a single mixing factor αX

HF, while
the DFT and MP2 correlations are scaled by the coefficients
αC
DFT and αC

MP2, respectively. In general, although not exclusively,
the αC

DFT + αC
MP2 = 1 condition is invoked which reduces the

number of the independent parameters by one. Numerous
standard DH functionals with empirical37−39 and nonempir-
ical42−45 parametrization were elaborated in the past few years.
Later, a simple one-parameter double-hybrid approximation

was proposed by Savin et al.,40 where the ground-state XC
energy is obtained as
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In this approach, the ansatz contains only one adjustable
parameter, λ, which can be interpreted as the weight of the wave
function methods in the XC energy. The above equation exactly
corresponds to the most commonly used form of eq 1 with
parameters λ = αX

HF and λ2 = αC
DFT.

The DH results can be further improved via range-separation
techniques. One of the simplest attempts is the long-range
correction.19 In the flavor of DHs,46,91 solely the exchange
contributions are range-separated, while the correlation part is
retained. For such functionals, the XC energy is defined by
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where the amounts of the SR DFT and HF exchange
contributions, denoted by EX

SR‑DFT and EX
SR‑HF, are controlled

by the mixing factor αX
HF, and the total LR HF exchange energy

contribution, EX
LR‑HF, is added to the XC energy. The range-

separation parameter μ controls the transition between the SR
and LR parts. A similar LC expression can be put for eq 2 as

μ μ λ μ

λ μ λ λ

= + −

+ + − +

‐ ‐ ‐

‐

E E E

E E E

( ) ( ) (1 ) ( )

( ) (1 )
XC
LC DH

X
LR HF

X
SR DFT

X
SR HF 2

C
DFT 2

C
MP2

(4)

To the best of our knowledge, the kernel of the XC functional
shown in the above expression has not been studied in the
literature so far. As it can be seen, these LC formulas contain one
more adjustable parameter compared to eqs 1 and 2, and the
corresponding standard DH expressions are recovered in the μ =
0 limit; however, no other ansatz is retrieved in the μ→∞ limit.
A more elaborate ansatz was proposed by Toulouse et al.88 In

their two-parameter approach, both the exchange and the
correlation contributions are range-separated. For such RSDHs,
the XC energy is obtained as
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where EC
SR‑MP2 and EC

SR‑DFT stand for the SR MP2 and DFT
correlation contributions, respectively, and EC

LR‑MP2 is the LR
MP2 energy, while EC

LR‑SR‑MP2 denotes the mixed LR-SR
contribution. This expression contains only two adjustable
parameters similar to eq 4, which means that the effects of the
range separation for the correlation part can be easily assessed.
We also note that well-defined energy formulas are retrieved in
both limits of parameter μ. First, eq 2 is recovered for μ = 0, while
in the μ→∞ limit, the approach simplifies to the standardMP2
method. The effective implementation of such RS DHs, the
corresponding working equations, and the calculation of the
EC
SR‑DFT contribution were previously discussed in detail in ref 89.
The genuine DH calculations are carried out in a two-step

manner.37 First, the self-consistent hybrid KS equations are
solved including the corresponding HF exchange contributions,
as well as the DFT exchange and correlation potentials.
Thereafter, the XC energy is augmented with an MP2-like
correction evaluated on the KS orbitals obtained. Note that
other schemes, i.e., the so-called xDH variants,52,65,102,103 also
exist; however, the application of such functionals for excited-
state calculations has not been elaborated. For all the
aforementioned energy expressions, spin-scaled variants can
also be defined,46−52,54,90 where the perturbative correction is
replaced by the SCS55 or SOS56 MP2 energy. In this case, the
opposite-spin (OS) and same-spin (SS) contributions to the
MP2 correlation energy are scaled separately, which enables
higher flexibility of the energy functional; however, the number
of empirical parameters increases at the same time. The scaling
factors of the OS and SS contributions are denoted by αC

OS and
αC
SS, respectively. The computational scaling of the SOS variant

can be reduced to N4 invoking the density fitting approximation
for the electron-repulsion integrals and Laplace transform-based
techniques, whereas the scaling of the original and SCS variants
are N5, where N is a measure of the system size.
In the most common extension of DH theory for excited-state

calculations,57 the excitation energy is also obtained in two steps.
First, a Hermitian eigenvalue equation relying on the Tamm−
Dancoff approximation (TDA)104 is solved as

ω=A r rDH TDA (6)

where ADH denotes the corresponding Jacobian, r is the singles
excitation vector, and ωTDA stands for the TDA excitation
energy. As the Jacobian contains the second derivative of the XC
energy, its matrix elements depend on which expression is used
of eqs 1−5. Note that, as it was also presented in ref 57, the
excitation energy and the singles excitation vector can be
obtained from the full TDDFT6 equations as well. Reliable
singlet excitation energies can be attained within this theory;62,96

however, it is not recommended for general applications because
of the triplet instability of TDDFT.10,97,105 Having the TDA
solution at hand, the second-order correction is calculated
perturbatively relying on the CIS(D)59 method. If the range
separation is not applied to the correlation part, the final
excitation energy is calculated as57,95

ω ω ω= +‐ c(LC )DH TDA (D) (7)

where ω(D) stands for the second-order correction, and c is a
scaling factor. This factor is equal to αC

MP2 in the case of eq 1 or 3,

while c = λ2 for the one-parameter DHs and their LC variant (see
eqs 2 and 4). For the more elaborate RSDHs, the final excitation
energy is proposed to be evaluated as89
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where ωLR‑(D), ωSR‑(D), and ωLR‑SR‑(D) denote the LR, SR, and
mixed contributions to the perturbative correction, respectively.
Note that the TDA solution, and thus the second-order
correction, depends on the range-separation parameter in the
case of LC DHs as well; however, for the sake of simplicity, this
notation is omitted in eq 7. Spin-scaled variants can also be
defined for excited-state DH calculations,62,90,98 relying on the
SCS-CIS(D) method.63,106,107 As three various parametriza-
tions of SCS-CIS(D) exist, we briefly discuss the differences.
The authors in ref 63 scaled the SS and OS contributions by
different parameters in the “direct” and “indirect” terms of the
CIS(D) correction resulting in four adjustable parameters. In
contrast, Grimme et al.106 scaled only the indirect terms with
two empirical factors regarding the SS and OS contributions. In
both cases, the adjustable parameters were tuned for excitation
energies. In addition, a spin-scaled ADC(2)-consistent analogue
was proposed by Haẗtig et al.,107 where the same mixing factors
were used for both terms retained from the ground-state theory.
As it was pointed out in ref 67, the approach of Rhee and Head-
Gordon63 is superior; however, this, at least partly, can be
explained by the higher level of parametrization. In this work, we
follow the approach of ref 107, which can be justified by three
arguments. First, it is advantageous to keep the number of
empirical parameters as low as possible. Second, the main scope
of this paper is to compare the genuine and ADC(2)-based DHs.
As this approach is consistent with the spin-scaled ADC(2)78,107

theory, it forces us to use this approach. Finally, we would like to
retain the consistency with our previous works.80,90

