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Human cytomegalovirus (HCMV) is a major cause of illness in immunocompromised
individuals. The HCMV lytic cycle contributes to the clinical manifestations of infec-
tion. The lytic cycle occurs over ∼96 h in diverse cell types and consists of viral DNA
(vDNA) genome replication and temporally distinct expression of hundreds of viral
proteins. Given its complexity, understanding this elaborate system can be facilitated by
the introduction of mechanistic computational modeling of temporal relationships.
Therefore, we developed a multiplicity of infection (MOI)-dependent mechanistic com-
putational model that simulates vDNA kinetics and late lytic replication based on
in-house experimental data. The predictive capabilities were established by comparison
to post hoc experimental data. Computational analysis of combinatorial regulatory
mechanisms suggests increasing rates of protein degradation in association with increas-
ing vDNA levels. The model framework also allows expansion to account for additional
mechanisms regulating the processes. Simulating vDNA kinetics and the late lytic cycle
for a wide range of MOIs yielded several unique observations. These include the pres-
ence of saturation behavior at high MOIs, inefficient replication at low MOIs, and a
precise range of MOIs in which virus is maximized within a cell type, being 0.382 IU
to 0.688 IU per fibroblast. The predicted saturation kinetics at high MOIs are likely
related to the physical limitations of cellular machinery, while inefficient replication at
low MOIs may indicate a minimum input material required to facilitate infection. In
summary, we have developed and demonstrated the utility of a data-driven and expand-
able computational model simulating lytic HCMV infection.
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Human cytomegalovirus (HCMV) is a betaherpesvirus with an estimated global sero-
positivity rate of ∼83% (1). HCMV is the leading cause of congenital birth defects
(2, 3) and a major cause of morbidity and mortality in immunocompromised hosts,
especially in hematopoietic stem cell or solid organ transplant patients (4, 5). Primary
infection with HCMV in immunocompetent patients results in a variety of manifesta-
tions ranging from asymptomatic infection to a mononucleosis-like syndrome (4).
CMV disease in immunosuppressed transplant patients is defined as CMV infection
accompanied by clinical signs and symptoms, and can be broadly categorized into
either end-organ CMV disease or CMV syndrome (6). HCMV is known to have two
distinct life cycles, lytic and latent. It is the lytic replication cycle that is associated with
the clinical manifestations of CMV syndrome and disease (7).
The HCMV lytic replication cycle has an ∼96-h duration in vitro in fibroblasts

that culminates in infectious virions and destruction of the infected cell (7). Variability
exists in length of replication between cell types and is influenced by factors such as
mechanism of particle entry and timing of genome delivery to the host nucleus
(8–11). The lytic cycle is marked by viral DNA (vDNA) genome replication, the tem-
porally variant expression of both viral RNAs (12) and viral proteins (13), and the
production of new virus. There are over 700 translated open reading frames that have
been identified as potential proteins contributing to the HCMV lytic replication cycle
(14). Given this vast number of proteins and the even larger number of permutations
of potential protein interactions, the HCMV lytic replication cycle is an extremely
complex process.
Computational modeling of biological systems has been utilized extensively in many

disciplines. For example, pharmacologists have employed computational models to
describe the pharmacokinetic and pharmacodynamic properties of drugs for over 30 y
(15–18). Recently, computational modeling has been applied to study other biological
topics such as cell cycle (19–23), viral infections such as hepatitis C (24–26), and early
events in HCMV infection (27), as well as HCMV replication in patient samples (28)
and drug treatment (29). Existing models of in vitro HCMV lytic replication only
focus on the early time points after infection (27) or the ability of HCMV to alternate
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between lytic and latent replication cycles (30). Currently, there
are no models describing the events leading to production of
infectious virions.
In this work, we have developed an empirical model of intra-

cellular viral genome (i.e., vDNA) replication and then utilized
the output from this model as input to drive a mechanistic
computational model of the late viral protein temporal class
expression and viral egress. Each of these models was developed
based on experimental data obtained at several multiplicities of
infection (MOIs) in fibroblasts and then compared to experi-
mental data obtained post hoc for model validation. Using
in vitro and in silco experiments, we have elucidated a range of
MOIs where both vDNA and cell-free virus production are
maximized in infected fibroblasts. Our studies predict a mini-
mum MOI in fibroblasts, below which both replicated vDNA
and cell-free virus are less than the initial input. Our studies
also demonstrate saturation kinetics where the maximal capacity
of cells has been reached. The resulting computational model
provides a mechanistic framework on which to build out the
many complex relationships, both intracellular and intercellular,
occurring during HCMV infection and to test complex hypoth-
eses relating multivariate interactions in silico.

Results

Inherent Limits of Efficient Virus Genome Replication Kinetics
Framed by Upper and Lower Thresholds. HCMV replication
occurs via a coordinated and temporal series of events, all
requiring vDNA. The degree of coordination between replica-
tion components has yet to be fully defined, due to the excep-
tional complexity of the viral life cycle. To generate a predictive
computational model focusing on late viral events, it was neces-
sary to first generate an empirical model of vDNA synthesis
using in-house HCMV vDNA experimental datasets to subse-
quently utilize as a driving input for a model of the late lytic
replication cycle. The vDNA synthesis begins as early as 24 h
postinfection (hpi) in vitro which is influenced by cell type and
mechanisms of virion entry (31). To develop this empirical
model of vDNA kinetics, we formulated a simple schematic of
different vDNA species that exist during infection (Fig. 1A).
This schematic includes input viral genomes termed vDNAin,
which associate with the target cells. We postulate the existence
of genome loss or degradation (characterized by the rate cons-
tant kd) due to both failure of some copies to reach the nucleus
and consumption of the vDNA by semiconservative replication
to generate newly synthesized vDNA genome copies. Once
vDNA synthesis is initiated, the concentration of replicated
vDNA, vDNArep, will begin to increase over time irrespective of
genome replication mechanisms (semiconservative, rolling circle,
homologous recombination, etc.). The sum of vDNAin and
vDNArep is the total cell-associated vDNA (vDNAtot), which we
can experimentally measure. For the purpose of this empirical
model, we set free vDNAtot to be in excess compared to genomes
packaged into particles destined to leave the infected cell (32–37).
To develop the empirical model, we experimentally quantified
HCMV vDNAtot using different input MOIs (in infectious units
per cell) over 96 h (Fig. 1B). We infected confluent MRC-5
fibroblasts using recombinant HCMV from strain TB40/E
expressing late protein pp28 in-frame with the fluorescent protein
mCherry and IE2 in-frame with a cleavable eGFP (IE2-2A-eGFP
UL99-mCh). We used absolute genome standards for both
HCMV and host cells, allowing for comparison between condi-
tions (Fig. 1B). We determined that MOIs of 0.1, 0.5, and 5 IU
per cell resulted in average viral genomes per cell at 2 hpi

