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Abstract

Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed
to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the
supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether
delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill
performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT) was generated to express a
mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of
1012 vector genome particles per mouse. Three months later, we observed a ,2 to 10-fold increase of catalase protein and
activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining
confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running
distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during
exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered.
Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance.
Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar
strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy)
and ameliorate muscle disease.
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Introduction

It has long been recognized that muscle activity is tightly

regulated by free radicals (reviewed in [1–3]). Free radicals are

short-lived, highly reactive molecules. Low levels of free radicals

are required for normal muscle contraction and metabolism

(reviewed in [1,4]). However, untempered free radical production

during strenuous exercise results in muscle fatigue and reduces

performance [5,6]. It has been hypothesized that exogenous

antioxidant supplementation may help scavenge excessive free

radicals and improve muscle performance during exercise. Yet,

this claim has not been substantiated by clinical studies (reviewed

in [3,7–11]).

The lack of performance enhancement by generic antioxidants

is reminiscent of a similar observation in aging studies. Oxidative

stress has been considered as a key determinant of the lifespan in

drosophila and C. elegans [12,13]. However, mouse studies have

yielded conflicting results (reviewed in [14–17]). Of particular

interests are these performed in catalase transgenic mice. Catalase

is a major cellular antioxidant enzyme normally expressed in the

peroxisomes (abbreviated as PCAT in this manuscript). Trans-

genic over-expression of catalase in the peroxisome or nucleus did

not extend mouse lifespan [18–20]. However, targeting catalase to

the mitochondria resulted in a 20% lifespan increase in transgenic

mice [20]. Furthermore, these mice have enhanced retention of

cardiac performance with age [21]. These findings reveal the

importance of subcellular antioxidant expression on the functional

outcome. Here, we hypothesize that targeted catalase expression

in the mitochondria can enhance exercise performance in mice.

To test this hypothesis, we engineered the mitochondrial-targeted

catalase gene (MCAT) in serotype-9 recombinant adeno-associat-

ed viral vector (AAV-9). After systemic delivery in newborn

C57Bl/6 (BL6) mice, we confirmed ectopic mitochondrial catalase

expression. At the three months of the age, we examined exercise

performance. In support of our hypothesis, running distance was

significantly increased in AAV infected mice. Interestingly,

mitochondrial targeted catalase expression did not alter the

contractile profile in the isolated extensor digitorum longus

(EDL) muscle.

Results

Characterization of ectopic catalase expression in the
mitochondria after systemic AAV-9 delivery in neonatal
mice

Recombinant AAV-9 AV.RSV.MCAT vector was generated to

express the MCAT gene (Figure 1A). 161012 vector genome

particles of AV.RSV.MCAT were delivered to 2-day-old C57Bl/6
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mice through the vasculature as we described before [22,23].

Consistent with transgenic study [20], AV.RSV.MCAT infected

mice showed similar growth rate as uninfected control littermates

(data not shown).

Three months after AV.RSV.MCAT infection, we examined

catalase expression in skeletal muscle and the heart (Figures 1 and

2). On whole muscle lysate western blot, the intensity of the

catalase band was substantially stronger in AV.RSV.MCAT

infected mice (Figure 1B). Catalase overexpression was confirmed

by the zymograph assay (Figure 1B). Interestingly, for reason(s) yet

unknown, MCAT (Figure 1B arrowhead) appeared to migrate

faster than endogenous PCAT in the zymography gel (Figure 1B

arrows). Next, we quantified catalase activity in whole muscle

lysate. Compared with uninfected mice, we observed an

approximately 10-fold catalase activity increase in the heart of

AV.RSV.MCAT infected mice. In skeletal muscle, the catalase

activity was increased by 3 to 5-fold except for the soleus muscle

which only showed a less than 2-fold increase (Figure 1C). To

confirm mitochondrial catalase expression, we performed western

blot using isolated skeletal muscle mitochondria preparation

(Figure 1D) [24]. Prohibitin was used as the mitochondria marker.

As expected, we observed the catalase band in the mitochondria

isolated from AV.RSV.MCAT infected muscle but not from

uninfected muscle (Figure 1D).

To further evaluate MCAT expression, we performed immu-

nofluorescence staining on tissue cryosections (Figure 2). In both

skeletal muscle and the heart, we observed mosaic MCAT

expression (Figure 2A). The mitochondrial localization of MCAT

was confirmed by double immunofluorescence staining (Figure 2B).

