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A B S T R A C T   

Background: To comprehensively investigate the behaviors of oncologists with different working experiences and 
institute group styles in deep learning-based organs-at-risk (OAR) contouring. 
Methods: A deep learning-based contouring system (DLCS) was modeled from 188 CT datasets of patients with 
nasopharyngeal carcinoma (NPC) in institute A. Three institute oncology groups, A, B, and C, were included; 
each contained a beginner and an expert. For each of the 28 OARs, two trials were performed with manual 
contouring first and post-DLCS edition later, for ten test cases. Contouring performance and group consistency 
were quantified by volumetric and surface Dice coefficients. A volume-based and a surface-based oncologist 
satisfaction rate (VOSR and SOSR) were defined to evaluate the oncologists’ acceptance of DLCS. 
Results: Based on DLCS, experience inconsistency was eliminated. Intra-institute consistency was eliminated for 
group C but still existed for group A and group B. Group C benefits most from DLCS with the highest number of 
improved OARs (8 for volumetric Dice and 10 for surface Dice), followed by group B. Beginners obtained more 
numbers of improved OARs than experts (7 v.s. 4 in volumetric Dice and 5 v.s. 4 in surface Dice). VOSR and SOSR 
varied for institute groups, but the rates of beginners were all significantly higher than those of experts for OARs 
with experience group significance. A remarkable positive linear relationship was found between VOSR and post- 
DLCS edition volumetric Dice with a coefficient of 0.78. 
Conclusions: The DLCS was effective for various institutes and the beginners benefited more than the experts.   

Introduction 

Nasopharyngeal carcinoma (NPC) is a typical tumor in the head and 
neck [1], which is widely observed in southeast Asia and northern Af-
rica, especially in southern China [2]. The high incidence and mortality 
worldwide of NPC demand enhancing control and prevention [3]. As the 
primary treatment modality for NPC, radiotherapy plays an important 
role [4–6]. NPC radiotherapy requires accurate contouring of organs at 

risk (OAR) for dose sparing. However, manual OAR contouring for NPC 
is a time-consuming and tedious procedure that heavily depends on 
personal experience. Significant observer variance and low group con-
sistency have been reported [7,8]. 

Automatic contouring is a promising solution for improving clinical 
contouring efficiency and interobserver consistency [7,8]. There were 
traditional solutions based on image deformation and registration 
[9,10] with some unsolved problems, namely, no golden rules for atlas 
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rate; SOSR, Surface-based oncologist satisfaction rate. 
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establishment [11], the heavy requirement for computational resources, 
and long computing time [12]. 

Deep learning methods provide solutions to automatic radiotherapy 
contouring from a new point of view. For NPC OAR contouring, there 
were algorithm design studies for deep learning-based contouring sys-
tem (DLCS) performance improvement [13–25] and clinical studies for 
DLCS performance evaluation [26,27]. The DLCS performance ranged 
from 0.45 to 0.94 for Dice with various models [28]. However, the 
evaluation based on numerical geometric metrics does not fully reveal 
the clinical acceptance of the contouring target for different oncologists, 
and the clinical evaluation research was limited. Deep learning methods 
and registration algorithm contouring performance were evaluated for 
swallowing-related organs [27] and 11 organs of the head and neck site 
[26] by quantitative parameters, drawing the main conclusion that 
DLCS provided equivalent or better segmentation accuracy and higher 
efficiency. Besides contouring time reduction and segmentation accu-
racy, complicated clinical issues remained in DLCS application, e.g., 
inter- and intra-observer consistency variation, group consistency vari-
ation, oncologist performance improvement, and their acceptability, 
especially for oncologists with diverse experience and institute group 
contouring styles. These problems pose challenges to the DLCS’s clinical 
effectiveness. Some research investigated this topic providing proof of 
lower inter-observer variability and improved consistency for the larynx 
contouring course [31] and atlas-based NPC OAR edition [29]. Some 

research purely focuses on manual contouring analysis of the prostate 
site [30] and multiple lesions and organs [31] with no intervening fac-
tors. For the aspect of different expertise, no statistical difference was 
found for a single institute [31]. However, manual contouring is a task 
with high variability both within and across institutions requiring end- 
to-end tests [32]. In clinical practice, DLCS is usually established by 
the dataset from one relatively large institute restricted by the data 
quality and patient resources but is used by various authorized oncol-
ogists from other institutes. In such circumstances, the DLCS-based 
contouring performance of oncologists with varied working experi-
ences from multi-institutes is unknown. 