(vDNAin,0) of 3 ± 1, 13 ± 3, and 131 ± 70, respectively, in this
experimental system (Fig. 1C). These data collected from varying
times and inputs resulted in the empirical model of vDNAtot

dynamics shown in Eqs. 1–3 (see Materials and Methods).
The empirical model was fit to each of the MOI-dependent

data independently, and nonlinear regression to Eqs. 1–3 was
performed on the individual estimates to generate vDNAin,0-
dependent parameters vDNArep,max, t50, and n (SI Appendix,
Fig. S1). We generated a conversion between MOI and input
viral genomes (Fig. 1C), noting that the MOI measurement
depends on the method used for titering viral concentrations
and number of cells, while quantifying genomes is a universal
standard (38). This conversion ensures unit consistency between
output (genomes per cell) and input parameters. Since corre-
spondence between the model and data (Fig. 1D) was strong,
we simulated vDNAtot dynamics for varying input vDNAin,0

(Fig. 1E). To test the predictive nature of our empirical model
of vDNAtot, we repeated the experiment using two additional
MOIs of 0.01 and 0.23 IU per cell, which corresponded to
vDNAin,0 of 0.2 ± 0.1 and 6 ± 2 genomes per cell, respectively.
Model predictions showed good correspondence with the experi-
mental data (Fig. 1 E and F), corroborating the model. We also
generated three-dimensional plots of vDNAtot and vDNAtot/
vDNAin,0 vs. vDNAin,0 and time showing the dynamic relation-
ships occurring during infection (Fig. 1G). Separating vDNAtot

into its constituents, the change in the concentration for
vDNAin was determined by MOI and the decay rate constant
kd, while the dynamics of vDNArep were determined by the
empirical model based on our experimental data (Fig. 1H). Our
simulation predicts a maximum increase in vDNAtot of 2.6 logs
occurring when vDNAin,0 is in the range of 3 genomes per cell
to 32 genomes per cell, representing MOIs of 0.1IU per cell to
1.2 IU per cell in primary fibroblasts using our infection condi-
tions (Fig. 1G). Below this range, the model predicts limited
vDNA synthesis, while, above this range, we observe saturation
kinetics. We hypothesize that this range is the result of intrinsic
features of the host cells, namely, the influence of entry and
intrinsic antiviral responses at lower inputs (31, 39, 40), and is
potentially related to maximum metabolic or structural capacity
of these cells to support replication at higher inputs (41–43).

Formulation of an MOI-Dependent Mechanistic Computational
Model of HCMV Late Lytic Replication Cycle and Associated
In-House Experimental Data.HCMV virion production involves
both a nuclear phase and a cytoplasmic phase. Viral proteins par-
ticipating in nuclear and cytoplasmic virion production were
predominantly categorized as “temporal profile 5” (Tp5) class
proteins by Weekes et al. (13). Tp5 class proteins production
was determined to depend on vDNAtot (13). Using our empirical
vDNAtot model as a driving input allowing for the estimation of
vDNAtot at any time and vDNAin,0, we formulated a concep-
tional relationship (solid lines) and putative regulation mecha-
nisms(dashed lines) for the nuclear and cytoplasmic phases using
the nuclear and cytoplasmic proteins Tp51 and Tp52, respectively
(Fig. 2A).

We hypothesize that the level of Tp51 is dependent on vDNAtot

and is influenced by rates of synthesis (ks,1) and degradation (kd,1)
(Fig. 2A). For production of infectious virus, we postulate that
vDNAtot must first associate with Tp51 class proteins (ks,C), even-
tually resulting in a capsid containing a single genome. To obtain
an experimental baseline for our hypotheses, we measured a rep-
resentative HCMV nuclear Tp51 class protein, pUL44 (52 kDa),
using immunoblot analysis with a standard curve (Fig. 2B), com-
pleted in parallel with vDNAtot measurements (Fig. 1B). The
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standard curve consists of dilutions of whole-cell lysates following
infection at 96 hpi and used in the quantification process for
comparison between blots. These standards were used for each
antibody and immunoblot, allowing us to compare relative signal

intensities between experiments (Fig. 2C). Our analysis resulted
in the relative expression level of total Tp51 over time. Addition-
ally, at each time point, our analysis resulted in Tp51 expression
levels relative to each vDNAin,0 (Fig. 2D). We included the

