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Virus factories, double membran
e vesicles and viroplasm
generated in animal cells
Christopher L Netherton1 and Tom Wileman2
Many viruses reorganise cellular membrane compartments and

the cytoskeleton to generate subcellular microenvironments

called virus factories or ‘viroplasm’. These create a platform to

concentrate replicase proteins, virus genomes and host

proteins required for replication and also protect against

antiviral defences. There is growing interest in understanding

how viruses induce such large changes in cellular organisation,

and recent studies are beginning to reveal the relationship

between virus factories and viroplasm and the cellular

structures that house them. In this review, we discuss how

three supergroups of (+)RNA viruses generate replication sites

from membrane-bound organelles and highlight research on

perinuclear factories induced by the nucleocytoplasmic large

DNA viruses.
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Introduction
Many viruses replicate within subcellular microenviron-

ments or ‘mini-organelles’ called virus factories or

‘viroplasm’. Formation of these structures involves re-

arrangement of host cell membranes and cytoskeleton

and induces a ‘cytopathic effect’ indicative of virus in-

fection. It is generally believed that factories and viro-

plasm create a platform to concentrate replicase proteins,

virus genomes and host proteins required for replication,

and at the same time physically separate replication sites

from a myriad of cellular antiviral defences. The subver-

sion of membrane trafficking pathways during the for-

mation of replication sites may add further benefit by

slowing the transport of immunomodulatory proteins to

the surface of infected cells to protect against immune

responses, while disruption of the cytoskeleton may

enhance release of viruses from cells. There is growing
www.sciencedirect.com
interest in understanding how viruses induce such large

changes in cellular organisation, and recent advances in

electron microscopy coupled with tomography and live

cell imaging are beginning to reveal the relationship

between virus factories and viroplasm and the cellular

structures that house them. In this review, we discuss how

three supergroups of (+)strand RNA viruses generate

replication sites from membrane-bound organelles and

highlight research on perinuclear factories induced by the

nucleocytoplasmic large DNA viruses (NCLDV).

(+)RNA viruses form factories from
membranes derived from the secretory
pathway
The RNA-dependent RNA polymerases (RdRp) of the

(+)strand RNA viruses are targeted to the cytoplasmic

face of membrane-bound organelles and subsequent

assembly of the replicase complex induces membrane

curvature and the formation of densely packed membrane

vesicles (reviewed in [1,2]) (Figure 1). The alphaviruses

generate membrane invaginations called spherules [3],

while the flaviviruses and coronaviruses generate net-

works of double membrane vesicles (DMVs) connected

to a complex of convoluted membranes (CM) derived

from the endoplasmic reticulum (ER). The picorna-

viruses also generate DMVs and a heterogeneous series

of membrane vesicles and membrane rosettes [4,5]. The

formation of spherules, and possibly DMVs, parallels

mechanisms of capsid assembly where ordered assembly

of replicase proteins induces membrane curvature and

invaginations of uniform diameter [2]. The more complex

membrane rearrangements involving ER networks and

CM may involve additional recruitment of host proteins

that modulate SNAP (Soluble NSF [N-ethylmaleimide

sensitive factor] Attachment Protein) Receptor (SNARE)

proteins and the Rab and Arf GTPases that control the

secretory pathway (reviewed in [6]).

Spherules produced by alphaviruses and
nodaviruses
RdRp supergroup 3 viruses such as the animal alpha-

viruses, Semliki Forest virus (SFV) and Sindbis virus

produce 50 nm diameter invaginations called spherules

that are aligned along the inside face of the limiting

membrane of endosomes and lysosomes [7]. Flock house

virus (FHV) is a member of the Nodaviridae family (RdRp

supergroup 1), which generates spherules in the outer

membrane of mitochondria [8]. Each spherule contains

approximately 100 copies of the replicase protein packed

along the inner membrane surface [9��]. Tomographic
Current Opinion in Virology 2011, 1:381–387
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Figure 1
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Models for formation of sperules and double membrane vesicles during replication of (+)strand RNA viruses. Panel 1: Spherule produced by alphaviruses.

Replicase proteins (red spheres) are recruited to the cytoplasmic face of membrane-bound organelles. Assembly of replicase proteins induces membrane

curvature and invagination forming a spherule. The spherule remains connected to the limiting membrane of the organelle and a pore allows new genomes

to enter the cytosol (adapted from [2]). Panel 2: Virus-induced vesicles and double membrane vesicles generated by DENV flavivirus. Replicase proteins (red

spheres) are recruited to the cytoplasmic face of membrane-bound organelles. Assembly of replicase proteins induces membrane curvature and

invagination into the ER forming a large spherule. The invagination remains connected to the limiting membrane of the organelle and a pore allows new

genomes to enter the cytosol. Close apposition of ER membranes leads to the formation of DMVs connected to the ER by convoluted membranes (CM)

(adapted from [10��]). This may close the pore leading to the cytosol. Panel 3: Virus-induced vesicles and double membrane vesicles generated by SARS-

