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Abstract
Background. Advanced age is a major risk factor for the development of many diseases including those affecting 
the central nervous system. Wild-type isocitrate dehydrogenase glioblastoma (IDHwt GBM) is the most common 
primary malignant brain cancer and accounts for ≥90% of all adult GBM diagnoses. Patients with IDHwt GBM have 
a median age of diagnosis at 68–70 years of age, and increasing age is associated with an increasingly worse prog-
nosis for patients with this type of GBM.
Methods. The Surveillance, Epidemiology, and End Results, The Cancer Genome Atlas, and the Chinese Glioma 
Genome Atlas databases were analyzed for mortality indices. Meta-analysis of 80 clinical trials was evaluated for 
log hazard ratio for aging to tumor survivorship.
Results. Despite significant advances in the understanding of intratumoral genetic alterations, molecular charac-
teristics of tumor microenvironments, and relationships between tumor molecular characteristics and the use of 
targeted therapeutics, life expectancy for older adults with GBM has yet to improve.
Conclusions. Based upon the results of our analysis, we propose that age-dependent factors that are yet to be fully 
elucidated, contribute to IDHwt GBM patient outcomes.

Key Points

 • The aging brain and body contribute to especially poor outcomes for older adult patients.

 • The mechanism of GBM progression and response to treatment in the context of aging 
remain as understudied areas of research.

Glioblastoma as an age-related neurological disorder 
in adults
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Advanced Age Enhances the Risk for 
Human Disease

Wild-type isocitrate dehydrogenase glioblastoma (IDHwt 
GBM) is the most common aggressive primary brain 
tumor in adults and has a rapidly progressing course 
with a median age of diagnosis of 68–70  years.1 GBM 
consists of distinct subclonal cell populations with a 
high heterogeneity that contributes to poor survival out-
comes irrespective of the treatment used.2–4 Age- and 
gender-adjusted incidence of GBM is highest among 
adults 75–84 years of age.5 The age-adjusted incidence 
rate of GBM among adults 35–44 years of age per 100 
000 people is 1.25 and increases to 8.05, 12.99, and 15.13 
among adults 55–65, 65–74, and 75–84  years, respec-
tively.6 The basis for the increased incidence of GBM 
among elderly individuals is poorly understood and 
underexplored.

Life expectancy has been increasing in the United 
States and many other developed countries for more than 
40 years. Increasing life expectancy is attributed to scien-
tific, medical, technological, and/or sociological discov-
eries that have contributed to a growing population that 
survive to ≥65 years of age. For an individual in the United 
States born in 2018, life expectancy is 76 and 81 years of 
age for men and women, respectively.7,8

Advanced age of ≥65  years is associated with a high 
risk of disease incidence with greater than 80% of this age 
group being afflicted with diabetes, hypertension, heart 
disease, cancer, or other condition requiring medical man-
agement.9–11 With respect to cancer, 55% of newly diag-
nosed cancer and 70% of cancer-related deaths occur in 
individuals ≥65 years of age.12 Advanced age is therefore 
the most common risk factor associated with a cancer di-
agnosis and also the most common negative prognostic 
factor.9,13

Here we explore the hypothesis and evidence that 
IDHwt GBM primarily arises due to age-dependent 
changes that take place in the older adult central nervous 
system (CNS) that includes declining immune system 
function. We hypothesize that age-dependent processes 
enhance GBM cell initiation, progression, and resistance 
to therapeutic approaches. A  better understanding of 
age-dependent changes in the brain and immune system 
may lead to the development of personalized therapeutic 
approaches that provide better outcomes for older adults 
with GBM.

Methods

Surveillance of Epidemiology and End Results 
Database

All population, incidence, and mortality data from the 
Surveillance of Epidemiology and End Results Database 
(SEER) database were accessed through SEER * Stat 
(Version 8.3.5). Population-level data were accessed 
through a Frequency Session. Variables examined were 
(1) age recode with &lt;1-year olds and (2) year. Incidence 
and mortality data were accessed through a Rate Session. 
Variables examined for incidence include (1) age recode 
with &lt;1-year olds, (2) year of diagnosis, (3) histology 
recode—broad groupings, (4) histology recode—brain 
groupings, and (5) cause of death (COD) to site recode. The 
COD to site recode was used to analyze the mortality rate 
of GBM. Variables examined for mortality include (1) age 
recode with &lt;1-year olds, (2) year of death, and (3) COD 
recode. All rate data were crude/non-age-adjusted. Data 
were accessed on March 16, 2021.

The Cancer Genome Atlas and Chinese Glioma 
Genome Atlas

Survival data for GBM patients were analyzed from the 
cancer genome atlas and the Chinese Glioma Genome 
Atlas. The data were accessed using the UCSC Xena portal. 
Data were accessed on March 16, 2021.