Fig. 1. Empirical model of HCMV DNA replication predicts saturation kinetics at high MOIs. (A) Schematic of an empirical model of HCMV viral genome
(vDNA) synthesis during replication. The vDNAin represents cell-associated genomes upon infection with decay rate, kd. The vDNArep represents replicated
genomes, and vDNAtot is total contribution of all subspecies. (B) Total DNA was isolated from growth-arrested MRC-5 fibroblasts infected at an MOI of
0.1, 0.5, or 5 infectious units per cell based on 1 × 106 cells using HCMV strain TB40/E encoding IE2-(T2A)-eGFP and pp28-mCherry (IE2-2A-eGFP UL99-mCh).
Absolute viral (UL123 gene) and cellular (CDKN1A gene) DNA levels were determined between 2 and 96 hpi. Mean ± SD is plotted from three biological repli-
cates and two technical replicates. (C) Solid line represents linear regression, and closed circles represent data points, correlating MOI (infectious units per
cell) and vDNA (genomes per cell), and shading represents the 95% CI. (D) Fit of empirical model (solid curves) to experimental data of vDNAtot (genomes
per cell). (E) Each curve represents predicted vDNAtot kinetics at a specific vDNAin,0. Magenta and cyan curves are described in F. (F) Predictive simulations of
vDNAtot (solid curves) compared to data collected post hoc (closed circles) at vDNAin,0 of 6 (magenta; MOI 0.23) and 0.2 genomes per cell (cyan; MOI 0.01).
Error bars represent SD of three biological replicates and three technical replicates. (G) Coloring of predictions represents the fold change of vDNA between
2 and 96 hpi (vDNAtot at 96 hpi/vDNAin,0). Closed circles represent vDNAtot data from D and F. (H) Model predictions of vDNAtot separated into vDNAin and
vDNArep kinetics at varying vDNAin,0.
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Fig. 2. Quantitative measurements of state variables of HCMV replication at multiple MOIs. (A) Schematic of a framework for HCMV replication starting from
vDNAin,0 (genomes per cell) to infectious extracellular virus (infectious units per milliliter) involving total genomes vDNAtot, nuclear Tp5 proteins Tp51, cytoplas-
mic proteins Tp52, capsids C, particles P, rates of synthesis (ks,n), and degradation (kd,n) for each species n listed. The kex represents the rate of virus release.
Additional putative mechanisms (dashed arrows) are postulated for improving model fit to experimental data. (B) Immunoblots of a representative nuclear
protein, pUL44 (Tp51), during infection by HCMV TB40/E (IE2-2A-eGFP UL99-mCh) at vDNAin,0 of 3 (MOI 0.1), 14 (MOI 0.5), and 131 (MOI 5) genomes per cell.
Whole-cell lysates from infected MRC-5 fibroblasts were collected and analyzed using an antibody against pUL44 (Tp51). A 96-hpi protein standard from whole-
cell lysate infected at an MOI of 5 IU per cell with TB40/E-eGFP. Representative total protein is shown. Asterisks (*) indicate bands quantified; data represent
two biological replicates for each vDNAin,0. (C) Total protein (squares) lane volumes normalized to the undiluted standard (Std 1). Standard pUL44 (triangles)
band volumes normalized to undiluted Std 1 band volume. Mean ± SD are plotted from two biological replicates totaling six data points for each dilution.
(D) The pUL44 (Tp51) band volumes were normalized to total protein to account for loading error. The values were set relative to Std 1 to normalize between
membranes and set to a maximum value within the replicate to obtain relative values between zero and one. Mean ± SD are plotted from two biological repli-
cates. Quantities of pUL44 from Weekes et al. (13) are shown. (E) Immunoblots of a representative cytoplasmic Tp5 protein, pp28 (Tp52) as in B. Asterisks (*)
indicate pp28-mCherry. The same protein standard from Fig. 2B was used. (F) Total protein and pp28 signal of the protein standard as in C. (G) The pp28-
mCherry (Tp52) band volumes were normalized to total protein to account for loading error, and values were set relative to Std 1, then set to a maximum value
within the replicate to obtain values between zero and one. Quantities on pp28 from Weekes et al. (13) are shown. (H) Titers were determined by infectious
units assay, and data are the mean ± SD from two biological replicates for each vDNAin,0. (I) Infectivity was determined by setting UL123 gene copies relative
to infectious units from Fig. 2H. Dotted line indicates infectivity of the viral stock inoculum with mean ± SD from two biological replicates.
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quantification by mass spectrometry for pUL44 levels by Weekes
et al. (13), showing comparable expression kinetics at the highest
MOI of 131 genomes per cell (Fig. 2D).
The second phase of the lytic replication cycle involves the

egress of vDNA-containing capsids into a cytoplasmic assembly
compartment and associating with a second set of Tp5 pro-
teins, Tp52 (Fig. 2A). Similar to Tp51, we hypothesize that
Tp52 is dependent on vDNAtot and is influenced by rates of
synthesis (ks,2) and degradation (kd,2). For production of infec-
tious virus, capsids associate with Tp52 class proteins (ks,P),
eventually resulting in intracellular particles. We measured the
total cellular levels of a representative HCMV cytoplasmic
Tp52 protein, pp28 (28 kDa pp28; 56 kDa pp28-mCherry),
using immunoblot analysis and an antibody against pp28 (Fig.
2E). Using a standard curve (Fig. 2F), we quantified the relative
expression of Tp52 over time and in proportion to vDNAin,0

(Fig. 2G), and included the relative levels measured by Weekes
et al. (13), again showing nearly identical expression kinetics at
the highest MOIs.
Productive viral replication results in the release of infectious,

cell-free virus (Fig. 2A). To experimentally quantify this phe-
nomenon, we measured viral titers starting at 24 hpi in culture
media from HCMV infections at the average vDNAin,0 of 3
(MOI 0.1), 14 (MOI 0.5), and 131 (MOI 5) genomes per cell
(Fig. 2H). Titers of the time course media were determined by
quantifying the resulting HCMV IE1-positive cells in a new
culture and defining infectious units per milliliter. We observed
titers at 24 hpi in proportion to inputs with similar fold
increases for vDNAin,0 of 14 and 3 genomes per cell by 96 hpi
(Fig. 2H). In contrast, vDNAin,0 of 131 genomes per cell
exhibited saturation kinetics with titers at 96 hpi comparable to
vDNAin,0 of 14 genomes per cell, which supports our previous
observation that the culture has a maximal capacity. We
observed relatively high levels of infectious virus present at
24 hpi (Fig. 2H), and we speculate that this is residual inocu-
lum, as it exhibited poor infectivity compared to the input
stock and 72- to 96-hpi cell-free virus (Fig. 2I). Based on this
information, we elected to use the resulting titers from time
points between 48 and 96 hpi for subsequent modeling studies.

Identification of Data-Driven Mechanistic Computational Model
of HCMV Late Lytic Replication Cycle Using an ODE Framework
and Predictive Outcomes of the Model. Because of the complex-
ity and inclusion of multiple biological processes within a sim-
ple computational model of the late lytic replication cycle and
the observation that several data points plateau late in infection,
suggesting additional regulations, we tested six competing mod-
els (SI Appendix) which differed at the level of Tp51 and Tp52
regulation (Fig. 2A), to define the minimal model (Fig. 3A)
that best describes the data. Using mass balance, we derived
coupled, nonlinear ordinary differential equations (ODEs)
describing changes in Tp51 and Tp52 classes of proteins and
their complexes and virus production, using the basic frame-
works in SI Appendix, Figs. S2–S7. We estimated unknown
parameters of each model by fitting model solutions of the rele-
vant state variables to total Tp51 and Tp52 data (Fig. 2 D and
G) and extracellular virus data (Fig. 2H) using a pseudo–Monte
Carlo minimization parameter estimation protocol. Estimated
parameter values for each of our models can be found in SI
Appendix, Figs S2C–S7C. Pseudo–Monte Carlo fits of each
model to the data from Fig. 2 are shown in SI Appendix, Figs.
S8 and S9. For further analysis, we opted to use the average
parameter sets (SI Appendix, Fig. S9, dashed curves), since they
were based on the average of 200 pseudo–Monte Carlo fittings,

reducing the risk of presenting an erroneous parameter set due
to random chance of minimization of the sum of squares of
errors (SSE) objective function.