CoV coronavirus. Replicase proteins (red spheres) are recruited to the cytoplasmic face of membrane-bound organelles. Assembly of replicase proteins

induces membrane curvature and invagination into the ER forming a large spherule. It has been difficult to find evidence for a pore connecting invaginations

to cytosol. Close apposition of ER membranes leads to the formation of DMVs connected to the ER by CM. These may exclude replicase proteins and

become sites for storage of viral RNA. In some cases the close apposition of ER membranes is lost and single membraned vesicles arranged in vesicle

packets (VP) appear within membrane networks connected to the ER (adapted from [11��]).
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reconstructions show that spherule membranes are con-

tinuous with the outer mitochondrial membrane and that

a membrane neck connecting the lumen of the spherule

to the cytosol surrounds a channel wide enough to allow

passage of (+)RNA into the cytosol [9��]. Rubella virus is

the only member of the Rubivirus genus of the Togavir-
idae, which are distantly related to the alphaviruses.

Assembly of the rubella RdRp on the cytoplasmic face

of endosomes and lysosomes generates spherules contain-

ing replicase proteins and double-stranded RNA. In some

cases, the spherules grow into large vacuoles and rigid

membrane rods and sheets possibly coated with RdRp.

Freeze fracture studies and tomographic reconstitution

have identified inter-connections between the vacuoles

[7] and protein bridges connecting vacuoles to ER.

Double membrane vesicles, convoluted
membranes and membrane webs
Flaviviruses

The flavivirus genus are part of RdRp supergroup 2.

Yellow fever virus, West Nile virus and dengue virus

(DENV) generate 80–100 nm diameter invaginations into

the ER. Tomographic reconstructions of membranes

induced by DENV show a continuous network of ER

membrane connected to spherical vesicles and CM [10��].
Virus-induced vesicles contain replicase proteins and

dsRNA and are found within the lumen of the ER. Most

have double membranes suggesting that they are formed

from invaginations into ER cisternae [10��]. Each

spherical vesicle is connected to the ER membrane by

a neck with a pore opening to the cytosol that could allow

transit of viral RNA. In some images, the pores lie

adjacent to sites of virus assembly making it possible

that viral RNA passes directly from the spherical vesicles

to budding viruses [10��].

Arteriviruses and coronaviruses

Arterivirus and coronaviruses also generate densely

packed membrane vesicles. Three-dimensional recon-

structions of vesicles induced by severe acute respiratory

syndrome coronavirus (SARS-CoV) show DMVs between

150 and 300 nm in size bounded by two tightly apposed

membranes connected to ER [11��]. SARS-CoV also

induces CM containing small tubular and reticular mem-

branes connected to the ER. Later during infection cells

contain ‘vesicular packets’ where single membraned

vesicles are surrounded by a common outer ER mem-

brane [11��]. The interior of the DMVs contains dsRNA

but surprisingly, unlike DMVs generated by flaviviruses,

the replicase proteins are absent from the DMVs but

locate to the CM that lie between DMVs. This suggests

that virus replication occurs in the CM rather than DMVs.

Neck-like structures extending from DMVs to the outer

ER membrane are visible, but evidence for a pore con-

nected to the cytosol is lacking. Enveloped SARS-CoV

can be detected in the vesicular packets. This suggests

that replication may take place on CM and that genomes
www.sciencedirect.com
are transferred to vesicular packets for envelopment and

budding, while excess viral RNA may be stored in DMVs.

Picornaviruses

Picornaviruses generate densely packed DMVs between

200 and 400 nm in diameter, a series of single membraned

vesicles resulting from fragmentation of the Golgi, and

autophagosomes possibly generated as a bystander

response to infection [11��,12–16]. The nature and relative

numbers of vesicles vary greatly depending on the picor-

navirus family and it is not clear which population of

vesicles house the replication complex. The DMVs gener-

ated during picornavirus replication lack an obvious open-

ing to the cytosol making it possible that, as suggested for

coronaviruses, they are a by-product of replicase assembly

and are used as a storage site for viral RNA.

Mechanisms of membrane rearrangement
Lipid biosynthesis plays an important role in both alpha-

virus replication and nodavirus replication as cerulenin

treatment inhibits alphavirus and nodavirus replication

[17,18] and both FHV and SFV appear to upregulate

phosphatidylcholine synthesis [18]. Similarly, hepatitis C

virus (HCV) replication requires fatty acid synthesis and

geranylgeranylation [19] and cerulenin also inhibits polio-

virus (PV) viral RNA synthesis [20] and coxsackievirus B3

replication [21]. This suggests that lipid synthesis is

required for efficient replication of many different

(+)strand RNA viruses.

Viral proteins that generate DMVs are beginning to be

identified. When expressed separately the picornavirus

2BC, 2C and 3A proteins generate ER vesicles and tubules

but these differ from the vesicles produced during in-

fection. For PV, coexpression of 2BC and 3A can generate

DMVs similar to those seen in infected cells [16]. The

arterivirus nsp3 and the coronavirus equivalent nsp4

proteins are multispanning ER membrane proteins. Coex-

pression of equine arterivirus nsp2 and 3 [22] can generate

DMVs from the ER, and protein interactions involving

cysteine residues in the first loop domain are required for

generating correct curvature [23]. DMV formation may also

require host proteins that regulate the formation of vesicles

within the ER and Golgi. Inhibition of Sar1 and Arf1

GTPases inhibits RNA replication, and inhibition of the

Arf GTP exchange factor, GBF1, by brefeldin A reduces

the number of DMVs in infected cells [24�]. The down-

stream effector of Arf1 required by coronaviruses remains

unknown but may be the phosphatidylinositol-4-kinase-

IIIb (PI4KIIIb) shown to play a role in picornavirus and

HCV replication (see below).