Meta-analysis

PubMed search of “glioblastoma” that was limited to 
phase III randomized trials between 1985 and 2020. Each 
study was reviewed independently to assess the contri-
bution of aging to tumor survivorship. Log hazard ratio 
(HR) and standard error from the HR and confidence inter-
vals for age were extracted and reported HRs for age. 
Confidence intervals are reported “as is” for studies that 
reported HRs and confidence intervals by age group. 
Four studies represented with blocks reported only the 
HR point estimate without the corresponding confidence 
intervals or standard error. In the Levin et al. (2000) and 
Brem (1995) papers, HR was reported on the log scale per 
either a decade of age or 1 year of age and was converted 
to HR scale by exponentiating the estimate. For the Elliot 

Importance of the Study

IDHwt glioblastoma (GBM) is an aggressive 
primary brain cancer for which patient out-
comes remain poor despite the use of multi-
modal therapies. This study was undertaken 
to address a gap in knowledge regarding es-
pecially poor outcomes for older GBM pa-
tients. Age-associated changes including 

decreased immune system function and 
chronic neuroinflammation are potential con-
tributors to the reduced posttreatment survival 
of older adult (≥65 years of age) GBM patients 
and represent areas of need for an increased 
study to inform personalized approaches for 
treating elderly patients.
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et al. (1997) and Malmström et al. (2017) studies, 1/HR is 
reported to have the younger age group as the reference 
group. Forest plot was done using metaviz package in R 
v. 4.0.2 statistical software.

Results

Advanced Age and IDHwt GBM

SEER database analysis between 1975 and 2017 of patients 
diagnosed with GBM shows the age-related increase of the 
incidence for this cancer, with a peak incidence between 
70 and 79 years old. GBM has a poor prognosis as indi-
cated by a mortality to incidence ratio consistently more 
than 0.8 for all patients older than the age of 35 (Figure 1A). 
Percent mortality versus age plot developed from SEER 
data reveals the highest value for the 65–69 years of age 
group. Analysis of the same data recorded by The Cancer 
Genome Atlas shows a peak at 60–64 years of age. Chinese 
Glioma Genome Atlas data are distinct in showing a peak 
in a younger population of GBM patients; possibly as a  
result of a patient cohort that includes a surprisingly low 
percentage of adults ≥65 years of age: 16.25% (Figure 1B 
and C).

Clinical Trials and the Aging Population

A review of GBM clinical trials finds that many limit enroll-
ment to patients ≤70 years of age (Supplementary Table 1).  
In addition, many studies do not report outcomes with re-
spect to patient age. Eighty publications were identified 
that report phase III clinical trial outcomes and of these, 
only 10 report HRs for age; although the median age of pa-
tients enrolled in those trials was in the 50s. Of the clinical 
trials that allow for age stratification of data, an increased 
HR of mortality clearly associates with increasing age 
(Figure 2). Though limited in number, these studies show 
that patients in the 60 and older demographic group con-
sistently have reduced survival irrespective of treatment 
used. The studies that are for identifying treatment options 
for the aged population include de-escalation regimens.

Discussion

The Relationship Between Advanced Age and 
the Onset of Neuropathological Disease

The aged brain is more susceptible to local insults from 
reactive oxygen species within specific CNS regions in-
cluding the hippocampus, substantia nigra, and the spinal 
cord.14 Stalled or impaired cerebral blood flow in the 
aged cingulate, insular, prefrontal gyri, as well as hippo-
campus contribute to brain volume loss in those regions 
and have been associated with the cognitive decline with 
primary and secondary neurodegenerative conditions.15 
The median age of patients with Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and stroke falls at or between 
75–84, 72, and 69 years of age, respectively (Table 1). This 

is within a similar age range to the median age of an IDHwt 
GBM patient diagnosis. However, the age-dependent 
mechanistic relationship between IDHwt GBM and other 
age-related neurodegenerative diseases remains unex-
plored (Figure 3A).

Advanced age in the CNS is associated with an enhance-
ment of pro-inflammatory processes and the upregulation 
of immunosuppressive factors that can impair antitumor 
immune system functions. Microglia are the resident 
macrophages of the brain and contribute to the immuno-
suppressive microenvironment as they skew toward an M2 
phenotype and secret matrix metalloproteinases.16 Major 
histocompatibility complex II and CD11b are upregulated 
while17,18 bone marrow-derived dendritic cells (DCs) in-
filtrate and accumulate inside the brain parenchyma of 
older adult mice.19–21 Immunosuppressive indoleamine 2,3 
dioxygenase 1 (IDO) levels increase in the normal brain 
during advanced age and decrease the benefit of immu-
notherapy in older adult mice with brain tumors.22–25 
Unexpectedly, the age-dependent increase of brain IDO 
activity acts non-enzymically since pharmacologic IDO en-
zyme inhibitor treatment fails to reverse its immunosup-
pressive effects in older adults.24 This raises an intriguing 
consideration of whether there are additional immuno-
suppressive factors that increase in the brain and act non-
canonically during advanced age (Figure 3B).