2.2. ADC(2) Theory. In ADC(2) theory,68,108−110 the
ground-state ADC(2) correlation energy is simply approxi-
mated by the MP2 energy, while the first-order ground-state
wave function is defined by

|Ψ ⟩ = + ̂ | ⟩T(1 ) 0MP1
2 (9)

where |0⟩ is the HF determinant, and cluster operator

∑̂ =
<
<

+ − + −T t a i b j
a b
i j

ij
ab

2

(10)

generates cluster amplitudes tij
ab associated with the a+ and i−

creation and annihilation operators, respectively, acting on the
corresponding spin orbitals. Here, a and b (i and j) refer to
virtual (occupied) orbitals, whereas p and q denote generic
orbitals. For convenience, the τ̂ = ∑γ γ γT tn

n n n
shorthand notation

is introduced, where n stands for n-fold excitation.
The ADC(2) ansatz for the wave function of the excited states

is given in the form of

|Ψ ⟩ = ̂ + ̂ |Ψ ⟩R R( )ADC(2)
1 2

MP1
(11)

where the spin-coupled single and double excitation operators,
R̂1 and R̂2, can be defined similar to eq 10. The excitation energy,
being correct up to second order, can be obtained via the
diagonalization of the following Hermitian Jacobian68,109
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where Ĥ is the Hamiltonian, F̂ denotes the Fockian, and |γn⟩
stands for n-fold excited determinants. The elements of the
singles−singles block can be expressed as = + ′γ ν γ ν γ νA A A, ,

CIS
,1 1 1 1 1 1
,

where the CIS Jacobian is defined by

γ τ= ⟨ |[ ̂ ]| ⟩γ ν νA H , 0,
CIS

11 1 1 (13)

while the second-order contributions to the singles−singles
block are calculated as
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2
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In practice, the problem is recast as a nonlinear eigenvalue
equation

ω ω̃ =A r r( )ADC(2) ADC(2) ADC(2) (15)

where ωADC(2) is the ADC(2) excitation energy. The benefit is
that the resulting equation with the effective Jacobian matrix

Ã ADC(2) has to be solved only for the single excitation
coefficients, while the doubles amplitudes can be calculated on
the fly, and their storage can be avoided.111 The elements of the
effective Jacobian read explicitly as

∑
ε ω
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−
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γ ν γ ν γ ν
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where εσ2
stands for the difference of the orbital energies, and the

terms including the second-order contributions are collected
into matrix A[2]. At the end of the iterative procedure, the
converged ADC(2) solution vector is normalized, and the
transition density matrix required for the ground- to excited-
state transition moments is computed as

ρ = ⟨Ψ | |Ψ ⟩

= ⟨ | + ̂ ̂ + ̂ + ̂ | ⟩

+ −

† + −

p q

T p q R R T0 (1 ) ( )(1 ) 0

pq
MP1 ADC(2)

2 1 2 2 (17)

This expression is often simplified76,80,112 by discarding
disconnected contributions and by neglecting the higher than
fifth-power-scaling second-order terms. It can be shown that,
analogously to the approximate coupled-cluster singles and
doubles method CC2, the resulting ADC(2) density matrix is
consistent with the linear-response CC theory and correct up to
first order.
2.3. ADC(2)-Based DH Theory. As ADC(2) can also be

regarded as one of the natural excited-state extensions of the
MP2 method; similar to the CIS(D) approach in Section 2.1, an
ADC(2)-based DH analogue can be proposed as well. In our
previous work,80 a combined DH-ADC(2) scheme has been
introduced for standard DHs. In that case, an ADC(2)-like
calculation is performed with a modified effective Jacobian

Ã ADC(2), where ACIS is replaced by ADH derived from eq 1 or 2,
and the second-order terms are scaled by an empirical factor.
That is, the modified matrix read as

̃ = +‐ [ ]cA A ADH ADC(2) DH 2 (18)

where, of course, c = αC
MP2 in the case of eq 1, while c = λ2 for one-

parameter DHs (see eq 2). Here, we combine this ansatz with
range separation.
Concerning the LC DH variants, similar expressions can be

obtained. In such cases, the JacobianADH is defined according to
eq 3 or 4, while the standard second-order term is scaled by the
corresponding factor. Note that, due to the range separation in
the exchange part, this ansatz contains one more adjustable
parameter compared to the standard DH-ADC(2) expressions.
The spectral intensities for both the original DH-ADC(2)model
and its LC variant can be calculated with aminor modification to
eq 17. That is, the contribution linear in R̂1 is separated, and the
remaining terms are scaled by the empirical factor of the second-
order terms

ρ

ρ ρ

= ⟨ | | ⟩ + ⟨ | [ + + ]| ⟩

= +

+ − † + −

[ ]

p q R c T p q R T R

c

0 0 0 (1 ) 0pq

pq pq

1 2 1 2 2

TDA 2
(19)

As the range separation can be applied to the correlation
contributions in the ADC(2) theory, a similar approach can also
be introduced for the more elaborate RS DHs as well. In that
case, the equations are somewhat different. Analogously to eq 8,
the corresponding second-order contributions have to be
calculated separately; thus, the expression for the effective
Jacobian reads as

λ λ̃ = + + +‐ ‐ ‐[ ] ‐ ‐[ ] ‐[ ]A A A A ARS DH ADC(2) DH LR 2 LR SR 2 2 SR 2

(20)

while the transition density matrix is obtained as

ρ ρ ρ ρ ρλ λ= + + +‐[ ] ‐ ‐[ ] ‐[ ]TDA LR 2 LR SR 2 2 SR 2 (21)

using the corresponding range-separated R̂2 coefficients and T̂2
amplitudes.
All the aforementioned ADC(2)-based approaches using any

XC kernel contain the same number of empirical parameters as
their CIS(D)-based counterparts, and the same statements hold
for the limits of parameter μ as in Section 2.1. That is, for the LC
DHs, the corresponding standard DH expressions are recovered
in the μ = 0 limit; however, no other ansatz is retrieved if μ→∞.
In contrast, for the RS DHs, the standard one-parameter DH
excitation energy is recovered for μ = 0, while in the μ→∞ limit,
the approach simplifies to the original ADC(2) method.
Inspecting the mixing factors, αX

HF, αC
DFT, αC

MP2, or λ, and their
limits, this transferability between the CIS(D)- and ADC(2)-
based approaches exists as well. In addition, spin-scaled variants
can also be defined for the ADC(2)-based DHs.80 In that case,
just as for the SCS107 and SOS78 variants of ADC(2), theOS and
SS contributions in the corresponding A[2] and ρ[2] matrices are
scaled separately. It is important to note that the computational
scaling of SOS-ADC(2) is still N4 similar to the SOS-CIS(D)
correction, but the procedure is iterative. The computational
cost of a single iteration in the proposed ADC(2)-based RS-DH
approaches is practically identical to the time required for the
CIS(D) correction in the case of the genuine RS-DH
functionals. To be fair, we note that these second-order
corrections are more demanding as the full-, short-, and long-
range contributions are also required (see eqs 8 and 20);
however, the scaling of the procedure does not change. The
corresponding timings for the genuine RS-DH functionals were
presented in detail in ref 89. In addition, the computational cost
of the standard ADC(2)-based approaches was also discussed in
ref 80, in comparison with the standard genuine functionals.
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The benefits of the standard ADC(2)-based approach
compared to the genuine DH methods were discussed in detail
in ref 80. Accordingly, we now focus only on the most significant
differences. First, in the case of CIS(D)-based approaches, the
doubles correction is added a posteriori to the TDA excitation
energy, while these excitations are treated iteratively in the new
ansatz. Thus, concerning excitation energies, the ADC(2)-based
approaches moderately but consistently outperform the genuine
DH methods; furthermore, this improvement is especially
noticeable when the weights of double excitations are relatively
large in the excited-state wave function. Second, as the
perturbative correction is only an energy correction for the
CIS(D)-based DH approaches, the oscillator strengths have just
hybrid quality. In contrast, the new methods also allow us to
evaluate the transition moments at a higher level taking into
account the effect of double excitations, which considerably
raises the quality of the computed oscillator strengths.