The mitochondria were labeled with the cytochrome C antibody

(Figure 2B, red color). Catalase was revealed with a polyclonal

antibody (Figure 2B, green color). Merged images clearly

demonstrated co-localization of catalase and cytochrome C,

suggesting that MCAT was indeed localized in the mitochondria

(Figure 2B, yellow color). Interestingly, we also detected some

catalase expression outside the mitochondria (Figure 2B, green

color in the merged images). This could represent either

endogenous PCAT or newly synthesized MCAT yet to be

imported into the mitochondria.

Systemic AAV-9 AV.RSV.MCAT infection enhances
treadmill performance

To evaluate the impact on exercise performance, mice were

subjected to a single bout of exhaustive treadmill running

challenge. In both male and female, AV.RSV.MCAT infection

significantly enhanced running performance (Figure 3). Interest-

ingly, the level of improvement was more substantial in female

Figure 1. Characterization of AV.RSV.MCAT vector. A, Schematic outline of the AAV vector. The flanking hairpin structures denote AAV
inverted terminal repeats. RSV, Rose sarcoma virus promoter; OTC, mitochondrial targeting sequence from the ornithine transcarbamylase gene; pA,
polyadenylation signal from SV40 virus. Not drawn to scale. B, Determination of catalase expression from AAV infected mice by whole muscle lysate
western blot and the in-gel zymography assay. Photomicrographs are the representative results from three independent experiments. Uninf., mice
not infected by AV.RSV.MCAT. MCAT, mice received systemic AV. RSV.MCAT infection. Dotted lines, images were spliced together from the same gel
but were run on noncontiguous lanes. Arrow, endogenous murine catalase; Arrowhead, mitochondrial expressed human catalase from AAV vector.
TA, tibialis anterior muscle; Gastro, gastrocnemius muscle, EDL, extensor digitorium longus muscle. C, Catalase activity in whole muscle lysate.
Asterisk, significantly higher than that of the uninfected group (p,0.05); Double asterisks, significantly higher than that of the uninfected group
(p,0.005). D, Western blot analysis of mitochondrial and whole muscle lysate preparations from the gastrocnemius muscle. Prohibitin is a
mitochondria marker. Uninf., mice not infected by AV.RSV.MCAT. MCAT, mice received systemic AV. RSV.MCAT infection.
doi:10.1371/journal.pone.0006673.g001
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mice. The absolute running distance increased by 18% and 35%

in AV.RSV.MCAT infected male and female mice, respectively.

Male body weight was significantly higher than that of female

mice (p = 0.013). Next, we compared the body weight-normalized

running distance (m/g). In male mice, running distance increased

from 23.5562.14 m/g to 30.0461.18 m/g (p = 0.0242)

(Figure 3A). In female mice, running distance increased from

30.3861.59 m/g to 46.2862.37 m/g (p = 0.0004) (Figure 3B).

Ectopic catalase expression in the mitochondria does not
alter contractile property of the isolated EDL muscle

We compared the anatomic and contractile properties of the

freshly isolated EDL muscle. We did not see a significant

difference in muscle weight, length and cross-sectional area

between AV.RSV.MCAT infected and uninfected mice

(Table 1). Specific and absolute muscle forces were not altered

either (Figure 4).

We also examined the fatigue and the eccentric contraction

responses. 50 cycles of fatigue stimulation were applied to the EDL

muscle. Each cycle included 300 ms of 70 Hz stimulation followed

by 3 sec rest [25]. In both male and female mice, AV.RSV.MCAT

infection did not change the fatigue profile (Figure 4). After the

fatigue protocol, muscle was allowed a 15 min rest for recovery.

We then applied an eccentric contraction protocol to determine

the response to contraction-induced injury [26,27]. The overall

trend of force decline was similar between AV.RSV.MCAT

infected and uninfected mice (Figure 4).

Taken together, systemic AV.RSV.MCAT infection induced

negligible changes in ex vivo contractility in the isolated EDL

muscle.

Discussion

In this study, we presented evidence that neonatal systemic

delivery of an AAV-9 MCAT vector significantly enhances

running performance in young adult BL6 mice. Furthermore,

ectopic catalase expression in the mitochondria appears to have

nominal effect on the contractility of the isolated EDL muscle.