Aging and Senescence

Cellular senescence, chronic sterile inflammation, and the 
development of the inflammasome play a critical role in 
the development of age-related pathologies. Cellular se-
nescence is a hallmark of aging and affects the outcome 
of subjects with neurodegenerative disease and cancer.26 
In contrast to an acute response to extrinsic factors, se-
nescence is triggered by exposure to genotypic stress and 
damage to intracellular components. Senescent cells are 
permanently growth-arrested and reflect a mechanism 
of defense against the transformation into an oncogenic 
cell that divides uncontrollably. Although cellular senes-
cence is presumed to confer an antitumorigenic function, 
the senescent cells release pro-inflammatory factors re-
ferred to as the secretory associated senescent phenotype 
(SASP) that exacerbates a variety of different age-related 
pathologies including AD, PD, and cancer.27–29 Brain aging 
and neurodegenerative changes are associated with 
an enrichment of gene expression for SASP factors in-
cluding TGF-β, IL-6, IL-8, VEGF, matrix metalloproteinase-2 
(MMP-2), and MMP-9—all of which have been implicated 
to also possess a role in cancer, neuroinflammation, and 
neurodegeneration.28–31 The SASP enhances the invasion 
of tumor cells and accelerates the rate of cancer progres-
sion by changing DNA methylation and gene expression 
patterns.32–34

Inflammaging represents age-associated changes 
that result from chronic exposure to pro-inflammatory 
factors and the consequential effects that result in 
tissue damage.35 Secondary pathological mechan-
isms that arise due to inflammaging contribute to type 
II diabetes, atherosclerosis, and a weakened immune 
system that is incapable of clearing infectious agents, 

Methods

Surveillance of Epidemiology and End Results 
Database

All population, incidence, and mortality data from the 
Surveillance of Epidemiology and End Results Database 
(SEER) database were accessed through SEER * Stat 
(Version 8.3.5). Population-level data were accessed 
through a Frequency Session. Variables examined were 
(1) age recode with &lt;1-year olds and (2) year. Incidence 
and mortality data were accessed through a Rate Session. 
Variables examined for incidence include (1) age recode 
with &lt;1-year olds, (2) year of diagnosis, (3) histology 
recode—broad groupings, (4) histology recode—brain 
groupings, and (5) cause of death (COD) to site recode. The 
COD to site recode was used to analyze the mortality rate 
of GBM. Variables examined for mortality include (1) age 
recode with &lt;1-year olds, (2) year of death, and (3) COD 
recode. All rate data were crude/non-age-adjusted. Data 
were accessed on March 16, 2021.

The Cancer Genome Atlas and Chinese Glioma 
Genome Atlas

Survival data for GBM patients were analyzed from the 
cancer genome atlas and the Chinese Glioma Genome 
Atlas. The data were accessed using the UCSC Xena portal. 
Data were accessed on March 16, 2021.

Meta-analysis

PubMed search of “glioblastoma” that was limited to 
phase III randomized trials between 1985 and 2020. Each 
study was reviewed independently to assess the contri-
bution of aging to tumor survivorship. Log hazard ratio 
(HR) and standard error from the HR and confidence inter-
vals for age were extracted and reported HRs for age. 
Confidence intervals are reported “as is” for studies that 
reported HRs and confidence intervals by age group. 
Four studies represented with blocks reported only the 
HR point estimate without the corresponding confidence 
intervals or standard error. In the Levin et al. (2000) and 
Brem (1995) papers, HR was reported on the log scale per 
either a decade of age or 1 year of age and was converted 
to HR scale by exponentiating the estimate. For the Elliot 
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infected cells, and malignant cells.36,37 Implicated in neu-
rodegenerative conditions, activated microglia release 
the inflammasome-derived cytokines, IL-1β and IL-8, which 
are toxic to neurons and contribute to neurotoxicity.38 
Age-dependent inflammasome activation in microglia, 
macrophages, and dendritic cells also contribute to tu-
morigenesis.39 Immunosenescence is the derivative result 
of inflammaging that leads to decreased immune cell ef-
fector functions and the inability to adequately address in-
fections, cancer, and antigenic challenges.40,41