After parameter estimation for each model, we then began the
process of model selection (SI Appendix, Materials and Methods)
to identify the optimal model. We performed two statistical
tests, the Akaike Information Criteria (AIC) and F test (44) (SI
Appendix, Figs. S10 and S11), to determine which of the models
most accurately describes the experimental Tp5 protein level
(Fig. 2 D and G) and virus production over time (Fig. 2H) data
for all vDNAin,0. We then analyzed the contribution of each reg-
ulatory component (SI Appendix, Fig. S12) and the variability of
each estimated parameter value, SSE, and model fit (SI
Appendix, Figs. S2–S7), to help confirm the predictions made by
the statistical tests and increase our confidence in the model
selection.

Results of the AIC comparison between different models
clearly showed that model 3 has the highest likelihood of cor-
rectness, followed closely by model 1 (SI Appendix, Fig. S10).
Model 1 was less than 90% likely only when compared to mod-
els 2 and 3 (SI Appendix, Fig. S10). The top row of SI Appendix,
Fig. S11, showing the comparison of the least complex model 1
tested against all other, more-complex models using the F test,
indicates that only model 3 yields an F statistic and correspond-
ing P value lower than our Bonferroni-corrected significance
level of 6 × 10�3, which was determined a priori. Furthermore,
when the one-regulation models (models 2, 3, and 4) were com-
pared against the two regulation models (models 5 and 6), only
the comparison between models 4 and 5 led to a significant
P value. Since models 4 and 5 are not distinguishable, these
results indicate that a one-regulation model is likely optimal. In
summary, the results of both the AIC and F test dictate that
model 3 is likely the optimal model to describe the data (SI
Appendix, Figs. S2C–S7C, S10, and S11).

When analyzing the contribution of each regulatory parame-
ter (SI Appendix, Fig. S12), we can see that the regulation pre-
sent in model 3 shows a smooth curve spanning the entire range
of the function (e.g., zero to one) over its domain for all
vDNAin,0 (SI Appendix, Fig. S12B). Conversely, the regulation
in model 2, for example, shows little change in the regulatory
function, and its effect is only appreciable at high vDNAin,0 and
late in the infection (SI Appendix, Fig. S12A). This trend is
mimicked by model 4 (SI Appendix, Fig. S12C) and by the feed-
back inhibition terms (R1,6) in model 6 (SI Appendix, Fig.
S12E). Interestingly, if R1,6 is reduced to unity for both Tp51
and Tp52 R1,6 terms, the ODEs for model 6 reduce to model 3.
Furthermore, the R2,6 terms in model 6 show a range similar to
that exhibited by model 3 (SI Appendix, Fig. S12 C and E).
Finally, model 5 shows inconsistency in its regulatory terms: R1,5
for Tp2, but not Tp51, shows acceptable range, while R2,5 shows
acceptable range for Tp51 but not Tp52. This inconsistency is
likely due to numerical compensation, where an increase in one
estimated parameter can be compensated by a decrease in a con-
jugate estimated parameter, leading to many equivalent solu-
tions. This suggests that there is no unique solution for the
parameters associated with this model, decreasing our confidence
in this model’s true correctness. In support of this argument, SI
Appendix, Figs. S2C–S7C show a large variability in the majority
of parameters for models 2, 4, 5, and 6. This is also present in
SI Appendix, Figs. S8 and S9. In SI Appendix, Fig. S8, a large
spread of the 200 pseudo–Monte Carlo iterations indicates a
large variability in the estimated parameter values, and, in SI
Appendix, Fig. S9, a large difference between the dashed and
solid curves indicates a large difference between the average
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parameter set and the parameter set yielding the lowest SSE.
This same result can also be seen in the variability between SSE
obtained with the average parameter set and the lowest obtained
SSE and AIC (SI Appendix, Figs. S2C–S7C). Interestingly,
model 3 not only has a small variability in obtained parameter
values (SI Appendix, Fig. S4C), but its average and minimum
values are so close that they are indistinguishable in SI Appendix,
Fig. S9. This fact is supported by the SSE and AIC values shown
in SI Appendix, Fig. S4C.

In summary, to determine the most optimal model, we
implemented a careful statistical analysis to determine the opti-
mal number of regulatory terms as well as integrative examina-
tion of the AIC, contribution of regulatory terms, parameter/
model fit variability, and SSE variability. Results of this analysis
led to the conclusion that, in fact, model 3 yields the most
optimal and parsimonious description of the data.

In the best-fitting model (Fig. 3A), vDNAtot drives Tp51
protein production (ks,1, Km,1), which combines with vDNAtot

Fig. 3. Best fit deterministic model describing expression of HCMV Tp5 proteins from vDNA to extracellular infectious virus. (A) Best fit model predicting
increasing Tp5 degradation with increasing vDNA. (B) Fit of deterministic model (curves) to the immunoblot data of a representative nuclear Tp51 protein
(pUL44; closed markers) at vDNAin,0 of 3, 14, and 131 genomes per cell. Best fit model parameters were estimated using a pseudo–Monte Carlo minimiza-
tion procedure. (C) Two-dimensional (Left) and three-dimensional (Right) model predictions of Tp51 kinetics at varying vDNAin,0. (D) Fit of deterministic model
(solid curves) to experimental immunoblot data of a representative cytosolic Tp52 protein (pp28; closed markers). Best fit model parameters were estimated
by using pseudo–Monte Carlo minimization procedure. (E) Two-dimensional (Left) and three-dimensional (Right) model predictions of Tp52 kinetics as in C.
(F) Fit of deterministic model (solid curves) to normalized experimental viral titer data (closed markers). Viral titers were normalized to the maximum value
in each replicate resulting in arbitrary units (A.U.) to ensure comparable ranges between fitted datasets. Normalized experimental data are shown relative
to maximum in the dataset (MOI 5, 96 hpi). Parameters were estimated using a pseudo–Monte Carlo minimization protocol. (G) Two-dimensional (Left) and
three-dimensional (Right) model predictions of normalized infectious virus production varying by vDNAin,0 and time starting at 24 hpi.
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to generate capsids (ks,C) as formulated in Eqs. 5 and 7 (see
Materials and Methods). Regulation of Tp51 production occurs
through acceleration of Tp51 degradation (Km,3). In this model,
we hypothesize that vDNAtot is in excess, due to the large size of
the nuclear replication center and production of concatemeric
genomes with egress requiring single genome-containing capsids
(45). Additionally, it is known that procapsids are rapidly con-
verted to vDNA-containing capsids, suggesting that vDNA must
be in excess for the process to be kinetically favorable (46). We
hypothesize that Tp51 consumption is through normal cellular
degradation pathways (kd,1) and capsid assembly (ks,C). Although
pUL44 is not a capsid protein, we used measurements of pUL44
levels as a representative nuclear protein with Tp5 kinetics (13,
47, 48). This Tp51 placeholder will be expanded to account for
additional proteins in future studies. In our model, Tp52 produc-
tion (ks,2, Km,2) represents late cytoplasmic proteins that associate
with the capsid after nuclear egress. We hypothesize that these
proteins are consumed through degradation pathways (kd,2) and
particle assembly (ks,P) as accounted for in Eqs. 6 and 8 (see
Materials and Methods). Regulation of Tp52 production occurs
through acceleration of Tp52 degradation (Km,4). Intracellular
viral particles leave the cell (kex), and their concentrations are
diluted in culture media as accounted for in Eq. 9 (see Materials
and Methods) (Fig. 3A). We normalized experimental data to the
maximum of the dataset with vDNAin,0 = 131 genomes per cell
at 96 hpi to maintain magnitude consistency in the SSE objective
functions used in parameter estimation.
Fit of the model 3 system of ODEs (Eqs. 5–9) to experimen-