3. RESULTS
In what follows, we demonstrate the advantages of the ADC(2)-
based ansatze over the genuine DH approach, regardless of
which XC kernel is chosen. This has been carried out, at least
partly, for standard DHs in ref 80, which is extended here to the
RS variants. The necessity of the range separation for CT
excitations has been demonstrated in several pa-
pers.89,90,95,97,98,113,114 Accordingly, we expect that the robust-
ness of the standard DH-ADC(2) scheme is improved via range
separation. In addition, we would like to prove that the range
separation for the correlation contributions is highly recom-
mended for both the CIS(D)- and the ADC(2)-based schemes.
For this purpose, we compare the performance of different types
of functionals using the same number of adjustable parameters.
3.1. Computational Details. The new approaches have

been implemented in the MRCC suite of quantum chemical
programs and will be available in the next release of the
package.115,116

For the calculations, Dunning’s correlation consistent basis
sets (cc-pVXZ, where X = D and T),117,118 and their diffuse
function augmented variants (aug-cc-pVXZ),119 and Ahlrichs’
TZVP120 basis sets were used. In all calculations, the density-
fitting approximation was utilized for both the ground and the
excited states, and the corresponding auxiliary bases of Weigend
and co-workers121−123 were employed. To help the reader, at all
the figures or tables the corresponding basis sets are specified.
The frozen core approximation was utilized in all the post-KS/
HF steps, while the oscillator strengths, denoted by f, were
computed in the dipole length approximation.
In this study, the exchange and correlation functionals of

Perdew, Burke, and Ernzerhof (PBE)124 and Perdew’s 1986
correlation functional (P86)125 were used. In eq 5, to obtain the
SR DFT contributions utilizing the local-scaling approxima-
tion,89,90,126 the Slater−Dirac exchange127−129 and the Perdew−
Wang 1992 correlation130 functionals were applied as local-
density approximation functionals together with their SR
extensions proposed by Savin131 and Paziani et al.132 The
built-in functionals of the MRCC package were used in all cases,
except for ωPBEPP86 and its spin-scaled variant98 where the
locallymodified version of the Libxc library133,134 was employed.
In order to retain the consistency with the previous DH

studies,62,80,89,90,95,97,98 our training and benchmark sets were
selected from the literature. For most of them, high-quality
singlet and triplet excitation energies are also available, while two
compilations provide oscillator strengths as well. The adjustable

parameters were optimized on the singlet excitations of the well-
balanced benchmark set of Gordon et al,135 including 32 valence
and 31 Rydberg excitations for 14 organic molecules. For this
test set, the reoptimized geometries and the composite CC3-
CCSDR(3)/aug-cc-pVTZ reference excitation energies of
Schwabe and Goerigk62 were taken. The updated triplet
transitions were recently published by Casanova-Paéz and
Goerigk,97 but this compilation is somewhat less balanced and
contains 28 valence and 10 Rydberg excitations obtained at the
same level as the singlet ones.
Cross-validation has been performed on several popular

benchmark sets. The test set of Thiel and co-workers136,137 is a
compilation of CC3 excitation energies and oscillator strengths
within the linear-response formalism obtained with the TZVP
basis set. This test set only incorporates valence excitations, and
121 singlet and 71 triplet excitations of 24 molecules were
selected. The singlet transitions were later reconsidered by
Kańnaŕ and Szalay,138 and these results were used as reference in
this study. It is important to note that this compilation contains a
relatively large amount of excitations where the weights of
double excitations is significant. The first benchmark set139 from
the QUEST database140 proposed by Loos, Jacquemin, and co-
workers is also assessed. This compilation, which is hereafter
referred to as the LJ1 set, contains 52 singlet (27 Rydberg and 25
valence) and 47 triplet (18 Rydberg and 29 valence) “safe”
values of small organic molecules, and CC3/aug-cc-pVTZ
excitation energies were considered as reference. The bench-
mark set contains oscillator strengths within the linear-response
formalism obtained at the same level as well. Finally, the
challenging intermolecular CT benchmark set recently
proposed by Szalay et al.141 is also inspected. This set comprises
14 excitation energies evaluated at the CCSDT-3 level using the
cc-pVDZ basis set for eight molecular complexes at a large
distance to ensure the high CT character of the transitions. All in
all, 250 singlet and 156 triplet excitations are involved in this
study; furthermore, 80 oscillator strengths are also assessed
where f > 0.01. We note that, concerning the overall
performances, an additional comparison is also carried out
where only the unique molecules are considered.
For the excitations energies, the main statistical error

measures presented in the tables and figures are the mean
error (ME), the mean absolute error (MAE), and the maximum
absolute error (MAX). For the oscillator strengths, the MAEs
and the relative errors are discussed in detail. All the computed
excitation energies, oscillator strengths, and statistical error
measures are available in the Supporting Information (SI). In
addition, further measures, such as the root-mean-square error
(RMSE), standard deviation (SD), and deviation span are also
included. These numbers are only discussed if the order of the
methods significantly changes when evaluating their perform-
ance using the latter measures instead of the former ones.

3.2. Determination of the Parameters. First, we compare
the quality of the different XC kernels and assess the effects of
the range separation for both the LC and RS DHs. For that
purpose, we selected different XC parametrizations where the
number of the adjustable parameters is two, and thereafter, the
empirical parameters were tuned for the same test set. That is, a
standard DH using eq 1 is selected where the αC

DFT + αC
MP2 = 1

condition is invoked, and the two-parameter LC and RSDHs are
chosen using eqs 4 and 5, respectively. All the functionals
contain the same PBE exchange and P86 correlation functionals
and their SR extensions as this is one of the most successful
combinations of functionals.50,89,98,103 Then, the simultaneous
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optimization of the parameters was carried out on the singlet
excitations of the well-balanced Gordon benchmark set using
the aug-cc-pVTZ basis set. The MAE was minimized during the
procedure. This fairly objective comparison provides an
opportunity for some insight into the quality of the energy
expressions as the number of parameters, the training set used,
the optimization procedure, and the exchange and correlation
functionals included are the same. The study has been carried
out for both the genuine and the ADC(2)-based DH
approaches. Analogously to our previous works,89,90 the
standard DH obtained is denoted by PBE-P86, and LC-PBE-
P86 stands for the LC variant, while RS-PBE-P86 is the RS-DH
approach. For these functionals, at the end of the acronym, it will
be labeled whether the genuine or the ADC(2)-based ansatz is
used, for example, as PBE-P86/CIS(D) or PBE-P86/ADC(2).
The recently proposed LC-DH ωPBEPP86 functional98 is also
included in this comparison as the adjustable parameters were
tuned for the same training set. However, it contains four
independent parameters, and the optimization procedure was
slightly different than in this study. According to the very
comprehensive ranking of ref 98, this functional is considered as
the best unscaled LC DH.
For each functional, the expression of the XC energy used and

the optimal values obtained during the procedure are collected
in Table 1. As it can be seen, the optimal values are practically
identical for the genuine and the ADC(2)-based approaches in
all the cases. For the standard functionals, the optimal
parameters are αX

HF = 0.68 and αC
DFT = 0.35. These values are

highly in line with the ground-state recommendations as the
average percentage of the exact exchange and MP2 correlation
are 64% and 32%, respectively, for 50 existing DH functionals.46

Inspecting the effects of the long-range correction in the case of
ωPBEPP86, the proportion of the HF exchange increases
slightly, while that for the MP2 correction is significantly higher
compared to the standard DH. The optimal range-separation
parameter is 0.18 au, while αC

MP2 + αC
DFT = 1.16. Interestingly,

compared to this functional, almost the same optimal values are
obtained for LC-PBE-P86/CIS(D) as λ = αX