P53 and p16INK4A play critical roles in regulating the phe-
notype of senescent cells. Older adult mouse hippocampal 
cells with increased p16INK4A have an associated cognitive 
decline that is rescued by eradicating p16INK4A+ senescent 
cells.42 The p16INK4A expression model has proven to be one 
of the most useful in vivo markers of senescent cells to 
date. With this in mind, p16 reporter mice were generated 
to allow for the detection of senescent cells through bio-
luminescence, localization, and isolation of live p16INK4A+ 
cells, as well as the inducible eradication of those cells with 
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Figure 1. Age-dependent stratification of glioblastoma (GBM) patient incidence, mortality, and frequency across different databases. The 
Surveillance, Epidemiology, and End Results (SEER), the Cancer Genome Atlas (TCGA), and the Chinese Glioma Genome Atlas (CGGA) databases 
were analyzed. (A) The incidence of GBM per 100 000 individuals (red), mortality due to GBM (blue), and the mortality/incidence ratio (green) of pa-
tients between 1975 and 2017 were binned by 5-year intervals of age groups. (B) Comparison across databases for percentage mortality due to GBM 
among the SEER (red), TCGA (blue), and CGGA (green) between 1975 and 2017 binned by 5-year intervals of age groups. (C) Age distribution among 
the SEER (red), TCGA (blue), and CGGA (green) databases as assessed across different GBM patient age groups, demonstrating increased repre-
sentation of elderly individuals (65–85+ bin) in the SEER database relative to CGGA and TCGA databases (inside open bracket).
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the benign drug, ganciclovir. This model was previously 
used to confirm that senescent cell eradication decreases 
inflammation, tumor metastasis, and relapse of non-CNS 
models of cancer.43,44

Targeting cellular senescence has been an area of re-
search and development in both animal models and hu-
mans. Dasatinib and quercetin are senolytics that target 
the PI3K/Akt/mTOR pathway and are approved for use in 
humans. Treatment with dasatinib and quercetin enhances 
the longevity of animal models and alleviates aging-related 
phenotypes45,46 by decreasing senescent cell numbers, 
enhancing cardiovascular function, and even ameliorating 
neurocognitive effects of AD plaque burden.47,48 Initial 
studies using mouse brain tumor models treated with radi-
ation (RT), anti-PD-1 mAb, IDO enzyme inhibitor, dasatinib, 
and quercetin improved long-term survival in older adults 
as compared to mice treated with RT, anti-PD-1 mAb, and 
IDO enzyme inhibitor without senolytics.49 Although a 
phase II clinical trial in recurrent GBM for selective treat-
ment with dasatinib was previously found to be ineffective 
at improving overall survival,50 this result is in line with 

recent studies in older adult mice when it is not further 
combined with both quercetin and immunotherapy. The 
consideration of the complex environment, inside of the 
tumor, as well as outside of the tumor but within the brain 
of older adults, should be evaluated for fully addressing 
the factors that promote GBM outgrowth and contribute to 
therapeutic resistance (Figure 3).

Dynamic Interactions Between the Aging Brain, 
the Aging Immune System, and GBM

A robust anti-GBM immune response in adults requires (1) 
a fully competent immune system including both the CD4+ 
and CD8+ T cell lineages, (2) immune cell activation and 
specificity to GBM-specific antigens, (3) effective infiltration 
into the GBM microenvironment, and (4) the ability to erad-
icate GBM cells (Figure 4). Major limitations to maximal 
immunotherapeutic efficacy in older adults with GBM are 
due to the intratumoral immunosuppression that increases 
in part due to tumor-infiltrating T cells,51,52 as well as due to 
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Figure 2. Forest plot of a meta-analysis evaluating hazard ratios as stratified by age of published phase III clinical trials involving patients with gli-
oblastoma. Among the 10 publications available for meta-analysis based on age, 6 unique reference groups were identified for comparison. Hazard 
ratios comparing each age group versus the youngest group were obtained from reported univariable analyses or from multivariable analyses 
which adjusted for age. Overall, most hazard ratios were greater than 1 among older age groups, suggesting worse overall survival.
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the immunosuppression in the brain that arises from aging-
dependent mechanisms, and are the subject of an ongoing 
investigation by our group.24,25 Compounding the impaired 
systemic and local antitumor response effects is the conserv-
ative option with respect to chemotherapeutic dose intensity, 
extent of resection, and radiation based on clinical evalua-
tion of patient treatment tolerance among older adults, which 
places them at a therapeutic disadvantage. The complexity of 
managing a newly diagnosed GBM in older adults presents 
as a multidimensional challenge due to the consideration of 

additional risk factors including frailty, medical comorbidities, 
compromised immune system status, and an increased risk 
and susceptibility to neurotoxicity with standard treatments.53

Intratumoral Immune Suppression Is Independent 
of Age-Related Changes in the Brain