Oxidative stress generated during intensive exercise is thought

to compromise physical performance. Surprisingly, administration

of generic antioxidants such as vitamin C, vitamine E or b-

carotene has failed to convincingly alleviate fatigue and enhance

performance in exhaustive exercise (reviewed in [3,7–11]). In

contrast, combined administration of vitamin C and vitamin E was

recently shown to abolish health-promoting effect of supervised

physical training in humans [28]. The disappointing result of

Figure 2. Systemic AV.RSV.MCAT infection leads to mosaic
catalase expression in the mitochondria in striated muscles. A,
Representative catalase immunofluorescence staining photomicro-
graphs of AV.RSV.MCAT infected and uninfected skeletal muscle (top
panels) and heart (bottom panels). Arrow, AAV transduced skeletal
muscle myofiber. B, Representative double immunofluorescence
staining photomicrographs of AV.RSV.MCAT infected heart. Bottom
panels are high magnification images of the boxed region in respective
top panels. Cytochrome C marks mitochondria (red color). Catalase is in
green color. Yellow color in merged images reveals mitochondrial
catalase expression.
doi:10.1371/journal.pone.0006673.g002

Figure 3. Systemic AV.RSV.MCAT delivery significantly enhances treadmill performance in both male and female mice. A, results
from male mice; B, results from female mice. Right panel, absolute running distance; Middle panel, body weight; Left panel, body weight-normalized
running distance. Asterisk, significantly different from that of the uninfected group (p,0.04); Double asterisks, significantly higher than that of the
uninfected group (p,0.001).
doi:10.1371/journal.pone.0006673.g003
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antioxidant trials challenges the dogma of the free radical-

mediated muscle injury.

It has been well documented in the literature that exercise

increases muscle free radical production (reviewed in [5,6,29]).

More recently, Jackson and colleagues applied in vivo micro-

dialysis technique in contracting skeletal muscle and unequivocally

demonstrated elevated free radical generation [30–32]. Bailey et al

provided the first direct evidence of exercise-induced free radical

accumulation in human muscle [33]. Collectively, there appears a

solid foundation to expect a beneficial effect from antioxidant

treatment. The absence of protection suggests that nonspecific

antioxidants are insufficient to eliminate untoward reactive oxygen

species in exercising muscle.

Mitochondria are the predominant contributor of cellular

reactive oxygen species [13]. Manganese superoxide dismutase

(MnSOD) and glutathione peroxidase (GPX) constitute the primary

antioxidant defense system in the mitochondria. Briefly, MnSOD

converts superoxide radicals to hydrogen peroxide. Hydrogen

peroxide is then reduced by GPX into water. When hydrogen

peroxide is not completely detoxified, it readily forms highly reactive

and cytotoxic hydroxyl radicals. The reaction catalyzed by GPX

highly depends on the availability of reduced glutathione (GSH) to

provide electrons. The oxidized glutathione (GSSG) has to be

regenerated to GSH in order to maintain GPX activity.

Catalase also breaks down hydrogen peroxide. In contrast to

GPX, catalase activity has no cofactor limitation. Catalase is

Figure 4. The contractility of the isolated EDL muscle is not altered following systemic AV.RSV.MCAT infection. A to C, results from
male mice; D to F, results from female mice. A and D, absolute twitch (left panel) and tetanic forces (right panels). B and E, cross-sectional area
normalized specific twitch (left panel) and tetanic forces (right panels). C and F, fatigue response (left panel) and eccentric contraction profile (right
panel). Filled bar/circle, AV.RSV.MCAT infected mice; Open bar/circle, uninfected mice.
doi:10.1371/journal.pone.0006673.g004

Table 1. Characterization of the EDL muscle.

Mice N Weight (mg) Lo (mm) CSA (mm2)

Male, no AAV 8 9.5360.49 12.9360.23 1.5860.06

Male, AAV inf 6 8.8360.18 12.4760.04 1.5260.03

Female, no AAV 8 7.1960.34 12.1560.26 1.2660.04

Female, AAV inf 7 7.2060.14 12.2960.06 1.2660.02

doi:10.1371/journal.pone.0006673.t001
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usually expressed in the peroxisome. However, it has also been

detected in the mitochondria in rat heart and liver [34–36]. Over

the last decade, there has been a great interest in experimentally

expressing catalase in the mitochondria in the hope of improving

cellular defense against free-radical injury [20,21,37–41]. Collec-

tively, these studies have convincingly demonstrated mitochondrial

catalase expression as an effective strategy to ameliorate oxidative

damage.