Therefore, it is critical to evaluate the oncologist’s acceptability to-
wards DLCS, their performance during the contouring edition, and their 
improvement in clinical practice. In this study, we focus on oncologist 
behaviors from three institutions marked by A, B, and C, with diverse 
working experience and institute group contouring styles. We con-
structed a DLCS for NPC OAR contouring based on CT from one institute. 
We investigated oncologists’ consistency, performance improvement, 
and acceptability based on two factors: working experiences and insti-
tute group styles. 

Fig. 1. Study flow diagram of this research.  
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Material and methods 

2.1. Dataset 

The study was approved by the ethics committee as a retrospective 
clinical trial with patient informed consent exempt. All the patients with 
the pathology diagnosis of nasopharyngeal carcinoma treated by bilat-
eral radiotherapy from September 2018 to December 2019 were 
collected in the institute of group A, and 188 patients were finally 
included. The flow diagram of this study is shown in Fig. 1. All the pa-
tients were immobilized in the supine position by specific head-and- 
neck thermoplastic masks with planning CT scanning and reconstruc-
tion done by 3 mm thickness and 0.94 × 0.94 cm2 in-plane resolution on 
a spiral CT (SOMATOM Definition AS+, Siemens). MRI simulation was 
also done for all the patients at the same immobilization position with 
the masks (Discovery 750 W, GE). 

2.2. OAR delineation 

In our clinical routine, manual contouring was done on planning CT 
combined with the registered MRI images by a qualified oncologist with 
28 OARs. The contoured datasets are then viewed, adjusted, and 
approved by the corresponding responsible advanced oncologist for all 
patients. To avoid the oncologist personality influence, all contouring 
results were adjusted and approved by consensus of two advanced ex-
perts according to the anatomical boundaries in registered CT and MRI 
images by the international guideline [33]. The approved contours were 
considered as the ground truth and abbreviated as OARGT, later used for 
network training and the golden reference for result evaluation. The 
patients’ characteristics are shown in Table 1. 

2.3. Networks 

We construct the DLCS based on an encoder-and-decoder U-Net ar-
chitecture [34–36], DeepLabv3+ [37], for NPC contouring. The archi-
tecture of DeepLabv3+ is illustrated in supplemental file Fig. 1. In 
application, the ResNet50 network serves as the backbone for the 
encoder component, extracting the abstract features of multiple layers 
by downsampling. The decoder component mainly consists of four 
atrous spatial pyramid pooling modules with different rates, combined 
with global average pooling and other up-sampling operations. 

Moreover, low-level features from the encoder are re-fed to the decoder 
for aggregating more abstract features. 

For the network training, the cross-entropy criterion was employed 
as the loss function, and the maximum number of the epoch was set to a 
constant of 100. Stochastic gradient descent was used as an optimizer, 
and its parameters were selected according to suggested values, with 
initial learning rate, momentum, and weight decay values of 0.01, 0.9, 
and 5*10− 4, respectively. The DLCS was set on a server equipped with a 
Linux operation system, RAM hardware of 64 G, CPU Intel Xeon CPU E5- 
2620 v3 @ 2.40 GHz with 24 kernels, and NVIDIA TITAN RTX GPUs 
with 24G memory. 188 patients were randomly assigned to training and 
validation set (150 cases), and test set (38 cases). The model code can be 
accessed at https://github.com/hujunjiescu/DeepRT. 