tal data is shown in Figs. 3 B, D, and F. Overall model 3 fit to
experimental data was acceptable, giving an AIC of �230.5 (SI
Appendix, Fig. S4C). Simulations of Tp51 and Tp52 expression
as well as virus production are shown in two-dimensional and
three-dimensional plots over time and many vDNAin,0 in Fig. 3
C, E, and G. Simulating changes in Tp5 levels upon increasing
MOI (or vDNAin,0) showed expression starting to occur at
immediate early times (Fig. 3 C and E). Starting at 24 hpi, we
simulated infectious HCMV production at varying vDNAin,0

(Fig. 3G). Predicted virus production kinetics showed saturation
at high vDNAin,0 and suboptimal replication at low vDNAin,0.
To assess the correlation and individual estimability of each

parameter for model 3, we generated a correlation matrix (SI
Appendix, Fig. S13A) and performed a sensitivity analysis (SI
Appendix, Fig. S13B) (49–51). The correlation matrix showed
that there was a high degree of correlation between the protein
degradation rate constants kds and other parameters within the
same ODEs (SI Appendix, Fig. S13A). The sensitivity analysis
(SI Appendix, Fig. S13B), which shows the relative change in
parameter value (p/p0) versus the relative change in the error
function (SSE/SSE0), showed expected parabolic behavior for
all parameters but kex. Regulatory parameters Km,3 and Km,4 do
show parabolic behavior between 0.5p0 and 1.5p0, albeit on a
much smaller scale than Km,1 and Km,2. To break parameter
correlation and minimize the number of estimated parameters,
we opted to fix kd1, kd2, and kex in all models for parameter esti-
mation and further model analyses. Simulations of individual
model state variables in absolute units for model 3 can be
found in SI Appendix, Fig. S14.

Model of HCMV Late Lytic Replication Cycle Predicts Conditions
for Maximal Efficiency for HCMV Replication. Viral titers are
experimentally measured in absolute quantities such as infectious
units per milliliter. In order to revert back to these units, the sim-
ulated data were vertically scaled by a factor of 107 IU/mL as
shown in Fig. 4A comparing vDNAin,0 (MOI) and total virus

production over time. This multiplicative factor was chosen since
it was the order of magnitude of the normalizing factor (i.e., max-
imum of the virus titer dataset) used to model virus data in Fig.
3F. We have extended the range of each variable, and, using
numerical estimates, we defined that the approximate range con-
taining the maximum fold change for vDNAtot occurs upon
infection vDNAin,0 of 9 and 13 genomes per cell (0.688 IU per
cell to 0.994 IU per cell) (Fig. 4 B, Left). This range is just above
that of the extracellular virus which occurs upon infection with
five to nine genomes/cell (0.382 IU per cell to 0.688 IU per cell)
in primary fibroblasts (Fig. 4 B, Right).

Our studies have resulted in a simulation of dynamic relation-
ships occurring during HCMV infection for the purpose of pre-
dicting how changing one or more variables will impact others
in the complex process of HCMV replication. We plotted the
relationship between vDNAtot and relative Tp51 and Tp52 levels
over time (Fig. 4 C and D, respectively) and colorized with fold
change in vDNA between 2 and 96 hpi. Fig. 2 C and F suggests
an approximate linear range of relative protein level between
0.25 and 1 relative units (52). Simulations in Fig. 4 C and D
suggest that relative Tp51 and Tp52 quantities only begin to
reach levels within this linear range at 96 hpi when the fold
change in vDNA between 2 hpi and 96 hpi is maximized (Fig. 4
C and D, red area). Furthermore, relative levels of virus produc-
tion within this same range of vDNAin,0 are within ∼1 × 10�4

to 0.83, which is the largest acceleration in virus production
(Fig. 4E). Hence, we hypothesize that a pattern of a Tp51 (e.g.,
pUL44) or Tp52 protein (e.g., pp28) kinetic expression similar
to that in the red region in Fig. 4 C or D would indicate maxi-
mally efficient virus production. It is important to note, in Fig.
4 C and D, that, at very high vDNAin,0, there is an increase in
Tp51 and Tp52 proteins prior to 24 hpi, and it is hypothesized
to be a result of dysregulated viral gene expression kinetics. In
support of this hypothesis, simulations in Fig. 4E also support
inefficient virus production at high vDNAin,0.