The most striking finding on MCAT is made in transgenic mice.

To test the role of oxidative stress in mammalian aging, Schriner et

al compared the maximal and median life span in transgenic mice

expressing catalase in the peroxisomes, nuclei or mitochondria

[20]. They obtained two MCAT transgenic lines with different

levels of mosaic MCAT expression. Surprisingly, significant

lifespan extension was observed in both MCAT transgenic lines

but not in other transgenic mice that expressed catalase in the

peroxisome or nucleus. A recent study from a different group

further confirmed that overexpressing PCAT is not sufficient to

increase mouse lifespan [19]. These results suggest that the

subcellular location rather than the absolute amount of total

cellular antioxidants is more important in mitigating oxidative

stress.

Mitochondria used to be considered as the primary source of

muscle free radicals. This view is now questioned (reviewed in

[3,6,42,43]). Nevertheless, mitochondria remain an important

location of reactive oxygen species production in contracting

muscle. Since muscle mitochondria are particularly susceptible to

oxidative damage [44], targeted antioxidant delivery to the

mitochondria may alleviate oxidative injury in contracting muscle.

Promoted by the encouraging results of MCAT transgenic mice,

we set out to test whether body-wide delivery of MCAT by an

AAV vector can improve exercise performance in normal mice.

We have previously shown that AAV-9 is capable of whole body

muscle transduction [22,23,45]. To this end, we engineered

MCAT in an AAV-9 vector and injected into the circulation of

newborn BL6 mice. As expected, we observed widespread but

mosaic MCAT expression in the heart and skeletal muscle

(Figures 1 and 2). Similar to previous reports in MCAT transgenic

mice, we did not see any detrimental effect on the growth rate and

body weight in AV.RSV.MCAT infected mice (Figure 3)

[20,21,40]. When challenged with a single bout of exhaustive

treadmill running, AV.RSV.MCAT infected mice performed

much better irrespective of gender and body weight (Figure 3).

It has been shown that female mice run better than male mice

[46,47]. In our uninfected control mice, we also noticed that the

normalized running distance was significantly higher in female

mice (p = 0.021). Interestingly, female mice also appeared to

respond better to AV.RSV.MCAT treatment. Compared with

male mice, AV.RSV.MCAT administration resulted in signifi-

cantly better improvement in both absolute and normalized

running distance in female mice (Figure 3). Taken together, our

results suggest that the mitochondria may still represent a critical

site of free radical production during exhaustive exercise. Further,

targeted expression of catalase to the mitochondria may

counteract oxidative muscle damage and enhance performance.

Normal muscle contraction requires low levels of reactive

oxygen species (reviewed in [1,4]). A complete or near-complete

elimination of cellular free radicals may affect force production.

To determine whether MCAT overexpression compromises basal

muscle contraction, we examined the contract profile of the

isolated EDL muscle (Figure 4). No difference was observed

between AV.RSV.MCAT infected mice and uninfected controls

in terms of twitch force, tetanic force, fatigue pattern and eccentric

contraction response (Figure 4). We have previously reported a

similar observation following AAV-mediated PCAT expression in

the EDL muscle [25]. Together, these results suggest that catalase

overexpression may not eliminate physiological level (low-level)

free radicals inside cell. As a matter of fact, these findings are

consistent with the known biochemical property of catalase. In

contrast to GPX, catalase has a very low affinity for its substrate

when cellular hydrogen peroxide levels are low (reviewed in [6]).

Exercise capacity is influenced by both cardiac function and

skeletal muscle activity. Recently, Dai et al reported that MCAT

attenuates aging-associated heart function deterioration [21].

Considering the negligible effect of MCAT on the isolated EDL

muscle (Figure 4), it appears that cardiac MCAT expression may

have played a major role in our observation. Nevertheless, it is still

possible that a synergistic effect of MCAT expression in both the

heart and skeletal muscle underlies running performance im-

provement (Figures 1 and 2). Future studies are needed to further

define the underlying mechanism(s).

Excessive free radical production has been implicated in aging

related mobility reduction and various muscle diseases such as

Duchenne muscular dystrophy (reviewed in [2,48–51]). Our

results suggest that boosting mitochondrial antioxidant defense

with AAV-mediated MCAT expression may help clear out

excessive free radicals and reduce oxidative damages under these

conditions. The remarkable safety profile of MCAT overexpres-

sion seen in this study as well as in MCAT transgenic mice further

paves the way to future therapeutic application [20,21,40].