2.4. Evaluation 

Six oncologists majoring in NPC from three institutions were 
recruited for the study. There were three experts (over 10 years of 
experience labeled by OA10, OB10, and OC10, respectively) and three 
beginners (1 years of experience marked by OA1, OB1, and OC1). Two 
trials, independent contouring labeled as OARmanual, and post-DLCS 
edition labeled as OARp-DLCS, of 28 OARs were performed for ten 
randomly-selected test cases on the Pinnacle3 treatment planning sys-
tem (Philips Healthcare, Hamburg, Germany, version 9.1). Six oncolo-
gists were trained according to the international guideline [33], and the 
contouring consensus were built in advance. All the evaluations were 
done randomly and double-blindly, and two trials were carried out over 
two sessions by two months apart. 

Contouring performance was evaluated by two quantitative metrics, 
including volumetric Dice [30,38,39] for volume overlapping evalua-
tion and surface Dice [30,39,40] for border overlapping evaluation with 
a distance tolerance of 1 mm. To evaluate the subjective acceptability of 
OARDLCS, an objective volume-based and a surface-based oncologist 
satisfaction rate (VOSR and SOSR) were defined by the OARDLCS and the 
corresponding OARp-DLCS to objectively measure the volume and surface 
deviation of DLCS contouring to oncologists’ desired targets. The defi-
nition details are shown in Fig. 2. When no modification was needed for 
one oncologist, the corresponding satisfaction rate reached the 
maximum of 1. This way, subjective acceptability was evaluated based 
on the objective metric derived from the whole edition process. 

Based on OARGT as a reference, volumetric and surface Dice were 
calculated to evaluate oncologist performance and group consistency. 
Based on OARp-DLCS as a reference, VOSR and SOSR were calculated. To 
explore the oncologist acceptability impact on their post-DLCS edition 
performance, the correlation relationship between the satisfaction rate 
and post-DLCS edition performance was investigated. The Pearson linear 
regression method was adopted for the Dice metric, and the Spearman 
rank method was employed for ranked group data. Analysis of variance 
(ANOVA) was used for pair-wise and inter-group comparison (IBM SPSS, 
version 25.0, New York, NY, USA, P < 0.05). All P-values were from two- 
sided tests. 

Results 

3.1. Analysis of manual contouring performance and post-DLCS edition 

The performance of each oncologist and experience-based intra- 
institute consistency is illustrated in Fig. 3. Post-DLCS edition improved 
intra-institute consistency significantly for most OARs except the left 
optical nerve, the pituitary gland, temporal lobes, and the left mandible. 
The intra-institute inconsistency was eliminated for group C but still 
existed for groups A and B. To objectively investigate the DLCS-based 
improvement of individual contouring performance, the post-DLCS 
edition improvement, defined as the post-DLCS edition metric minus 
the metric of manual contouring, was listed in Table 2. For those OARs 
with significant performance differences between manual contouring 

Table 1 
Patient characteristics.  

Characteristic Entire Cohort 
(n = 188) 

deep learning-based contouring system  

Training- 
Validation (n =
150) 

Test (n =
38) 

P 

Sex Male 126 100 26  0.837  
Female 62 50 12  

Age Median 
(IQR) 

48(19–84) 48 (19–84) 45 
(24–64)   

Range 27–80 27–80 27–76   
≤40 y 43 32 11  0.626  
40–60 y 123 100 23   
> 60 22 18 4  

Stage T1 33 29 4  0.563  
T2 62 49 13   
T3 48 36 12   
T4 45 36 9   
N0 10 9 1  0.860  
N1 44 34 10   
N2 104 82 22   
N3 30 25 5   
M0 186 148 38  1.0  
M1 2 2 0  

Note. IQR = Inter-Quartile Range. 
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and post-DLCS edition, all OARs obtained performance improvement 
without any metric deterioration for all oncologists. The DLCS-based 
edition performance for eyes, spinal cord, constrictor naris, and larynx 
was improved for all oncologists. However, no significant improvement 
was found for the left lens, optical nerves, and the left cochlea. For the 
left OARs, the performance improvement varied for different institute 
groups. There were more numbers of OARs with improved performance 
for beginners compared with experts, 13 v.s. 8 (volumetric Dice metric) 
and 10 v.s. 5 (surface Dice metric) for group A, and 21 v.s. 14 (volumetric 
Dice metric) and 15 v.s. 14 (surface Dice metric) for group B. However, 
this trend reversed for group C with more numbers of OARs improved for 
experts. Thus, we explored the two-way post-DLCS edition performance 
improvement analysis illustrated in Fig. 4. 