Factors expressed and cells that reside within the 
GBM microenvironment influence the strength of 

  
Table 1. CNS Disease States, SEER Database Analysis, TCGA, and Norwegian Database Analysis MSBASE.org

Condition Median 
Age of 
Diag-
nosis 
(years)

Age-
Adjusted In-
cidence (per 
100 000)

Median Survival 
(months)

Standard of Care

Glioma (astrocytoma) 57 4.99 11.6  

 Grade II (diffuse) 48 0.46 104.4 Resection, radiation

 Grade III (anaplastic) 53 0.41 9.9 Resection, radiation, temozolomide

 Grade IV (glioblastoma) 65 3.21 10.0 Resection, radiation, temozolomide

 IDH WT GBM 68–70 NR 12.1 (mean = 14.0) See above

 IDH MT GBM 45–48 NR 24.2 (mean = 39.7)

Oligodendroglioma 45 0.34 129.7  

 Grade II 43 0.23 147.7 Surgery, radiation

 Grade III (anaplastic) 50 0.11 63.8 Surgery, radiation, PCV

Ependymoma 44 0.43 150+ Resection, radiation, combo. Chemotherapy

Meningioma 66 8.33 78.4  

 Grade I 66 8.23 116 Surgery

 Grade II–III 65 0.10 76.4 Surgery, radiation

Pituitary tumors 51 3.94 120+ Surgery, radiation

Metastatic lesions to the brain

 Lung 61–80 8.17 5.8 Targeted therapy for driver mutation, surgery, 
stereotactic radiosurgery, whole-brain radia-
tion therapy, immune checkpoint inhibitors, 
chemotherapies

 Breast 61–80 0.33 10.0

 Colon 61–80 0.12 6.0

 Renal 61–80 0.33 5.0

 Melanoma 61–80 0.19 6.0

CNS lymphoma 66 0.43 7.9 Methotrexate, radiation, rituximab

Neurodegenerative disorders

 Alzheimer’s disease 75–84 148 48–96 Cholinesterase inhibitors, NMDA antagonist

 Parkinson’s disease 72.3 8–18 9 years Dopamine agonists, NMDA antagonist,  
MOA B inhibitors,

 Amyotrophic lateral sclerosis 34.0 1.6 20–48 Riluzole, edaravone

 Huntington’s disease 53.4 0.38 10–20 years Tetrabenazine, deutetrabenazine

Stroke 69.2 249.5 5–10 years Thrombolytics, mechanical thrombectomy

Autoimmune disorders

 Multiple sclerosis 20–30 7.5 40.6 years Ocrelizumab, Siponimod, Cladribine, inter-
feron beta

 Transverse myelitis 10–19, 
30–40

0.134 Not reported Glucocorticoids, IVIG, plasmapheresis

 Neuromyelitis optica 40.1 0.053–0.4 Not reported Methylprednisolone, PLEX, Eculizumab, 
Ocrelizumab, Inebilizumab, Satralizumab

IVIG, intravenous gamma globulin; NMDA, N-methyl-D-aspartate; PCV, procarbazine, lomustine, vincristine; PLEX, plasma exchange.
All info from UpToDate unless otherwise noted. See Supplementary Material for references.
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Figure 3. Immunological factors associated with aging, GBM progression, and/or resistance to treatment. (A) Antitumor and pro-tumorigenic 
factors at the cellular level in young versus elderly patients. Specific factors at the level of the tumor microenvironment have not been fully exam-
ined in aging populations. Extratumoral brain-specific factors within young versus elderly patients and systemic features associated with young 

  
Table 1. CNS Disease States, SEER Database Analysis, TCGA, and Norwegian Database Analysis MSBASE.org

Condition Median 
Age of 
Diag-
nosis 
(years)

Age-
Adjusted In-
cidence (per 
100 000)

Median Survival 
(months)

Standard of Care

Glioma (astrocytoma) 57 4.99 11.6  

 Grade II (diffuse) 48 0.46 104.4 Resection, radiation

 Grade III (anaplastic) 53 0.41 9.9 Resection, radiation, temozolomide

 Grade IV (glioblastoma) 65 3.21 10.0 Resection, radiation, temozolomide

 IDH WT GBM 68–70 NR 12.1 (mean = 14.0) See above

 IDH MT GBM 45–48 NR 24.2 (mean = 39.7)