HF, λ2 ≈ αC
MP2, and μ

is identical. We note that the DFT correlation contribution is
scaled by 1 − λ2 = 0.51 in this case. For the ADC(2)-based
variant, λ is unchanged, while μ is negligibly higher. The optimal
values for RS-PBE-P86/CIS(D) had been already determined in
ref 89, while the same parameters were obtained for the
ADC(2)-based approach in this study. In these cases, compared
to the two-parameter LC variants, λ is significantly lower, while
the range-separation parameter is noticeably higher. These
parameters are greatly in line with the ground-state results,88 and
the trend is also confirmed that the optimal parameter μ is higher

when the correlation part is also range-separated88,126,142−144

than if only the exchange contributions are.92,93,95,98

The MAEs using the default parameters for various types of
singlet excitations of the Gordon test set are visualized in Figure
1. Inspecting the bars, several important observations can be

made. First, the overall performance of the ADC(2)-based
approaches is always better compared to the genuine counter-
parts. The difference is 0.03 eV for the RS DHs, while it is 0.01
eV for the standard and the LC-DH functionals. The lowest
MAEs are attained by the RS DHs; however, the standard DHs
outperform the LC variants in both cases. The errors are 0.12
and 0.13 eV for the standard ADC(2)- and CIS(D)-based
functionals, respectively. For these methods, the accuracy of the
valence excitations is lower compared to the Rydberg results.
Interestingly, the long-range correction improves slightly the
results on valence excitations; however, the MAEs of the
Rydberg values are significantly worse at the same time. In
contrast, in the case of the RS DH-ADC(2) approach, the good
performance for the valence results is preserved similar to the LC
variant, while the Rydberg values are as good as for the standard
DHs. For RS-PBE-P86/CIS(D), the MAE of the valence results

Table 1. XC Kernel Applied, Number of Independent Parameters, and Their Optimal Values Tuned for Singlet Excitations of the
Gordon Training Set62,135 for Different Functionals Using the aug-cc-pVTZ Basis Set with Corresponding Auxiliary Basesa

Functional XC energy Number of parameters αX
HF αC

MP2 αC
DFT μ (au)

PBE-P86/CIS(D) eq 1 2d 0.68 0.35 0.65 N/A
PBE-P86/ADC(2) eq 1 2d 0.68 0.35 0.65 N/A
ωPBEPP86b eq 3 4 0.70 0.48 0.68 0.18
LC-PBE-P86/CIS(D) eq 4 2 0.70 0.49 0.51 0.18
LC-PBE-P86/ADC(2) eq 4 2 0.70 0.49 0.51 0.19
RS-PBE-P86/CIS(D)c eq 5 2 0.50 0.25 0.75 0.70
RS-PBE-P86/ADC(2) eq 5 2 0.50 0.25 0.75 0.70

aFor the LC- and RS-type functionals, the αX
HF, αC

MP2, and αC
DFT values correspond, respectively, to λ, λ2, and 1 − λ2. bTaken from ref 98. cTaken

from ref 89. dAs αC
MP2 + αC

DFT = 1.

Figure 1.MAEs for singlet excitations of the Gordon training set62,135

with optimized parameters for different functionals using aug-cc-pVTZ
basis sets with corresponding auxiliary bases. The numbers of
transitions are in parentheses.
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is somewhat worse; however, the Rydberg values are
significantly better compared to the LC analogue. It means
that the range separation is highly recommended for both the
exchange and correlation terms at the same time.
The most balanced performance is attained by the RS-PBE-

P86/ADC(2) approach. The lowest error, 0.10 eV, is also
obtained for this functional, while the ωPBEPP86 approach is
inferior since itsMAE is 0.18 eV. Interestingly, all the functionals
contain two adjustable parameters, except for ωPBEPP86,
where the number of parameters is four. In addition, three of the
four parameters are practically identical to those used for the
LC-PBE-P86/CIS(D) approach. In spite of all these, our two-
parameter LC scheme provides lower error by 0.03 eV, which
can be explained by the facts that the calculation of the SR-DFT
exchange contribution and the optimization procedure some-
what differ from what it was carried out in ref 98. As was
demonstrated, both the standard and RS approaches outperform
the LC variant. In addition, the theoretical background of such
functionals was elaborated in refs 97 and98, and their
performance was discussed in detail in the same papers.
Accordingly, hereinafter, further investigation of the LC-PBE-
P86 approaches are omitted. In addition, despite the surprisingly
good results obtained by the standard DHs, the PBE-P86
functionals are also excluded as their application is out of scope
of this study. These standard DHs are only discussed when their
failure for intermolecular CT excitations is demonstrated.
Next, we determined the optimal spin-scaling parameters on

the same test set using the RS-PBE-P86/ADC(2) functional.
For this purpose, the αC

OS and αC
SS values were scanned, and the

errors for the SCS and SOS variants were minimized. To
preserve compatibility with the original approach, the default
parameters of λ = 0.5 and μ = 0.7 au were retained. The results
are presented in Figure 2. Foremost, we discuss the SCS variant
in detail. Unfortunately, as the SCS-ADC(2) problem is
iterative, fewer grid points were used during the optimization
procedure compared to the CIS(D)-based study in ref 90.
However, as it can be seen, the results are highly correlated just
as we have seen in the previous paragraphs. That is, concerning
the unscaled ansatz as a reference, the MAE slowly decreases
with decreasing αC

SS and increasing αC
OS parameters. The global

minimum can be found at αC
OS = 1.24 and αC

SS = 0.64, similar to
the genuine ansatz, while theMAE is 0.09 eV at this point. In the
case of the SOS variant, the global minimum is well-defined and
can be found at αC

OS = 1.69, again, which corresponds exactly to
the CIS(D)-based results. The lowest MAE is 0.10 eV, which is
higher only by 0.01 eV compared to the SCS variant. We note

that the reoptimization of the parameters, including the λ and μ
parameters as well, has only a negligible effect on the results.

3.3. Benchmark Calculations. One of the main focuses of
this study is to demonstrate the performance of the ADC(2)-
based RS DHs on comprehensive benchmark sets. For this
purpose, the most successful empirically and nonempirically
parametrized standard functionals, namely, DSD-PBEP8650 and
PBE0-2,43 were selected for comparison with our present
approaches. On the basis of the available benchmark results for
genuine DHs, within the TDA approximation, PBE0-2 outper-
forms most of the original DHs even with empirical para-
metrization,62,90 while the workhorse spin-scaled variant is
DSD-PBEP86.62 Some of the deficiencies of these functionals
were pointed out in ref 90, such as that the DSD-PBEP86
method has excellent accuracy for valence transitions; however,
its error is significantly higher for Rydberg excitations. In
contrast, PBE0-2 is somewhat more balanced; that is, it is more
accurate for Rydberg excitations; however, its general perform-
ance for singlet valence excitations is not outstanding.
Furthermore, both functionals failed for challenging intermo-
lecular CT excitations. To be fair, we note that the clear
superiority of such standard DHs to global hybrid approaches
was demonstrated in several excellent studies.62,95−97 We also
mention the promising nonempirical PBE-QIDH approach.45