Recombinant HCMV strains containing tagged viral proteins
are routinely used to define the expression and function of viral
proteins during replication. To obtain higher temporal resolu-
tion data during the 4-d replication cycle and evaluate the accu-
racy of simulated data built from limited time points, we
infected fibroblasts with recombinant HCMV TB40/E IE2-2A-
eGFP UL99-mCh at multiple vDNAin,0, as described previously.
Using this system, we captured fluorescence data for pp28-
mCherry (Tp52) along with free eGFP every 2 h for 97 h using
a live-cell imaging platform (Fig. 4F and Movies S1–S3). We
determined the average relative mCherry signal intensity to max-
imal signal occurring at infection of vDNAin,0 = 131 genomes
per cell at 97 hpi (Fig. 4H). Fig. 4G shows single-cell analysis of
the vDNAin,0 = 3 genomes per cell fluorescence data, highlight-
ing the cell-to-cell variability that is frequently lost when looking
at data from infected cells pooled for traditional protein analysis
(e.g., immunoblot). Fig. 4I shows predicted Tp52 expression
from model 3. In a post hoc comparison of Fig. 4H (in vitro
data) and Fig. 4I (in silico model), we can see good correspon-
dence of the model and the data, indicating that our simulation
of pp28 closely matches data obtained from an alternative exper-
imental measurement and at a higher temporal resolution that is
not possible using standard methods of protein quantification.

Discussion

HCMV lytic replication is an immensely complex process that
occurs over a relatively protracted time period and involves
hundreds of viral and host proteins in an elaborate interplay
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Fig. 4. Simulations of viral output show saturation kinetics mirroring experimental evidence and predictive of optimal replication from vDNAin,0. (A) The nor-
malized simulations from Fig. 3G were converted back to measurable units of infectious units per milliliter using a conversion factor of 107 IU/mL. Color differ-
ences represent the calculated fold change occurring between 24 and 96 hpi. (B) Plots of vDNAtot (Left) or virus (Right) fold changes versus vDNAin,0. Maximal
fold change occurs for vDNAtot when 9 < vDNAin,0 < 13 and for virus when 5 < vDNAin,0 < 9. (C–E) Four-dimensional visualization of the relationships between
time, vDNAtot, vDNA fold change (color), and (C) Tp51,tot, (D) Tp52,tot, and (E) relative viral titers. (F) Increased data resolution obtained using live-cell imaging
during HCMV infection. MRC-5 fibroblasts were infected as described in Fig. 2. Images were captured every 2 hpi using phase contrast, green (460 nm, IE2-T2A-
eGFP), and red (585 nm, pp28-mCherry) channels. Representative images for different vDNAin,0 at 24 and 72 hpi are shown in Movie S4. (G) Single-cell
measurements were completed at vDNA = 3 showing pp28-mCherry intensities per eGFP-positive area over time starting at ∼36 hpi. Open triangles represent
cells lysing prior to 96 hpi. (H) HCMV pp28-mCherry fluorescence signal per well for all inputs in Fig. 4F relative to 96 hpi at vDNA of 131 genomes per cell and
(I) predicted Tp52 kinetics over a replication cycle shows agreement with high-temporal resolution data.
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that eventually results in newly produced virions. As such, it is
infeasible to attempt to quantitatively understand the process
without the use of computational aids. Computational model-
ing is a well-established tool, while its application to the
HCMV lytic replication cycle remains relatively novel. In our
studies, we developed two models based on experimental data.
The first was an empirical model of vDNA replication (Fig. 1).
In this model, we hypothesized an initial decay of vDNAin,
which was then followed by an increase in vDNArep. The out-
put from this vDNA model was then used to drive a model of
the late lytic replication cycle, which began with late viral pro-
tein expression and culminated in predictions of capsid, intra-
cellular viral particle, and extracellular virus production kinetics
(Fig. 3). The model of viral protein expression predicted an
increase in protein degradation at late times that followed the
trend of increasing vDNA as infection progressed. This interac-
tion could be related to an increase in proteasome activity that
promotes protein degradation and is demonstrated to occur for
HCMV (53–55), lending further experimental support to this
proposed mechanism. In addition, herpesvirus capsids do
undergo protease-dependent maturation (56), and numerous
DNA and RNA viruses undergo late-stage maturation events
involving protein cleavage; most notable is HIV (57). The HIV-1
protease inhibitor, Nelfinavir, disrupts secondary HSV-1 envelop-
ment (57), and its antiherpesvirus efficacy is under clinical inves-
tigations. Our simulations have uncovered a possible role for
increased protease activity in HCMV maturation.
We observed several significant predictions from this data-

driven computational model: 1) saturation kinetics at high
MOIs, 2) inefficient replication at low MOIs, and 3) a range of
MOIs where virus replication is maximized in primary human
fibroblasts. Results shown in Figs. 3 and 4 demonstrate an ideal
MOI where vDNA and virus production are maximized. MOIs
below this maximal range yield suboptimal replication efficiency
and are predicted by our model to lead to abortive infections.
Furthermore, MOIs above this range represent diminishing
returns. This is an example of a biological Goldilocks phenome-
non (58), where both too little and too much virus applied to a
system leads to suboptimal replication. Another common analy-
sis performed on models involves determination of a rate-
limiting step. In the setup of our model, the forward synthesis
rates ultimately leading to infectious virus production are ks,1,
ks,2, ks,C, ks,P, and kex, and their values are shown in SI Appendix.
While it is likely impossible to define an overall rate-limiting
step for all HCMV replication from this model, we can poten-
tially define rate-limiting steps in several subprocesses included
in our model. First, we found that the slowest rate of protein
production was ks,1 (6.24 × 102 genomes per cell per h), indicat-
ing that Tp51 proteins are produced more slowly than Tp52 pro-
teins (7.6 × 102). Second, we found that ks,C (1.116 × 10�6

cells per genome per h) was smaller than ks,P (3 0.090 × 10�5

cells per genome per h), indicating that formation of intranu-
clear, loaded capsids was the rate-limiting step in the process of
capsid synthesis and viral egress, which has been previously sug-
gested in studies on nuclear egress (59).
Our data-driven models of viral genome synthesis and late

protein expression can be expanded to include other mechanistic
components of the replication cycle. For example, the model by
Vardi et al. (27) predicts expression kinetics via the major imme-
diate early promoter (MIEP) and feedforward activation of the
IE1 protein based on virion-delivered pp71 (Tp5) (13, 60, 61).
It is reasonable to propose that the MIEP-dependent constants
may, in fact, be nonconstant and vary with MIEP-containing
vDNAin,0. Given that, at saturating MOIs, most cells are

multiply infected, the parameter representing basal IE1 expres-
sion independent of transactivation and feedforward mechanisms
could be of greater influence on the ODE governing IE1 expres-
sion. It is likely that, as vDNAin,0 increases, the concentration of
pp71 will also increase, leading to early saturation of its abilities
to desilence the MIEP. In fact, it is known that the effectiveness
of pp71 wanes as MOI increases, to the extent that it is only
required for infection at low MOI (62). The Vardi et al. (27)
model predicts that increasing pp71 concentrations could sustain
IE1 expression even in the absence of positive feedback. Thus, a
reasonable hypothesis resulting from combining models is that,
despite low production of Tp52 proteins at low MOIs, supple-
mentation with excess pp71 during subsequent infection could
sustain IE1 expression as predicted by Vardi et al. (27) and, by
extension, a productive infection, despite a potentially subopti-
mal or even abortive MOI, as seen in our simulations. To some
degree, this has been demonstrated by the inclusion of an expres-
sion vector for pp71 during the process of obtaining infectious
virus from transfected genomes (63).