Oligodendroglioma 45 0.34 129.7  

 Grade II 43 0.23 147.7 Surgery, radiation

 Grade III (anaplastic) 50 0.11 63.8 Surgery, radiation, PCV

Ependymoma 44 0.43 150+ Resection, radiation, combo. Chemotherapy

Meningioma 66 8.33 78.4  

 Grade I 66 8.23 116 Surgery

 Grade II–III 65 0.10 76.4 Surgery, radiation

Pituitary tumors 51 3.94 120+ Surgery, radiation

Metastatic lesions to the brain

 Lung 61–80 8.17 5.8 Targeted therapy for driver mutation, surgery, 
stereotactic radiosurgery, whole-brain radia-
tion therapy, immune checkpoint inhibitors, 
chemotherapies

 Breast 61–80 0.33 10.0

 Colon 61–80 0.12 6.0

 Renal 61–80 0.33 5.0

 Melanoma 61–80 0.19 6.0

CNS lymphoma 66 0.43 7.9 Methotrexate, radiation, rituximab

Neurodegenerative disorders

 Alzheimer’s disease 75–84 148 48–96 Cholinesterase inhibitors, NMDA antagonist

 Parkinson’s disease 72.3 8–18 9 years Dopamine agonists, NMDA antagonist,  
MOA B inhibitors,

 Amyotrophic lateral sclerosis 34.0 1.6 20–48 Riluzole, edaravone

 Huntington’s disease 53.4 0.38 10–20 years Tetrabenazine, deutetrabenazine

Stroke 69.2 249.5 5–10 years Thrombolytics, mechanical thrombectomy

Autoimmune disorders

 Multiple sclerosis 20–30 7.5 40.6 years Ocrelizumab, Siponimod, Cladribine, inter-
feron beta

 Transverse myelitis 10–19, 
30–40

0.134 Not reported Glucocorticoids, IVIG, plasmapheresis

 Neuromyelitis optica 40.1 0.053–0.4 Not reported Methylprednisolone, PLEX, Eculizumab, 
Ocrelizumab, Inebilizumab, Satralizumab

IVIG, intravenous gamma globulin; NMDA, N-methyl-D-aspartate; PCV, procarbazine, lomustine, vincristine; PLEX, plasma exchange.
All info from UpToDate unless otherwise noted. See Supplementary Material for references.
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anti-GBM immune-mediated tumor eradication potential. 
Immunosuppressive factors within the GBM microenvi-
ronment are primarily regulated by tumor cells54,55 that 
are further enhanced by progressively increasing levels 
of tumor-infiltrating T cells.51,52 Indications to date suggest 
that the immune suppression inside of the tumor is inde-
pendent of age-dependent immunosuppressive mechan-
isms.25 Due to this, the GBM can be considered in some 
ways to act as a time capsule that is insulated to ongoing 
age-dependent changes that are ongoing in the sur-
rounding brain stroma. It is tempting to hypothesize that 
age-dependent changes also contribute to the initiation 
of precursor cells during a GBM cell-transforming event.

The cellular composition of the tumor microenvironment 
including surface ligands, such as the immune checkpoint 
inhibitor PD-L1, secreted cytokines including IL-10 and 
TGFβ, as well as senescence-associated proteins, create a 
complex landscape of immunosuppressive interactions be-
tween the tumor cells, stroma, antigen-presenting cells, and 
infiltrating immune cells. Furthermore, this landscape is dy-
namic in time. Tumor-infiltrating T cells induce immunosup-
pressive factors including IDO and PD-L1 in human GBM.52 
In humanized mouse models with intracranial human GBM, 
GBM-infiltrating T cells also promote the expression of 
interferon-sensitive immunosuppressive factors including 
PD-L1, PD-L2, and IDO.51,56 IDO is canonically characterized 
as an interferon-inducible tryptophan metabolic enzyme 
that suppresses the immune response by facilitating immu-
nosuppressive Treg recruitment and accumulation, which 
in turn, suppresses CD8+ cytolytic T-cell effector actions.57 
Increased IDO expression in patient-resected glioma is in-
versely associated with patient survival.58

Since the intratumoral immunosuppressive environment 
appears to be age-independent, it is unknown as to how the 
age-dependent changes in the CNS parenchyma surrounding 
bulk tumor have such a dramatically negative effect on GBM 
patient outcomes. It remains possible that contributions by 
the increased levels of senescent cells, increased levels of 
neuroinflammation, and increased vascular abnormalities 
arising in the older adult brain have a collectively synergistic 
negative effect that enhances GBM cell migration and/or 
GBM margin invasion into the nontumor brain parenchyma. 
With respect to immune checkpoint blockade (ICB) that works 
well in a subset of patients with a variety of malignancies and 
age groups such as in melanoma, it is now critical to deter-
mine whether the resistance of ICB in GBM patients is the re-
sult of intra-GBM factors or primarily due to age-dependent 
extra-GBM factors in the brain parenchyma.59

Treatment-Related Immune Changes in GBM 
Patients and Consequences for the Elderly