Its performance for excited-state calculations was thoroughly
benchmarked in refs 89 and 90. As a highly similar accuracy was
observed compared to PBE0-2, we omit the detailed discussion
of PBE-QIDH. However, we recommend ref 98 for further
reading. In this contribution, the outstanding SCS/SOS-PBE-
QIDH approaches were introduced, where the spin-scaling
factors were tuned for excitation energies. We note that,
unfortunately, ADC(2)-based analogues cannot be defined for
these functionals as the direct and indirect terms in the second-
order correction are scaled separately. In the present
comparison, of course, our recently proposed RS-PBE-P86/
SCS-CIS(D)90 method is also assessed. As it was shown in the
original paper, this approach can be considered as one of the
most robust and accurate choices for excitation energies within
the DH theory. In addition, the SOS variant of the ωPBEPP86
functional, SOS-ωPBEPP86,98 is also discussed. This recently
proposed functional is considered as the most recommended
one from Goerigk’s group; however, other spin-scaled LC-DH
functionals are also noteworthy, such as SCS/SOS-ωB88PP86.
We note that, in this study, the genuine and the ADC(2)-based
variants are also assessed for all the functionals except for SOS-
ωPBEPP86. Furthermore, the canonical CIS(D) and ADC(2)

Figure 2.MAEs for singlet excitations of the Gordon training set62,135 for SCS (left) and SOS (right) ADC(2)-based variants using aug-cc-pVTZ basis
sets with corresponding auxiliary bases. In the case of the SCS variant, the white X marks the global minimum.
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results are presented as well. To help the reader, the attributes of
the functionals are collected in Table 2.
3.3.1. Gordon Set. First, we compare the performances for

the Gordon test utilizing the MAEs for the various types of
excitations. For an insightful comparison, we note that the
adjustable parameters for the RS-PBE-P86 functionals were
tuned for the singlet excitations of this test set. In addition, the
mixing factors of ωPBEPP86 were also optimized for the same
excitations, while the spin-scaling factors of SOS-ωPBEPP86
were tuned for both the singlet and triplet excitations within the
same set. The results are visualized in Figure 3. Inspecting the
bars for the singlet excitations, we can observe that the best
overall performances are attained by the spin-scaled RS DH-
ADC(2) approaches. The MAEs are 0.09 and 0.10 eV for the
SCS and SOS variants, respectively. The ADC(2)-based
methods outperform the CIS(D)-based ones in all the cases.
The difference is 0.03 eV for the wave function-based and SCS
RS-PBE-P86 approaches, while they are 0.02 and 0.01 eV for the
PBE0-2 and DSD-PBEP86 methods, respectively. As the
adjustable parameters were trained on this set, the outstanding
performance of the RS DHs is not surprising; however, the same
set was used for the SOS-ωPBEPP86 as well. Concerning the
functionals, this method has one of the largest overall errors with
a MAE of 0.15 eV. In the case of valence excitations, the
outstanding performance of the DSD-PBEP86 functionals is
well-known; nevertheless, significant improvements can be
realized for the ADC(2)-based RS DHs compared to the
genuine counterpart. The lowestMAEs, 0.08 eV, are achieved by
RS-PBE-P86/SOS-ADC(2) and DSD-PBEP86/SCS-ADC(2),

while the error does not exceed 0.10 eV for RS-PBE-P86/SCS-
ADC(2). Inspecting the Rydberg states, the most outstanding
methods are the PBE0-2 approaches and all the RS DHs. In
these cases, the error is below 0.08 eV, except for RS-PBE-P86/
SOS-ADC(2), where it is still less than 0.12 eV. For the
remaining approaches, the MAE is around 0.20 eV. Comparing
the ADC(2)-based RS DHs, the SCS variant is noticeably more
suitable for Rydberg excitations, while the valence results are
somewhat better for the SOS variant.
The MAEs for the triplet excitations are fairly moderate. The

overall errors are well-balanced, except for the wave function-
based and DSD-PBEP86 approaches, as the largest deviation
between the other methods is only 0.02 eV. Again, the ADC(2)-
based approaches outperform the genuine variants. The best
results are produced by the PBE0-2 functionals, while the RS-
PBE-P86/SCS-ADC(2) approach is also outstanding. TheMAE
is still below 0.10 eV for the other RS and LC DHs. The DSD-
PBEP86 functionals are inferior despite the fact that the valence
excitations are overrepresented in the test set, while the overall
error is even higher for the wave function-based methods.
Inspecting the valence results, salient functionals cannot be
identified. PBE0-2/ADC(2) is superior with a MAE of 0.06 eV,
while the error, precisely 0.10 eV, is still acceptable for RS-PBE-
P86/SCS-CIS(D), which is the least favorable case. The MAEs
for the Rydberg excitations are less consistent; however, for the
best performers, they are not higher compared to the singlet
results. The error is 0.06 eV for the genuine PBE0-2/CIS(D)
and RS-PBE-P86/SCS-CIS(D) approaches, while it is around
0.10 eV for the ADC(2)-based counterparts. The MAEs for the

Table 2. Functionals Assessed in Benchmark Calculationsa

Functional Exchange Correlation Level Spin scaling Number of parameters

PBE0-2 PBE PBE standard DH no 2
DSD-PBEP86 PBE P86 standard DH yes 4
SOS-ωPBEPP86 PBE P86 LC DH yes 5
RS-PBE-P86 PBE P86 RS DH yes 3 or 4b

aCIS(D)- and ADC(2)-based approaches are discussed for all the functionals except for SOS-ωPBEPP86. bSOS or SCS variant, respectively.

Figure 3. MAEs for calculated singlet (left) and triplet (right) excitation energies for the Gordon test set97,135 using aug-cc-pVTZ basis sets with
corresponding auxiliary bases. The numbers of transitions are in parentheses.
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SOS-ωPBEPP86 and RS-PBE-P86/SOS-ADC(2) methods are
still tolerable, while the DSD-PBEP86 functionals are highly not
recommended for such excitations. Concerning the valence
results, significant differences cannot be observed between the
SCS and SOS ADC(2)-based RS DHs, while the SCS variant is
somewhat more accurate for Rydberg excitations in this case as
well.
The compilation of additional statistical error measures for

the Gordon set can be found in Table 3 as well as in the SI.
Inspecting the overall MEs for the singlet excitations, the best
performances are obtained by the CIS(D)- and ADC(2)-based
RS-PBE-P86 methods; however, significant error cancellation
between the valence and Rydberg transitions shows up for the
former approach. Accordingly, by far the lowest SDs and RMSEs
are provided by the SCS and SOSDH-ADC(2) functionals. The
SCS variant provides better ME, while the SOS results are
somewhat more balanced. A systematic red-shift can be
observed between the ADC(2)-based and genuine approaches
for the valence excitations, while this effect is less relevant for the
Rydberg results. The lowest MAXs, around 0.35 eV, are also

attained by the spin-scaled ADC(2)-based RS-PBE-P86 func-
tionals. From this aspect, the PBE0-2/ADC(2) and SOS-
ωPBEPP86 methods are also outstanding with a MAX of about
0.40 eV, while it is around 0.60 eV for the others. For the DSD-
PBEP86 and wave function-based approaches, theMAX belongs
to a Rydberg excitation, while it is affiliated with a valence
transition for the others.
In the case of the triplet excitations, the best results are

achieved by the RS-PBE-P86/SOS-ADC(2) method with an
almost perfect ME. The error is highly acceptable for the others
as it is below 0.05 eV, except for the DSD-PBEP86 functionals.
Similar findings can be made for the maximum error as well. The
lowest MAX, 0.19 eV, is obtained by RS-PBE-P86/SOS-
ADC(2), while this measure is only somewhat higher for the
remainders, except for the DSD-PBEP86 methods, where the
MAXs exceed 0.40 eV. Concerning the reliable functionals, the
results are well-balanced, and significant error cancellation
between the different types of excitations cannot be observed.
The best SDs and RMSEs are provided by the PBE0-2 and RS-
DH approaches.