Nevertheless, it is important to recognize that moderate levels of

free radicals produced during non-exhaustive/regular exercise or

supervised exercise (for patients suffering from certain diseases)

actually enhance antioxidant defense in the body and provide

multi-systemic health benefits.

Materials and Methods

Animals
All animal experiments were approved by the Animal Care and

Use Committees at the University of Missouri and were in

accordance with NIH guidelines. C57BL/6 (BL6) breeders were

purchased from Harlan Laboratories, Inc. (www.harlan.com).

Neonatal mice used in the study were generated from local

breeding colony. All mice were housed in specific-pathogen free

animal care facilities and kept under a 12 h light (25 lux)/12 hr

dark cycle with free access to food and water. A total of 45 mice

were used in the study including 19 male and 26 female mice.

Recombinant AAV-9 vector production
The mitochondrial tagged human catalase cDNA (MCAT)

plasmid (poCAT) was published before [20]. poCAT contains a

mitochondria leader sequence from the ornithine transcarbamyl-

ase (OTC) gene [52]. In MCAT transgenic mice, transgene

expression is directed by the ubiquitous CAG promoter [20]. We

designed our AAV vector with the ubiquitous Rouse sarcoma virus

(RSV) promoter (Figure 1A). To generate the cis plasmid for AAV

packaging (pcisAV.RSV.MCAT), we first amplified the MCAT

gene from poCAT using the following pair of the primers. The

forward primer was 59-GCGCGGTACCATGCTGTT-

TAATCTGAGGATCC-39. The underlined nucleotides mark

the Kpn I site. The reverse primer was 59-GCGCAAGCTTT-

CATCCGGACTGCACAAAGGTGTGAATCGC-39. The un-

derlined nucleotides represent the Hind III site. The PCR product

was digested with Kpn I and Hind III and cloned into the Kpn I/

Hind III site in pcis.RSV.mcs [53]. The MCAT gene and the

cloning junction were confirmed by sequencing.

MCAT Enhances Running
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Recombinant AAV-9 vectors were generated by a triple plasmid

transfection protocol described before using pcis.RSV.MCAT, pRep2/

Cap9 and pHelper [22,23,45]. pRep2/Cap9 encodes AAV replication

proteins and AAV-9 capsid (a gift from Dr. James Wilson at the

University of Pennsylvania, Philadelphia, PA) [54]. pHelper provides

adenoviral helper function (Stratagene, La Jolla, CA). Viral stocks were

purified through two rounds of isopycnic CsCl ultracentrifugation

followed by dialyzing in HEPES buffer. Viral titer and quality control

were performed according to our previously published protocol

[22,23,55]. The viral titer was 161010 viral genome particles/ml.

The same lot of viral preparation was used for all in vivo experiments.

Systemic AAV-9 delivery in neonatal mice
Facial vein injection was performed in 2-day-old BL6 mice as

we described before [22,23]. A total of 161012 vg particles of AAV

were delivered to each puppy. All AAV injected mice survived the

procedure.

Whole muscle lysate western blot
The freshly isolated muscles were rinsed briefly in 50 mM

potassium phosphate buffer (PB), pH 7.8. The muscle was ground

to fine powder in a liquid nitrogen cooled mortar with a pestle.

The muscle was then homogenized in PB buffer containing 1%

protease inhibitor cocktail (Roche, Indianapolis, IN) (10 ml per

1 mg wet muscle weight). The lysate was centrifuged at

10,000 rpm for 5 min at 4uC (Eppendorf centrifuge, model

5417C). The supernatant was collected for western blot. Protein

concentration was determined using a Bio-Rad protein assay kit

and 50 mg protein/lane was loaded on a 10% SDS-polyacryl-

amide gel. Catalase was detected with a rabbit polyclonal antibody

(1:1,000; Athens Research & Technology, Athens, GA). Equal

loading was confirmed by Ponseu S staining and the intensity of a

slow migrating non-specific band [25].