3.2. Post-DLCS edition performance improvement analysis 

For those OARs with performance improvement significance in 
Fig. 4, all OARs gained performance improvement for all institute and 
experienced groups. However, among OARs with experience factor 
significance or interaction impact, beginners obtained more perfor-
mance improvement with 7 OARs in volumetric Dice and 5 OARs for 
surface Dice than experts with only 4 OARs for both volumetric Dice and 
surface Dice), indicating that beginners benefit more from the post-DLCS 

edition. Among OARs with institute factor significance, group C benefits 
most in post-DLCS performance improvement with the highest number 
of improved OARs (8 for the volumetric Dice and 10 for the surface 
Dice), followed by group B (4 for both volumetric Dice and surface Dice). 

Typical two-dimensional slices and three-dimensional visualization 
for contouring and edition are shown in Fig. 5, demonstrated on MIM 
Maestro (Version 7.1, MIM Software Inc., Cleveland, OH). For ultimately 
the same contours, MIM only showed one color to represent the contour. 

3.3. Working experience and institute contouring style analysis based on 
manual contouring and post-DLCS edition 

Two-way variance analysis of performance metrics for working 
experience and institute contouring styles is shown in Fig. 6. For manual 
contouring, there were fourteen OARs suffering from inter-institute 
inconsistency, seven OARs for experience inconsistency, and ten OARs 
influenced by their interaction effect, qualified by both volumetric Dice 
and surface Dice. But the number was reduced to one (the right temporal 
lobe) for the institute contouring style factor and zeros for the working 
experience factor by post-DLCS edition, indicating that inter-institute 
and inter-experience consistency could be improved by DLCS. The 
consistency improvement also can be seen in Fig. 5 (f) and (l). The three- 
dimensional visualization showed clear consistency improvement with 

V VDice
V V

S B S B
surface Dice

S S

post DLCS

post DLCS

DLCSV V
VOSR

V

DLCSpost DLCS

post DLCS

S B
SOSR

S

Fig. 2. The illustration of the volumetric Dice, surface Dice, volume-based oncologist satisfaction rate, and surface-based oncologist satisfaction rate. V1 and V2 are 
the volumes of two targets, respectively. V1 ∪ V2 is the union of the volumes of targets, and V1 ∩ V2 is the intersection volume of targets. S1 and S 2 are the surfaces of 
the two targets, respectively. B1(τ) and B2(τ) are borders extended by S1 and S 2 with tolerance τ, respectively. S1 ∩ B2(τ) and S2 ∩ B1(τ) are intersection surfaces 
represented by the borders’ solid lines. The operator |.| in the definition equation is the pixel summation of the corresponding surface. VDLCS and Vpost-DLCS are the 
volumes of DLCS contouring and post-DLCS edition by oncologists, respectively. VDLCS ∩ Vpost-DLCS is the intersection volume. Spost-DLCS is the surface of the post-DLCS 
edition by oncologists. BDLCS(τ) is a border extended by the surface of VDLCS with tolerance τ. Spost-DLCS ∩ BDLCS(τ) are intersection surfaces represented by the borders’ 
solid lines. 
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less rendered colors. More analysis details can be found in the supple-
mental file table 1–28. For all those OARs except larynx with experience 
factor significance, the expert manual contouring and post-DLCS edition 
performed better than beginners both by volumetric Dice and surface 
Dice, indicating that working experience had a significant effect on 
clinical performance. For 4 OARs with institute contouring style sig-
nificance in the post-DLCS edition, oncologists from group C performed 
slightly better than other institute groups. 