Table 3. Additional Error Measures for Calculated Excitation Energies (in eV) for the Gordon Test Set97,135 Using aug-cc-pVTZ
Basis Sets with Corresponding Auxiliary Basesa

Singlet excitations Triplet excitations

All (63) Valence (32) Rydberg (31) All (38) Valence (28) Rydberg (10)

Methods ME MAX ME MAX ME MAX ME MAX ME MAX ME MAX

CIS(D) −0.03 0.56 0.09 0.54 −0.16 0.56 0.10 0.45 0.20 0.45 −0.19 0.45
ADC(2) −0.10 0.69 −0.02 0.44 −0.18 0.69 −0.03 0.64 0.06 0.62 −0.30 0.64
SOS-ωPBEPP86 0.10 0.42 0.09 0.42 0.10 0.37 −0.04 0.24 −0.06 0.24 0.03 0.22
RS-PBE-P86/SCS-CIS(D) 0.05 0.62 0.13 0.62 −0.03 0.29 0.02 0.22 0.04 0.22 −0.04 0.14
RS-PBE-P86/SCS-ADC(2) 0.02 0.36 0.07 0.36 −0.03 0.28 −0.04 0.20 −0.03 0.19 −0.08 0.20
RS-PBE-P86/SOS-ADC(2) 0.04 0.35 0.06 0.35 0.02 0.31 0.01 0.19 0.02 0.16 −0.02 0.19
DSD-PBEP86/SCS-CIS(D) −0.06 0.59 0.08 0.39 −0.19 0.59 −0.07 0.41 −0.01 0.33 −0.24 0.41
DSD-PBEP86/SCS-ADC(2) −0.08 0.59 0.03 0.23 −0.20 0.59 −0.11 0.45 −0.05 0.37 −0.27 0.45
PBE0-2/CIS(D) 0.11 0.60 0.20 0.60 0.01 0.27 0.02 0.23 0.04 0.23 −0.04 0.14
PBE0-2/ADC(2) 0.08 0.41 0.16 0.41 0.00 0.28 −0.03 0.20 −0.01 0.15 −0.07 0.20

aThe numbers of transitions are in parentheses.

Figure 4. Error measures for calculated singlet (left) and triplet (right) excitation energies for the Thiel test set136 using TZVP basis sets with def2-
QZVPP-RI(-JK) auxiliary bases. The singlet (triplet) compilation contains 121 (71) transitions.
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3.3.2. Thiel Set. Next, we assess the methods using the Thiel
test set. The obtained error measures are presented in Figure 4.
Similar to the singlet valence excitations for the Gordon test set,
the best performers are the DSD-PBEP86 and ADC(2)-based
RS-DH functionals. The lowest error is achieved by the DSD-
PBEP86/SCS-ADC(2) and RS-PBE-P86/SOS-ADC(2) meth-
ods with aMAE of 0.17 eV, while it is 0.20 eV for the SCS variant
of the latter. As it can be seen, using the ADC(2)-based
approach, significant improvements can be gained over the
genuine ansatz; however, it is not surprising as ADC(2) has a
better performance compared to the CIS(D) approach. The
genuine PBE0-2 and SCSRS-PBE-P86 functionals are inferior as
the MAEs are higher than 0.30 eV. For all the methods, the

excitation energies are systematically overestimated. Out-
standing MEs are attained by ADC(2) and DSD-PBEP86/
SCS-ADC(2), while they are still acceptable for the best
performers. Similar findings can be made for the maximum
errors. This measure is also outstanding for the aforementioned
methods, while the MAX is fairly well-balanced for the others.
Again, the MAEs for the triplet excitations are significantly
lower. The same functionals are the most accurate ones with
MAEs of around 0.10 eV; however, the order changes
somewhat. For the sake of completeness, we mention that the
error is also highly acceptable for the remaining functionals as
the difference is only 0.04 eV between the best and worst results.
Consequently, significant differences cannot be observed

Figure 5. Error measures for calculated singlet excitation energies with different fractions of single excitation coefficients (left) and oscillator strengths
(right) for the Thiel test set.136 The numbers of transitions are in parentheses.

Figure 6. MAEs for calculated singlet (left) and triplet (right) excitation energies for the LJ1 test set139 using aug-cc-pVTZ basis sets with
corresponding auxiliary bases. The numbers of transitions are in parentheses.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01100
J. Chem. Theory Comput. 2022, 18, 865−882

874

https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01100?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01100?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


between the genuine and ADC(2)-based approaches. At the
same time, interestingly, the ADC(2) method is one of the
inferiors despite its good performance for the singlet transitions;
however, it is still better than CIS(D). The ME and MAX values
are also consistent for all the functionals, and salient approaches
cannot be identified. The triplet excitation energies are slightly
overestimated, except for the DSD-PBEP86 and SOS-
ωPBEPP86 approaches, while the MAXs are around 0.50 eV.
Presumably, the most significant gains can be realized for

transitions with larger fractions of double excitations and
oscillator strengths. To assess the first phenomenon, the
excitations of the Thiel set were divided into two groups. The
first group contains the singles dominated excitations, where the
norm of the vector of single excitation coefficients is greater than
or equal to 90% in the CC3 wave function, while in the second
group, the remaining, transitions with relatively larger fractions
of double excitations are included. The error measures for the
oscillator strengths are calculated only for states with f > 0.01 as
small values would bias our results. The results are visualized in
Figure 5.
Inspecting the singles dominated excitations, as it can be seen,

the results are fairly well-balanced. The ADC(2)-based
approaches outperform the CIS(D)-based ones in all the
cases; however, the difference is not significant. The improve-
ments are 0.02, 0.03, and 0.05 eV for the DSD-PBEP86, PBE0-2,
and SCS RS-DH functionals, respectively. For the ADC(2)
method, the MAE is lower by 0.06 eV compared to CIS(D). In
contrast, the results are noticeably better in the case of excited
states with relatively larger fractions of double excitations. For
these transitions, the slightest improvement is 0.07 eV for PBE0-
2, while the most significant is 0.16 eV for the SCS RS-DH
approach. Concerning the oscillator strengths, we can state that
it is difficult to compete with the ADC(2) method; however,
significant improvements can be realized in the case of the
ADC(2)-based functionals. As it is obvious, the results are well-
balanced within the group of the genuine and ADC(2)-based
approaches regardless of the exchange and correlation func-
tionals applied or the XC energy expressions used. The lowest
MAE of, precisely, 0.027 is attained by ADC(2). The error is
noticeably higher for the ADC(2)-based functionals, being
around 0.070; however, it is almost three times higher for the
genuine DHs compared to the ADC(2)-based approaches.
Similar observations can be made if the relative errors are

considered, which are below 30% for the present RS DHs, while
they are around 80% for the best CIS(D)-based approaches.
Next, we compare the performances for the LJ1 test set. The

results are collected in Figure 6. Inspecting the MAEs for the
singlet excitations, we can conclude that the overall errors are
well-balanced for almost all the functionals. The superiors are
the SOS-ωPBEPP86 and RS-PBE-P86/SCS-ADC(2) ap-
proaches with a MAE of 0.15 eV, while the error is under 0.17
eV for the others, except for PBE0-2/CIS(D), where it is 0.19
eV. The inferiors are the wave function-based methods;
however, the ADC(2) results are noticeably better. Again, the
overall performance of the ADC(2)-based approaches is slightly
superior to the genuine DHs. The improvement is 0.02 eV for all
the functionals. The valence results are in line with the
expectations. Outstanding accuracy can be obtained for the
DSD-PBEP86/SCS-ADC(2) method with a MAE of 0.09 eV;
however, highly acceptable results are provided by the SOS-
ωPBEPP86 and ADC(2)-based RS-DH functionals as well,
where the error is only 0.11 eV. The PBE0-2 results are
somewhat salient as the MAEs are 0.14 and 0.17 eV for the
ADC(2)-based and genuine approaches, respectively. Inspect-
ing the Rydberg excitations, the errors are well-balanced, and
salient functionals cannot be identified. The lowest MAEs, 0.20
eV, are attained by the best two performers. The DSD-PBEP86
functionals are inferiors; however, the errors are only 0.23 eV in
both cases, which are highly acceptable. In general, the Rydberg
errors are higher compared to the valence results, while
significant differences cannot be observed between the SCS
and SOS ADC(2)-based RS DHs.
Again, the triplet errors are somewhat smaller compared to