Standard of care treatment for GBM patients includes sur-
gical debulking, radiation, and systemic chemotherapy 

which generates lymphopenic conditions to a level that is 
comparable with HIV+ AIDS patients. These lymphopenia-
inducing effects may be amplified in older adults with 
GBM.60,61 At the systemic level, immune cells from patients 
with high-grade glioma display systemic dysfunction of 
effector cells as compared to control patients. However, 
it is important to note that age-matched controls have not 
been carefully considered as exemplified by a study that 
prospectively evaluated GBM-diagnosed patients at a me-
dian age of 68 as compared to a healthy cohort with a me-
dian age of 56.61,62 In a study of 219 newly diagnosed GBM 
patients with a mean age of 54.2 years, over 25% devel-
oped grade 1 lymphopenia (<1500 cells/mm3) and grade 3 
lymphopenia (200–500 cells/mm3) was noted in 15–25% of 
GBM patients even prior to the initiation of the standard of 
care, with sustained lymphopenia lasting several months 
after the final cycle of chemotherapy.63 In this study, 75% 
of patients were predicted to fully recover lymphocyte 
counts at a median of 240 days after final temozolomide 
dosing.62–64

Aside from lymphopenia caused by chemoradiotherapy, 
corticosteroids that are routinely administered for ameli-
orating tumor-related symptoms or treatment-related 
edema may further exacerbate lymphopenia.65  GBM 
patients who are treated with dexamethasone to ad-
dress symptomatic cerebral edema were found to have 
a striking CD4+ T-cell deficiency without a significant 
increase in the proportion of Tregs.66 The combination of 
surgical resection with steroid use has also been dem-
onstrated to impact the number of circulating T lympho-
cytes in animal models of surgical resection.67 Evaluation 
of 65- to 86-year-old GBM patients found that only 57% 
had normal baseline total lymphocyte counts with a 41% 
reduction of total lymphocyte counts after beginning 
chemoradiation that persisted for at least a 12-month 
duration.68 The older adult patients with high-grade 
lymphopenia demonstrated a significantly worse overall 
survival of 4.6 months as compared to patients with mild 
or moderate lymphopenia of 11.6 months.63,68 Combining 
chemoradiotherapy while increasing tumor immunoge-
nicity also affects circulating CD4+ counts in the periph-
eral immune system.69

Systemic Immune Changes in the Elderly and 
Implications for Antitumor Immunity

Outside the CNS, the aging body undergoes signifi-
cant immunological changes that reduce the ability (1) 
to counter pathogens, (2) mount significant immune re-
sponses to standard vaccinations, and (3) to survey the 
landscape for neoplastic cells. Aging causes progres-
sive thymic involution that decreases the formation of 
nascent T cells whereby up to 20% are generated by the 
thymus in younger individuals that decreases to <1% in 

and elderly. Question marks indicate unexplored biology. (B) Working hypothesis of aging-dependent factors affecting antitumor immune re-
sponses. T-cell effector function is inhibited in young brains through intratumoral IDO expression. In contrast, aging brain T-cell effector function 
is impaired by tumor-expressing IDO, SASP factors, and associated neuroinflammatory changes within the brain parenchyma, as well as other 
extratumoral factors including nonenzymatic IDO activity and systemic senescence. Number of arrows indicates abundance with increases indi-
cated by upward-facing and decreases indicated by down-facing. Created with BioRender.com.
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individuals older than the age of 50.70 Additionally, there 
is a relative and absolute decrease in naïve CD4+ and 
CD8+ T cells coincident with a decrease of TCR diversity 
in older adults.

Immunosuppressive Tregs increase in the peripheral 
circulation of GBM patients and have an increased migra-
tory potential toward tumor-conditioned media in vitro. 
Strikingly, this effect was skewed to favor younger GBM pa-
tients with a median age of 54.58,71,72 Immunosuppressive 
myeloid-derived suppressor cells are increased in the cir-
culating peripheral blood, bone marrow, spleen, and tu-
mors of patients with various types of cancers including 
glial neoplasms, melanoma, and pancreatic tumors. 
However, their distribution across the different age groups 
has not been well studied.73–75

Within the bone marrow, fat deposition increases in an 
age-dependent manner,76 and hematopoietic stem cell 
differentiation shifts from a predominantly lymphoid- to 
myeloid-based developmental output.77 Peripheral blood 
DCs (pbDCs) from aged humans have an increased acti-
vation state as demonstrated by their increased CD83 and 
CD86 expression78 and conversely, myeloid DCs (mDCs) 
produce less pro-inflammatory cytokines including IL-6, 
IL-12, and TNF-α with age.78,79 Monocyte-derived DCs 
(moDCs) have a limited ability to activate lymphocytes80 and 
both moDCs and pbDCs have a decreased ability to produce 
IFN-γ in older adults.79,81–85 The composition of peripheral 
blood CD4+ T cells declines with age86 and becomes en-
riched with Tregs while exhausted CD4+PD1±CD62L− T cells  

become more common and the absolute number of circu-
lating naïve CD4+ T cells declines.87 The effects of aging in-
side of the bone marrow, on the adaptive immune system, 
and their combined relationship to changes on host 
neuroimmunology have yet to be investigated (Figure 4).