3.4. Volume-based and surface-based oncologist satisfaction analysis 

Volume-based and surface-based oncologist satisfaction rates for 
different groups were listed in Table 29 in the supplemental file. Most 
OARs got a satisfaction rate above 0.9, and some OARs got a maximum 
satisfaction rate of 1 with a deviation of 0, indicating that there was no 
manual edition for the OARs. The acceptability varied among institute 
groups. Pituitary gained the lowest VOSR, 0.82 from oncologists of 
institute A but got 0.97 and 0.96 from oncologists of institutes B and C, 
respectively. The same was found for optical nerves, with the lowest 
VOSR from institute B but 0.9 above the satisfaction rate from other 
oncologist groups. For experienced groups, the beginners had better 
acceptance of DLCS with a significantly higher satisfaction rate than the 
experts. A similar situation happened for SOSR. The correlation analysis 
between oncologist satisfaction rate and oncologist performance is listed 
in Table 3. All the prominence detection was under 0.05. There was a 
remarkable positive linear relationship between VOSR and post-DLCS 
edition volumetric Dice with coefficient of 0.78, and between VOSR 
and volumetric Dice improvement with coefficient of 0.46. This proves 
that oncologists’ higher DLCS acceptability produced better contouring 
performance in clinical practice. Supplemental file Fig. 2 shows the 

scatter plot of the data for each group. The linear fitting line gradients of 
the beginners were higher than that of experts except for VOSR versus 
volumetric Dice improvement for group B. This also indicated that the 
beginners are more affected by DLCS than the experts. This was a 
consistent founding derived from Table 29 in the supplemental file. 

3.5. Time consuming analysis 

While the post-DLCS edition helps shorten contouring time, we 
focused institute contouring style and working experience impact dif-
ference. Thus, a two-way variance analysis for saving time between 
institute groups and working experienced groups was observed, and the 
result is listed in Table 4. More details of actual manual contouring time 
and post-DLCS edition time were listed in Table 30 and Table 31 in the 
supplemental file. Institute differences and the interaction impacted the 
saving time. However, working experience had no significant impact. It 
revealed that the DLCS contributes to time reduction with no difference 
in working experience. However, time reduction varied among institute 
groups, showing that institute contouring styles greatly influenced 
clinical applications and affected the edition process. 

Discussion 

In this study, we comprehensively explored the clinical impact of a 
deep-learning contouring system established in one institute on oncol-
ogists from three institutions with various working experience and 
contouring styles in nasopharyngeal carcinoma organs at risk contour-
ing practice. Individual performance, group performance, experience- 
based intra-group consistency, inter-institute, and inter-experience 
consistency were improved, but the development varied for different 

Fig. 3. Individual performance and experience-based intra-institute consistency for manual contouring and post-DLCS edition based on OARGT. Blue, green, and 
purple markers ※ (for manual contouring) and * (for p-DLCS edition) beside each OAR label indicate statistical significance between the beginner and the expert for 
groups A, B, and C, respectively. OA10, OB10, and OC10 represent three experts from three institutes, respectively. OA1, OB1, and OC1 represent three beginners from 
three institutes, respectively. OA, OB, and OC represent groups of oncologists from three institutes, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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institute groups. The DLCS established in one institute was also effective 
for oncologists from other institutes, with slightly better post-DLCS 
performance and greater improvement. All the analyses supported that 
beginners had better acceptance of DLCS and gained more performance 
improvement than experts. 

We gave solid proof of DLCS impact on oncologists with different 
experiences and contouring styles from various institutes. However, the 

Table 2 
The average improvement of post-DLCS edition performance for each 
oncologist.   