the singlet ones, but the picture somewhat changes for them.
Despite the poor singlet results, the lowest MAEs, 0.12 and 0.13
eV, are attained by the genuine and ADC(2)-based PBE0-2
approaches, respectively. The error starts to increase slightly, but
it is still below 0.15 eV for almost all the functionals. The largest
overall error is obtained for SOS-ωPBEPP86 with aMAE of 0.17
eV; however, it is still more accurate than the wave function-
based methods. Significant differences cannot be observed
between the ADC(2)-based and genuine RS DHs, while the
latter ansatz provides negligibly better results for the PBE0-2 and
DSD-PBEP86 approaches. Inspecting the triplet valence
excitations, similar observation can be made as for the singlet
ones. The errors are fairly well-balanced. The DSD-PBEP86
results are outstanding, while the PBE0-2 and RS-DH

Table 4. Additional Error Measures for Calculated Excitation Energies (in eV) for the LJ1 Set139 Using aug-cc-pVTZ Basis Sets
with Corresponding Auxiliary Basesa

Singlet excitations Triplet excitations

All (55) Valence (26) Rydberg (29) All (47) Valence (29) Rydberg (18)

Methods ME MAX ME MAX ME MAX ME MAX ME MAX ME MAX

CIS(D) 0.08 1.03 0.16 0.56 −0.01 1.03 0.12 0.61 0.21 0.61 −0.03 0.53
ADC(2) −0.03 0.71 0.09 0.50 −0.13 0.71 0.02 0.69 0.12 0.55 −0.13 0.69
SOS-ωPBEPP86 0.04 0.50 −0.01 0.24 0.08 0.50 0.00 0.88 −0.08 0.88 0.13 0.52
RS-PBE-P86/SCS-CIS(D) 0.10 0.63 0.08 0.32 0.12 0.63 0.02 0.72 −0.03 0.72 0.10 0.54
RS-PBE-P86/SCS-ADC(2) 0.07 0.57 0.04 0.28 0.10 0.57 −0.03 0.69 −0.07 0.69 0.05 0.47
RS-PBE-P86/SOS-ADC(2) 0.07 0.50 0.06 0.28 0.09 0.50 0.04 0.79 0.01 0.79 0.10 0.53
DSD-PBEP86/SCS-CIS(D) −0.03 0.54 0.07 0.25 −0.12 0.54 −0.06 0.48 −0.03 0.48 −0.11 0.45
DSD-PBEP86/SCS-ADC(2) −0.05 0.54 0.04 0.23 −0.13 0.54 −0.09 0.50 −0.06 0.46 −0.13 0.50
PBE0-2/CIS(D) 0.14 0.77 0.14 0.35 0.14 0.77 0.02 0.73 −0.02 0.73 0.09 0.48
PBE0-2/ADC(2) 0.11 0.76 0.10 0.34 0.12 0.76 −0.01 0.71 −0.05 0.71 0.05 0.43

aThe numbers of transitions are in parentheses.
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functionals have a similar accuracy with MAEs of around 0.11
eV, which are highly acceptable. For the Rydberg excitations, the
lowest error is 0.16 eV achieved by the PBE0-2/ADC(2)
approach, while the RS-PBE-P86/SCS-ADC(2) and PBE0-2/
CIS(D) methods, where the MAE is only higher by 0.01 eV, are
also outstanding. For the remaining functionals, the error hardly
exceeds 0.20 eV. Comparing the ADC(2)-based RS DHs, the
SCS variant is more suitable for Rydberg excitations, while the
valence results are somewhat better for the SOS variant.
3.3.3. Test Set of Loos, Jacquemin, and Co-Workers. The

compilation of the further statistical error measures for the LJ1
set can be found in Table 4. The lowest MEs can be achieved
through significant error cancellation for the singlet excitations.
As it can be seen, theME has an opposite sign for the valence and
Rydberg transitions for the best performers, such as ADC(2)
and DSD-PBEP86/SCS-CIS(D). The error is moderate for
SOS-ωPBEPP86, where the error cancellation is less significant.
We note that the lowest overall SDs and RMSEs were provided
by the SOS-ωPBEPP86- and ADC(2)-based RS-DH ap-
proaches by far. Interestingly, in the case of the PBE0-2 and
RS-DH methods, the valence and Rydberg excitations are
systematically overestimated. The lowest maximum error, 0.50
eV, is attained by the SOS-ωPBEPP86 and RS-PBE-P86/SOS-
ADC(2) functionals, while it is tolerable for the DSD-PBEP86
and other RS-DH methods. The PBE0-2 approaches are
inferiors with a MAX of around 0.76 eV. In general, the MEs
and MAXs are higher for the Rydberg states compared to the
valence transitions as it was so for the MAEs. For the triplet
excitations, at the same time, the lowest ME and the highest
RMSE are obtained by SOS-ωPBEPP86. The MEs are highly
acceptable for the PBE0-2 and RS-DH functionals, while they
are more remarkable for the DSD-PBEP86 approaches. In
general, the MEs are somewhat higher for the Rydberg
excitations, while the MAXs belong to valence transitions. For
both the singlet and the triplet transitions, again, a systematic
red-shift can be observed between the ADC(2)-based and the
genuine approaches.

As the weights of the single excitations in the CC3 wave
function and oscillator strengths are also available for the LJ1
test set, the same comparisons were carried out as for the Thiel
set. In this case, transitions where ∥r∥ ≥ 91% are considered as a
singles dominated excitation, while the remainders are treated as
states with larger fractions of double excitations. The results are
visualized in Figure 7. Considering the DH functionals, again,
the results are fairly well-balanced for the singles dominated
excitations. The ADC(2)-based approaches outperform the
CIS(D)-based counterpart in all the cases; however, the
difference is negligible. The improvement is only 0.02 eV for
the PBE0-2 approach, which is the most notable case. For the
ADC(2) method, the MAE is lower by 0.04 eV compared to
CIS(D). For the transitions with relatively larger weights of
double excitations, these gains are more remarkable as the
difference is 0.03 eV for the DSD-PBEP86 and SCS RS-DH
functionals, while it is 0.04 eV for PBE0-2. The good
performance of the CIS(D)-based SOS-ωPBEPP86 approach
is surprising. For the oscillator strengths, the best performances
are attained by the RS DH-ADC(2) approaches. For both
measures, the present approaches are even better than the
ADC(2) method, while the remaining ADC(2)-based func-
tionals significantly outperform the genuine counterpart. Using
the ADC(2)-based ansatz, the relative error fluctuates around
15%, while it is at least twice as large for the CIS(D)-based
functionals.