To connect additional processes, substantial amounts of pub-
lished kinetic data exist that can be used to build additional
empirical or ODE-based models by simply aligning genome
kinetics to our simulation. For our studies, we specifically used
absolute quantification of viral genomes per cell to avoid discrep-
ancies introduced when using an MOI-based approach. As an
example, we overlaid protein expression data from Weekes et al.
(13) showing near-identical kinetics of pUL44 and pp28 at
vDNAin,0 of 131 genomes per cell. This alignment allows for
expansion to multiple expression classes and, perhaps, specific viral
proteins. Alternatively, tracking recombinant viruses expressing
fluorescently tagged viral proteins as done here provides a unique
opportunity to obtain higher-resolution kinetic data. Recently,
Rand et al. (64) introduced a triple-fluorescent HCMV strain
with fluorescence in each of three expression classes. As we move
forward, we anticipate using this new base model to account for
more-precise mechanisms governing HCMV replication.

While our studies present a robust and predictive model of
late HCMV replication, there are some limitations. Our experi-
mental methods used a single cell type, a single strain of
HCMV, a single stock of virus, and growth-arrested cells. These
steps were necessary to reduce the complexity of the system and
potentially control the variability in the data, both of which are
necessary to facilitate computational modeling. Imposing these
experimental restrictions, however, reduces the generalizability of
our model. Future studies will explore kinetics in different cell
types and in a steady-state infection, as recently done in hepatitis
C (24). The creation of an ODE-based model also required the
introduction of simplifying assumptions. First, we assumed that
the vDNAtot in the system was a good approximation of the free
vDNA available for protein expression and gene regulation. This
assumption was required so that we were able to use the vDNAtot

value at any time and vDNAin,0 as the driving force for the
model of the late lytic replication cycle (Fig. 3). This assumption
is justified because mature C-type capsids represent a small frac-
tion of the total capsid types in the nucleus, with viral terminase
activity requiring an excess of vDNA templates for packaging
(32–37). Next, the mechanisms proposed in our model of the
late lytic replication cycle represent the lumping of many, poten-
tially unmeasurable, smaller subprocesses. For instance, vDNA
goes through a messenger RNA (mRNA) intermediary to pro-
duce viral proteins. We accounted for the mechanistic kinetics of
many binding events during protein expression and the potential
of protein synthesis machinery (e.g., ribosomes) saturation by
introducing Michaelis–Menten kinetics, characterized by Km

PNAS 2022 Vol. 119 No. 35 e2201787119 https://doi.org/10.1073/pnas.2201787119 9 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201787119/-/DCSupplemental


parameters. We introduced these kinetics to avoid using delay
differential equations (65), which, generally, are slower to solve
and not amenable to parameter estimation where the model
equations are solved many times and compared to experimental
data via the SSE in order to obtain optimal parameters. Simplify-
ing assumptions were made in an effort to avoid overparameteri-
zation, which is a problem with many mathematical models,
including ODE-based models (65). Future research will focus on
obtaining viral mRNA kinetic data as well as higher-resolution
kinetic data for late proteins that may be used to relax the afore-
mentioned assumptions. The advantage of using a computational
model such as the one presented in this article is that it can be
expanded to explicitly account for the exact pathway once it has
been elucidated in full. For now, however, we can model the rela-
tionship as presented and still generate useful predictions. Finally,
the Bonferroni-corrected P value used when determining signifi-
cance for the F test may be too stringent for the number of com-
parisons that were made. Given the nature of our work, however,
we were inclined to strictly minimize the SSE.
We used a systematic and modular approach to modeling

in an effort to provide an accurate and robust mathematical
representation of the complex lytic replication cycle. First, we
employed a pseudo–Monte Carlo parameter estimation protocol
using the minimal number of estimable parameters and fixing
other highly correlated or insensitive parameters to obtain an
optimal parameter set that minimized the sum squared error for
the model of the late lytic replication cycle (Fig. 3). For model
selection, we performed three analyses: 1) As described in Results,
we used a systematic approach involving the AIC and F test to
justify or reject the inclusion of additional parameters and avoid
overparameterization. This led to the conclusion that model 3
was the best-fitting model. 2) We analyzed the contribution of
each regulatory component in each model and the variability of
estimated parameters and SSE. If estimated parameters led to
small contributions of regulatory components or showed high
variability, that model was rejected, as described in Results. 3)
Finally, the results of a runs test on model 3 (44) failed to reject
the null hypothesis, indicating that the curve does not systemati-
cally deviate from the data. Admittedly, it is possible that a dif-
ferent combination of mechanisms or a completely different
model may, in fact, provide a more accurate description of
experimental data and might not have been considered. How-
ever, we believe that the combination of these methods should
provide a robust and parsimonious model.

Materials and Methods

Cells, Viruses, and Biological Reagents. Dual fluorescently tagged TB40/E
HCMV expressing IE2-2A-eGFP and UL99-mCherry was generously provided by
Eain Murphy (SUNY Upstate Medical University, Syracuse, NY). Viral stocks were
propagated as a P1 stock on MRC-5 fibroblasts (ATCC) and concentrated by col-
lecting culture medium and pelleting through a sorbitol cushion (SI Appendix,
Materials and Methods). Viral stock titers were obtained by a limiting dilution
assay (TCID50) assay on MRC-5s. For studies involving infected cells, MRC-5 fibro-
blasts were plated onto six-well dishes at a density of ∼300,000 cells per well to
500,000 cells per well and allowed to grow until confluent, and growth arrested
for at least 2 d for cell cycle synchronization. Cells were infected at the indicated
MOI using an approximation of 1 × 106 cells per confluent well. Further informa-
tion regarding titering as well as protein and nucleic acid assays can be found in
SI Appendix, Materials and Methods.