Volumetric Dice development gap/ Surface Dice development 
gap (τ = 1 mm)  

O A10 O A1 O B10 O B1 O C10 O C1 

Lens_L 0.07/ 
0.08 

0.07/ 
0.04 

0.01/- 
0.03 

0.08/ 
0.10 

0.07/ 
0.06 

0.07/ 
0.11 

Lens_R 0.01/ 
0.04 

0.05/ 
0.05 

0.01/ 
0.00 

0.06/ 
0.07 

0.07/ 
0.09 

0.06/ 
0.08 

Eye_L 0.03/ 
0.13 

0.06/ 
0.24 

0.03/ 
0.11 

0.05/ 
0.18 

0.04/ 
0.15 

0.03/ 
0.11 

Eye_R 0.03/ 
0.12 

0.06/ 
0.25 

0.02/ 
0.09 

0.05/ 
0.19 

0.04/ 
0.18 

0.04/ 
0.13 

Optic_Nerve_R 0.00/- 
0.01 

0.18/ 
0.20 

0.07/ 
0.03 

0.12/ 
0.12 

0.07/ 
0.11 

0.05/- 
0.01 

Optic_Nerve_L − 0.04/- 
0.05 

0.16/ 
0.17 

0.02/- 
0.04 

0.08/ 
0.05 

0.09/ 
0.09 

0.03/ 
0.02 

Optic_Chiasm 0.00/- 
0.01 

0.11/ 
0.04 

0.01/- 
0.03 

0.28/ 
0.25 

0.29/ 
0.24 

0.19/ 
0.15 

Pituitarium − 0.01/- 
0.08 

0.03/ 
0.06 

0.00/ 
0.02 

0.08/ 
0.00 

0.06/ 
0.15 

0.07/ 
0.18 

Hippocampus_R 0.00/ 
0.01 

0.20/ 
0.16 

0.35/ 
0.26 

0.40/ 
0.31 

0.30/ 
0.25 

0.33/ 
0.24 

Hippocampus_L − 0.04/ 
0.00 

0.11/ 
0.07 

0.32/ 
0.22 

0.38/ 
0.28 

0.37/ 
0.23 

0.26/ 
0.16 

Temporal_Lobe_L 0.03/ 
0.12 

0.05/ 
0.14 

0.07/ 
0.10 

0.21/ 
0.31 

0.25/ 
0.39 

0.16/ 
0.18 

Temporal_Lobe_R 0.04/ 
0.17 

0.06/ 
0.17 

0.07/ 
0.09 

0.19/ 
0.28 

0.24/ 
0.44 

0.13/ 
0.21 

Brain_Stem 0.01/ 
0.01 

0.03/ 
0.08 

0.01/ 
0.01 

0.06/ 
0.18 

0.06/ 
0.17 

0.02/ 
0.06 

Spinal_Cord 0.05/ 
0.12 

0.17/ 
0.36 

0.13/ 
0.26 

0.16/ 
0.35 

0.13/ 
0.38 

0.07/ 
0.17 

Cochlea_R 0.01/ 
0.03 

0.02/ 
0.03 

0.04/ 
0.06 

0.08/ 
0.13 

0.06/ 
0.13 

0.05/ 
0.10 

Cochlea_L 0.03/ 
0.06 

0.03/ 
0.03 

0.04/ 
0.11 

0.01/ 
0.05 

0.05/ 
0.10 

0.02/ 
0.12 

Mandible_L 0.01/ 
0.00 

0.03/ 
0.06 

0.03/ 
0.08 

0.02/ 
0.03 

0.09/ 
0.25 

0.07/ 
0.18 

Mandible_R 0.00/- 
0.02 

0.03/ 
0.06 

0.01/- 
0.01 

0.01/- 
0.01 

0.06/ 
0.18 

0.06/ 
0.14 

TMJ_R 0.02/ 
0.03 

0.12/ 
0.20 

0.08/ 
0.21 

0.11/ 
0.24 

0.07/ 
0.17 

0.22/ 
0.39 

TMJ_L 0.00/- 
0.04 

0.11/ 
0.23 

0.04/ 
0.16 

0.10/ 
0.20 

0.10/ 
0.22 

0.13/ 
0.28 

Parotid_R 0.01/- 
0.02 

0.04/ 
0.07 

0.04/ 
0.12 

0.05/ 
0.13 

0.02/ 
0.05 

0.02/ 
0.06 

Parotid_L 0.04/ 
0.07 

0.05/ 
0.09 

0.07/ 
0.10 

0.05/ 
0.10 

0.05/ 
0.13 

0.07/ 
0.14 

Salivary_Gland_R 0.01/ 
0.01 

0.01/ 
0.03 

0.11/ 
0.24 

0.07/ 
0.13 

0.05/ 
0.14 

0.00/ 
0.01 

Salivary_Gland_L 0.01/ 
0.04 

0.05/ 
0.10 

0.15/ 
0.27 

0.09/ 
0.19 

0.08/ 
0.21 

0.02/ 
0.06 

Constrictor_Naris 0.03/ 
0.01 

0.16/ 
0.21 

0.07/ 
0.07 

0.10/ 
0.08 

0.25/ 
0.39 

0.14/ 
0.23 

Larynx 0.03/ 
0.11 

0.05/ 
0.20 

0.12/ 
0.44 

0.05/ 
0.16 

0.10/ 
0.32 

0.09/ 
0.31 

Thyroid_L 0.00/- 
0.01 

0.03/ 
0.05 

0.01/ 
0.05 

0.02/ 
0.04 

0.07/ 
0.23 

0.03/ 
0.09 

Thyroid_R 0.01/ 
0.00 

0.05/ 
0.09 

0.01/ 
0.01 

0.05/ 
0.10 

0.05/ 
0.14 

0.04/ 
0.09 

Note. TMJ, TemporoMandibular Joint. R, right. L, left. The bold block indicates 
there was a significant difference for the corresponding OAR and oncologist 
between manual contouring and post-DLCS edition metrics (p < 0.05). OA10, 
OB10, and OC10 represent three experts from 3 institutes, respectively. OA1, OB1, 
and OC1 represent three beginners from 3 institutes, respectively. 