Mitochondrial preparation western blot
Mitochondria were isolated from the gastrocnemius muscle

according to a published protocol with modification [24]. Briefly,

the freshly isolated gastrocnemius muscle (,300 mg) was minced

into small pieces and then digested for 30 min at 4uC in 5 ml

phosphate buffered saline (PBS) containing 0.2% trypsin, 10 mM

EDTA. After a 5 min centrifugation at 2006g, the pellet was

resuspended in a buffer containing 50 mM Tris pH 7.4, 50 mM

KCl, 10 mM EDTA, 0.2% bovine serum albumin and 67 mM

Sucrose. Subsequently, the muscle lysate was homogenized using a

tissue tearor (Model 985370-395; Biospec Products Inc. Bartles-

ville, OK). The homogenate was centrifuged at 7006g for 10 min

at 4uC. The supernatant was centrifuged again at 8,0006g for

10 min at 4uC. The pellet was washed in a buffer containing

10 mM Tris pH 7.4, 3 mM EGTA, 250 mM Sucrose. After

another round of centrifugation at 8,0006g for 10 min at 4uC,

mitochondrial enriched pellet was resuspended in 50 mM PB,

pH 7.4. Mitochondrial preparation (70 mg/lane) was resolved in a

10% SDS-polyacrylamide gel and catalase was detected with the

Athens’ polyclonal antibody as described above. A rabbit

polycolonal antibody against prohibitin (1:1,000; Abcam, Cam-

bridge, MA) was used as the mitochondrial marker in western blot.

Quantitative muscle catalase activity measurement
Catalase activity in whole muscle lysate was determined using

our previously described protocol [25]. Briefly, the liquid nitrogen-

snap frozen muscles were pulverized in 50 mM PB, pH 7.8. Crude

muscle lysate was further homogenized in a S-3000 sonicator

(Misonix Inc. Farmingdale, NY). Cellular debris was then removed

by a 5 min centrifugation at 10,000 rpm (Eppendorf centrifuge,

model 5417C). Finally, catalase activity in the supernatant was

quantified using the Aebi method [56].

Zymogrphic analysis of muscle catalase activity
In-gel zymography assay was performed as described before in 8%

native polyacrylamide gel [25]. Following electrophoresis, catalase

was revealed by ferricyanide staining as previously published [57].

Immunofluorescence staining
Freshly dissected muscle was snap frozen in liquid nitrogen

cooled isopentane in the Tissue-Tek OCT compound (Sakura

Finetek, Torrance, CA). Eight mm muscle cryosections were fixed

in 4% paraformaldehyde for 10 minutes. Catalase was detected

with a rabbit polyclonal antibody (1:500; Calbiochem, San Diego,

CA) according to our published protocol [58]. Mitochondria were

revealed with a monoclonal antibody against cytochrome C

(1:400; BD Pharmingen, San Jose, CA).

In vitro analysis of the EDL muscle function
The EDL muscle was carefully isolated from the anesthetized mice

and vertically mounted in a jacket organ bath containing oxygenated

Ringer’s buffer [25]. Muscle twitch force, tetanic force and fatigue

response was measured using a 300B dual-mode servomotor

transducer (Aurora Scientific, Inc., Aurora, ON, Canada) as we

described before [25]. After the fatigue protocol, muscle was allowed

a 15 min rest for recovery. We then applied 10 cycles of eccentric

contraction stimulation using our published protocol [26].

Treadmill
Experimental mice were trained on a 15u downhill Exer-3/6

open treadmill (Columbus Instruments, Columbus, OH) for three

days. Briefly, on day 1 mice were first placed on an unmoving

treadmill for 7 min (2 min flat and 5 min 15u downhill). Mice

were then run for 15 min at 5 m/min, 15u downhill. On day 2,

mice were first placed on an unmoving 15u downhill treadmill for

2 min. Mice were then run on the 15u downhill for 10 min at

5 m/min followed by another 10 min at 10 m/min. Training on

day 3 was similar to that of day 2 except that mice were run at

5 m/min for 5 min and then 10 m/min for 15 min. On the forth

day, mice were subjected to a single bout of 15u downhill running

starting at the speed of 10 m/min. Twenty min later, treadmill

speed was increased at a rate of 1 m/min every 2 min until mice

were exhausted. Continuous nudging was used during treadmill to

help mice stay on the track. Exhaustion was defined as the point at

which mice spent more than 10 sec on the shocker without

attempting to resume running when nudged.

Statistical analysis
Data are presented as mean6standard error of mean (s.e.m.).

Statistical analysis was performed with the SPSS software (SPSS,

Chicago, IL). Statistical significance between AV.RSV.MCAT

infected mice and uninfected mice was determined by student t

test. Difference was considered significant when p,0.05.
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