Conclusions and Future Directions

Older adults with GBM pose a unique challenge to clin-
icians and researchers as preclinical animal models have 
yet to provide a vehicle that translates beneficial results 
into human clinical trials. Some of this failure is likely due 
to the lack of analogous ages between older human adults 
with GBM and the age of the mouse with a brain tumor 
undergoing experimental evaluation.24 The analogous age 
of a 65-year-old human patient with GBM is equivalent to 
~90 weeks of age for a C57BL/6 mouse with a brain tumor. 
Studying the age-relevant animal brain tumor model to 
recapitulate the physiology of advanced age in the brain 
can become costly and time-intensive as survivorship and 
care of these animals can extend into the timeline of years. 
Although these studies require an increased length of time 
and financial support, the preclinical brain tumor modeling 
outcomes may better predict which therapies will benefit 
the large majority of IDHwt GBM patients.

A gradual functional decline that accompanies the aging 
process impacts multiple organ systems and influences 
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Figure 4. The intra- and extratumoral environment changes with age and treatment. A hypothetical schema for describing factors in and around 
the brain tumor which contribute to malignant progression and response to therapy with age-dependent changes and therapy-related changes. 
Blue indicates a more immunocompetent antitumor response with increased Teff (bright green) response and adequate tumor killing. Red indicates 
a progressively immunosuppressive tumor environment with increased age, recruiting more Treg cells (dark green), increasing SASP factors, and 
treatment-related immunosuppressive changes including the reduced activity of Teff cells and reduced tumor killing. Adapted from “Cold vs Hot 
Tumors” BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates. Created with BioRender.com.
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the extent of treatment that elderly patients with GBM re-
ceive.88,89 Optimal treatment for GBM has not changed sig-
nificantly and the extent of resection at initial presentation 
and tumor recurrence has been shown to have a signifi-
cant impact on both progression-free survival and overall 
survival in both younger and older patients.90 Preexisting 
medical comorbidities often confer elderly patients as less 
than optimal candidates for major surgical procedures and 
treatment modalities. In particular, cardiopulmonary dis-
ease, the use of anticoagulant or antiplatelet agents, and 
the presence of cardiac implanted devices can make sur-
gery less safe and render the patient as a biopsy candidate 
rather than for consideration of complete resection. These 
issues also complicate eligibility criteria for enrolling in 
clinical trials due to the need to perform MR imaging over 
time. Our analysis of published phase III clinical trials col-
lectively demonstrated that current studies do not ade-
quately evaluate treatment options for the elderly despite 
the evolution of care as it has expanded into immune-
based therapies and chemotherapeutic agents. Limitations 
of our observations and evaluations of the database in-
clude the difficulty in isolating IDHwt tumors from the SEER 
database over the course of study and also the lack of clin-
ical trial data that routinely stratify patient outcomes by 
age, thus yielding a descriptive analysis of the listed clin-
ical trials. These results beg the question: How do clinicians 
and scientists address phenotypic changes of older adult 
patients with GBM to aim for better outcomes (Figure 5)?

Future studies of GBM should go beyond the under-
standing of intratumoral changes and should also incor-
porate the age-dependent changes in the brain that affect 
subject outcomes. As further genetic biomarkers of aging 
are identified, patient stratification and the identification of 
easily targeted proteins, surface markers, or immune cell 
populations may yield improved results. Studies to fully eval-
uate the immunologic landscape of older adults with GBM in 
the periphery and in the tumor microenvironment may help 
elucidate targetable pathways for improved overall survival 

and quality of life. Multimodal combination therapies that 
target senescence, inflammaging, and the immunosuppres-
sive environment of elderly patients will likely become nec-
essary during future therapeutic approaches that address the 
negative effects of tumor and brain aging, simultaneously, 
for improving overall survival in IDHwt GBM patients.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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Is the tumor more aggressive due to
phenotypic changes in aged individuals?

Is the brain parenchyma of the aged
host more permissive for tumor growth?

What happens to the aging immune
system, rendering it unable to clear the
tumor?

How can clinical trial design better
address the aging population to improve
survival outcomes?

Figure 5. Age-specific questions that remain to be explored in the setting of glioblastoma.
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