Fig. 4. Two-way post-DLCS edition performance improvement analysis by two 
metrics. Red, blue and purple markers ※ behind each OAR label indicate sta-
tistical significance for the institute-contouring style factor, working experience 
factor, and their interaction, respectively. OA, OB, OC represent groups of on-
cologists from three institutes, respectively. O10 and O1 represent experts and 
beginners from three institutes, respectively. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of 
this article.). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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oncologist number was limited due to the intensive manual labor for the 
experiments, which might cause bias due to the oncologist’s personal 
working style. In the future, more oncologists may be invited to enhance 
the experiment reliability. Interestingly the DLCS failed to develop the 
consistency and edition performance for all OARs. Experience-based 
intra-group consistency improvement failed for the left optical nerve, 
the pituitary gland, temporal lobes, and the left mandible. The indi-
vidual performance improvement failed for the left lens, optical nerves, 
and the left cochlea, revealing that DLCS may be not practical for every 
oncologist’s contouring target. The possible cause may be that the DLCS 

was trained by CT slices, and OARDLCS was tested on CT slices. However, 
soft tissues, like the OARs mentioned above, had no clear boundaries on 
CT slices, which may cause low prediction accuracy and then lead to 
considerable modifications and low observer consistency. MRI can 
provide clear boundaries for soft tissues to solve the problem, and we are 
working on contouring prediction systems based on registered CT and 
MRI. We believe it will be a better automatic contouring framework. 

Fig. 5. Manual contouring and post-DLCS edition performance on CT of a random-selected case, created by MIM Maestro. (a)-(e), typical manual contours of each 
oncologist. (f) three-dimensional illustration of all manual contours. (g)-(k), corresponding edit contours of each oncologist. (l) three-dimensional illustration of all 
edit contours. OA10, OB10, OC10 represent three experts from 3 institutes, respectively. OA1, OB1, OC1 represent three beginners from 3 institutes, respectively. 
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Conclusions 

Individual performance, group performance, experience-based intra- 
group consistency, inter-institute and inter-experience consistency were 
improved by deep-learning organs at risk contouring system for naso-
pharyngeal carcinoma radiotherapy. Still, the improvement varied for 

different institute group. The DLCS established in one institute was also 
effective for oncologists from other institutes with slightly better post- 
DLCS performance and higher improvement. The beginners had better 
acceptance of DLCS and gained more performance improvement than 
experts, which could positively impact toxicities avoidance and 
complication reductions in clinical practice. 
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