Model Development, Parameterization, Validation, and Statistical Testing.
Empiric model of vDNA kinetics. For vDNA replication, we developed the
following empirical model (Eqs. 1–3) based on the hypothesized schematic in
Fig. 1A:

vDNAtotðtÞ = vDNAinðtÞ + vDNArepðtÞ [1]

vDNAinðtÞ = vDNAin;0 � e�0:1:t; vDNArepðtÞ = vDNArep;max � tn
tn50 + tn

, [2]

where

vDNArep;max =
1:9E4 � vDNA2in,0
10:52 + vDNA2in,0

; t50 =
20 � vDNAin;0
1:3 + vDNAin;0

+ 76:3;

n = 1:7e�0:001�vDNAin;0 + 3:1:

[3]

The vDNAtot is the total vDNA in the system, while vDNAin is the input vDNA con-
tained within the inoculum, and vDNArep is the newly produced (replicated)
vDNA. The vDNAin is estimated to have an initial value vDNAin,0 linearly propor-
tional to the MOI (Fig. 1C) and to decay over time as a single exponential func-
tion with the decay rate constant kd = 0.1. In the empirical model of vDNArep,
vDNArep,max represents the maximal replication achieved at a specific vDNAin,0 or
MOI, t50 is the horizontal shift component of vDNArep corresponding to the time
required to achieve 50% of maximal replication at a specific vDNAin,0 or MOI,
and n is the Hill coefficient for replication at a specific vDNAin,0 or MOI indicating
the degree of effective cooperativity.

The qPCR data in Fig. 1D were used to parameterize the model for each vDNAin,0
or MOI independently, employing a pseudo–Monte Carlo parameter estimation
method described below using several iterations. Parameter vs. vDNAin,0 data were
gathered and then subjected to nonlinear regression using the MATLAB (Math-
Works Inc.) Curve Fitting Tool to generate the parameters for the above equations.
These vDNAin,0-dependent curves were then input into the parameters for Eq. 2.
The pseudo–Monte Carlo parameter estimation protocol for fitting the model equa-
tions involved minimizing the SSE (Eq. 4) using the MATLAB Optimization Toolbox
“fmincon” function (SI Appendix, Materials and Methods). This procedure was run
for several iterations, and the parameter set yielding the lowest SSE was selected as
the optimal parameter set. For the vDNA model, the SSE was defined as

SSE = ∑
�
DataðtÞ � ModelðtÞ

�2
, [4]

where the data value was the mean of three biological replicates.
Deterministic model of the late lytic replication cycle. To develop the mecha-
nistic computational model of late viral replication, we postulated six different
models accounting for different regulatory mechanisms as described in Fig. 2A
and in Results. A general equation for each of the models is described in Eqs. 5–9,

d½Tp51�
dt

= ks,1
½vDNAtot�

Km + ½vDNAtot� R1,iðtÞ � kd,1½Tp51�R2,iðtÞ

� ks,C ½vDNAtot�½Tp51� [5]

d½Tp52�
dt

= ks,2
½vDNAtot�

Km + ½vDNAtot� R1,iðtÞ � kd,2½Tp52�R2,iðtÞ � ks,P½Capsid�½Tp52� [6]

d½Capsid�
dt

= ks,C ½vDNAtot�½Tp51� � ks,P½Tp52�½Capsid� [7]

d½Particle�
dt

= ks,P½Tp52�½Capsid� � kex½Particle� [8]

d½Virus�
dt

= kex
Vcell
Vmedia

½Particle�, [9]

where [X] represents the concentration of a state variable “X” in the absolute units
of vDNA (genomes per cell). R1,i(t) and R2,i(t) represent the putative regulatory
components investigated in models 2 to 6 and are described by

R1,iðtÞ =
1 i = 1, 2, 3
Km

Km + ½Tp51 or 2� i = 4, 5, 6

8<
: [10]

R2,iðtÞ =

1 i = 1, 4
Km

Km + ½vDNAtot� i = 2, 5

½vDNAtot�
Km + ½vDNAtot� i = 3, 6

:

8>>>><
>>>>:

[11]

Definitions and values of the parameters in Eqs. 5–9 can be found in SI
Appendix. Nuclear-localized, capsid-forming Tp51 proteins are produced from
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vDNAtot (substrate) with a rate ks,1 (genomes per cell per hour) with saturable
kinetics characterized by Michaelis–Menten constant Km,1 (genomes per cell) and
consumed by self-degradation with a rate constant kd,1 (one per hour, 1/h) and
condensation with vDNA to form vDNA-loaded capsids with a rate constant ks,C
(cells per genome per hour) (Fig. 2A). Tp51 synthesis is potentially regulated by
feedback inhibition by Tp51 (models 4 to 6), and Tp51 degradation is potentially
modulated following the trend of increasing vDNAtot (models 2 to 6) (SI
Appendix, Figs. S2–S7). Cytoplasmic-localized, tegument-associated Tp52 pro-
teins are synthesized, degraded, and regulated in a similar manner to Tp51
proteins. Production and consumption of intranuclear loaded capsids and intra-
cytoplasmic viral particles follow from mass balance. Finally, intracellular viral
particles are consumed by leaving the infected host cell and entering the sur-
rounding media (kex; 1/h). In Eq. 9, Vmedia is defined experimentally as 1 mL,
and Vcell is defined as the total cellular volume of 1 × 106 cells in each well
approximated at 0.002 mL (66).

During parameter estimation, it was necessary to account for normalization
and the contribution of intracellular capsids and/or particles to the measurement
of Tp5 proteins, since the starting material subjected to immunoblot was an
unfractionated, whole-cell lysate. We accounted for the contribution(s) of capsid
and particle by, first, constraining the parameter estimation algorithm such that
subsequent unnormalized state variables were at least one order of magnitude
smaller at 96 hpi and vDNAin,0 = 131 genomes per cell to provide a thermody-
namic driving force toward infectious virus production (e.g., Tp51(96,131) =
5,000 genomes per cell, while Capsid(96,131) = 500 genomes per cell). We
then summed the relevant species in units of genomes per cell and normalized
this quantity to the maximum of this sum at t = 96 hpi and vDNAin,0 = 131
genomes per cell to obtain a quantity comparable to the experimental data. See

SI Appendix,Materials and Methods for further information on model parameter-
ization and comparison.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. The Matlab codes for the models are
available on GitHub (https://github.com/MCWComputationalBiologyLab/Monti_
2022_PNAS) (67).
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