3.3.4. Intermolecular CT Set. Finally, we study intermolec-
ular CT excitations, which present a well-known problem even
for this class of methods.96,113,114 This comparison also includes
the PBE-P86/CIS(D) and PBE-P86/ADC(2) functionals
obtained in Section 3.2. These approaches provided outstanding
accuracy for the Gordon training set; however, as we will see it,
they are inferiors for CT excitations. The numerical results for
the CT benchmark set of Szalay et al.141 are presented in Figure
8. As it can be seen, the RS-DH methods are by far superior to
the other ones. The lowest MAE, 0.22 eV, is attained by RS-
PBE-P86/SOS-ADC(2). The error is still below 0.30 eV for the
SCS variant, while its CIS(D)-based counterpart is a bit more

Figure 7. Error measures for calculated singlet excitation energies with different fractions of single excitation coefficients (left) and oscillator strengths
(right) for the LJ1 test set.139 The numbers of transitions are in parentheses.
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accurate. These functionals provide better results than the wave
function-based methods, where the MAE is around 0.37 eV.
Surprisingly, despite the long-range correction, the SOS-
ωPBEPP86 method is not reliable as its error amounts to 0.66
eV. To be fair, we mention that other LC DHs from the Goerigk
group provide satisfying results for the same test set;90 however,
as can be seen, not all LC DHs are suitable for challenging
intermolecular CT excitations. In this regard, the ωB2GPPLYP
approach95 is also reliable with a MAE of 0.39 eV; however, as it
was pointed out in ref 98, its performance for general
applications is far from the best LC-DHs. The standard DHs
are also highly not recommended. The MAE is barely tolerable,
0.66 eV, for the PBE0-2 functionals but is around 1.00 eV for the
DSD-PBEP86 and even worse for the PBE-P86 approaches. The
excitation energies are systematically underestimated for all the
approaches. In the case of the best performers, the ME is
somewhat smaller than the correspondingMAE, while these two
values are practically identical for the others. The lowest MAXs
are produced by the SCS RS-DH methods, while it is around

1.30 eV for the SOS-ωPBEPP86 and PBE0-2 functionals. This
relatively large number is still tolerable since the maximum error
is at least 1.70 eV for the inferiors. For such excitations,
significant differences cannot be observed between the ADC(2)-
based and the genuine approaches.

3.4. Overall Performance for Simple Cases. It is hard to
characterize the performance of the functionals with a single
measure. A procedure was recently proposed by Casanova-Paéz
and Goerigk98 where the MAEs were averaged for all the
benchmark sets assessed.We use the samemeasure in this study;
furthermore, an additional measure is also introduced where the
MAEs are averaged for different characters of excitations. Thus,
in the case of the first descriptor, we divide the Gordon, Thiel,
and LJ1 benchmark sets into singlet and triplet subsets of
excitations, and the resulting sixMAEs are averaged. In addition,
for the second measure, all the valence and Rydberg transitions
regardless of the benchmark sets are split up into singlet and
triplet subsets as well, and the four MAEs obtained are averaged.
To be fair, the challenging CT benchmark set is omitted in this
comparison as those values would bias our results. Accordingly,
this ranking is relevant for simple and general applications if only
the excitation energies are required. The results are visualized in
Figure 9. Inspecting the bars, a couple of important observations
can be made. First, the most accurate and robust results are
attained by the ADC(2)-based RS DHs. Second, the overall
performance of the ADC(2)-based approaches is always better
compared to the genuine counterparts. We would like to
emphasize that the main differences between the two
approaches have less influence on these results. The most
significant gains can be achieved for the oscillator strengths and
transitions with larger fractions of double excitations. Finally, the
PBE0-2 and DSD-PBEP86 functionals are only suggested for
certain types of excitations, while the overall performance of
SOS-ωPBEPP86 is not consistently better than either standard
DHs for the benchmark sets studied, and its failure for
challenging intermolecular CT excitations was pointed out.
To eliminate the bias caused by the overlapping test sets and

to minimize the influence of our training set, an additional
comparison was also carried out. In this case, the duplicates were
completely excluded; that is, only unique molecules were
selected from the benchmark sets. For this purpose, we retained
the entire LJ1 test set as the most comprehensive benchmark set
used in this study. This set was supplemented with themolecules

Figure 8. Error measures for calculated singlet excitation energies for
the intermolecular CT test set141 using cc-pVDZ basis sets with
corresponding auxiliary bases.

Figure 9. Averaged MAE for different benchmark sets (left) and different characters of excitations (right). Intermolecular CT results are excluded in
this comparison. See text for explanation.
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from the Thiel set that are not included in LJ1. In addition, the
molecules from the Gordon test set that were not part of the
joint set were also added to the compilation. This results in 169
singlet (140 valence and 29 Rydberg) and 114 triplet (96
valence and 18 Rydberg) excitations for 41 molecules. Here 3
(11), 20 (173), and 18 (99) molecules (excitations) were
selected from the Gordon, Thiel, and LJ1 test sets, respectively.
Thereafter, similar to the previous paragraph, all the valence and
Rydberg transitions regardless of the benchmark sets were split
up into singlet and triplet subsets, and the four MAEs obtained
were averaged. The results are visualized in Figure 10.

As it can be seen, again, the best performers are the spin-scaled
ADC(2)-based RS-DH approaches, and the ADC(2)-based
functionals always outperform the genuine counterparts. In
contrast to the previous results, the overall performances of the
DSD-PBEP86 functionals are better compared to PBE0-2. Since
the fitting set does not influence the PBE0-2 and DSD-PBEP86
results, this suggests that the Thiel set is somewhat overweighted
in this scheme. The less favorable performance of RS-PBE-P86/
SCS-CIS(D) also supports this finding as, similar to PBE0-2, it is
inferior for the above-mentioned test set.

4. CONCLUSIONS
Our ADC(2)-based DH ansatz80 has been combined with
range-separation techniques. This scheme can be considered as
the extension of the robust RS-DH approach relying on the
CIS(D)-based ansatz, where both the exchange and correlation
contributions are range-separated.89 In the new methods, the
double excitations are treated iteratively, while the transition
moments are evaluated at a higher level taking into account the
effect of second-order contributions. To obtain more efficient
approaches, spin-scaling techniques were also applied.90 The
proposed approaches contain three and four empirical
parameters in the case of the SOS and SCS variants, respectively.
These mixing factors were determined using the well-balanced
benchmark set of Gordon et al.;135 thereafter, a cross-validation
was performed on several popular benchmark sets. In total, 250
singlet and 156 triplet excitations were involved in this study;
furthermore, 80 oscillator strengths were also assessed. On top
of this, concerning the overall performances, an additional

comparison was also carried out where only the unique
molecules are considered.
Our numerical results show that the range separation for the

correlation contributions is highly recommended for both the
ADC(2)- and CIS(D)-based schemes. In addition, the ADC(2)-
based approaches slightly but consistently outperform the
corresponding genuine counterparts for simple cases, while
significant gains can be realized for the oscillator strengths and
transitions with larger fractions of double excitations. Ranking
the functionals, the most accurate and robust results were
attained by the present RS-PBE-P86/SCS-ADC(2) approach
and its SOS variant. Significant differences cannot be observed
between them; perhaps the SCS variant is a bit more suitable for
Rydberg excitations, while the valence results are somewhat
better for the SOS variant. In both cases, the averaged MAE is
below 0.15 eV, while the relative error of the oscillator strengths
is around 25%. Accordingly, the fourth-order scaling RS-PBE-
P86/SOS-ADC(2) is highly recommended for general
applications. The overall performance of the recently proposed
LC SOS-ωPBEPP86 approach98 is not consistently better than
either the PBE0-2/CIS(D) or the DSD-PBEP86/CIS(D)
functionals for the benchmark sets studied. For the oscillator
strengths, within the CIS(D)-based ansatz, the lowest relative
error is 66% obtained by DSD-PBEP86/SCS-CIS(D). Thus, the
error can be reduced by around 65% using the ADC(2)-based
ansatz. In addition, for the challenging intermolecular CT
excitations, among the density functional approximations
assessed in this study, only the RS-DH functionals provided
reliable results.
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