For enteroviruses such as PV and coxsackieviruses, the

nonstructural protein 3A may play a crucial role in the

recruitment of the RdRp, 3Dpol, to the cytoplasmic face of

membrane-bound organelles by increasing the recruit-

ment of PI4KIIIb [25��]. The mechanism hinges on the
Current Opinion in Virology 2011, 1:381–387
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ability of the enterovirus 3A protein to modulate the

activity of the Arf1 GTPase and its guanine nucleotide

exchange factor GBF1. Arf1 and GBF1 play a central role

in regulating membrane traffic between the ER and

Golgi. Activation of Arf1 by GBF1 catalyses recruitment

of COP1 proteins to the Golgi to facilitate formation of

the COP1-coated vesicles that carry proteins from the

Golgi to the ER. Binding of enterovirus 3A protein to

GBF1 activates Arf1 and increases recruitment of an

alternative Arf1 effector protein, PI4KIIIb, to membranes

[24�]. Since 3Dpol binds to phosphatidylinositol-4-phos-

phate (PI4-P), the localised production of PI4-P increases

recruitment of the 3Dpol at the expense of COP1. This

results in disassembly of the Golgi providing membrane

vesicles enriched in PI4-P for replication. This role for 3A

may not hold for other picornaviruses where replication is

not dependent on an active GBF1, and for picornaviruses

that express 3A proteins unable to disrupt ER to Golgi

transport [26–29].

HCV also promotes recruitment of PI4K to replication sites

[25��,30��]. HCV generates a membranous web with many

similarities to the network of spherical vesicles and CM

produced by DENV. PI4-P lipids are colocalised with HCV

replicase protein NS5A, and replication is reduced follow-

ing PI4KIIIb knockdown or overexpression of the Sac1

phosphatase that removes phosphate from PI4-P. The

hepatitis NS5A protein also binds PI4KIIIa and stimulates

enzyme activity and knockdown of PI4KIIIa prevents

formation of the membranous web associated with virus

replication [30��,31�]. The NS5A protein is anchored to the

cytoplasmic face of the membranous web and recruits

NS5B and a series of cellular proteins that regulate mem-

brane vesicle formation. These include vesicle-associated

membrane protein-associated proteins [32] which bind

SNAREs involved in ER to Golgi transport, and a Rab1-

GAP protein, TBC1D20. NS4B can recruit Rab5 and Rab5

effectors EEA1, rabaptin 5 and Rab4 [31�] suggesting the

web may fuse with endosomes [33].

Role of autophagy

Double-membraned vesicles are usually rare in cells, but

DMVs are induced during autophagy. This makes it

possible that autophagosomes may provide a source for

DMVs associated with virus replication. A role for autop-

hagosomes in supporting replication of the coronavirus

mouse hepatitis virus (MHV) was first provided by studies

where mouse embryonic stem cells lacking crucial autop-

hagy protein Atg5 showed a 1000-fold reduction in MHV

replication and reduced numbers of DMVs [34]. Less

clear-cut results come from studies of primary fibroblasts

or macrophages where loss of Atg5 has little impact on

virus replication [35]. Vesicles labelled with autophagy

marker LC3 are, however, produced during coronavirus

infection suggesting that the virus activates autophagy.

Autophagy may be activated by the nsp6 proteins of

cornaviruses, or in the case of the arteriviruses, the
Current Opinion in Virology 2011, 1:381–387
equivalent nsp5–7 protein. The nsp6 (nsp5–7) proteins

locate to the ER where they generate small vesicles

enriched in phosphatidylinositol-3-phosphate and early

autophagy marker Atg5 [36��]. These vesicles closely

resemble cellular organelles called omegasomes that

are formed from the ER during the initial stages of

autophagy [37], and mature into autophagosomes labelled

with autophagy marker Atg8/LC3. Autophagy is activated

during cornavirus infection but this does not mean that all

the DMVs generated in the cytoplasm are autophago-

somes. Most of the DMVs are smaller than autophago-

somes and may be formed from invaginations into the ER

(Figure 1). Vesicles formed from the ER during corona-

virus infection can also recruit a non-lipidated autophagy

marker LC3 (LC3I) by a pathway, that is, paradoxically,

independent of autophagy, and linked to the export of ER

chaperones from the ER to endosomes [38��]. Autopha-

gosomes may not therefore play a direct role in the

formation of virus-induced DMVs, but may represent a

defence against infection.

Picornaviruses activate autophagy in cell culture models

[39] and in some cases inhibition of autophagy reduces

replication while activation increases virus yields. The

autophagosome marker LC3 colocalises with PV replicase

proteins suggesting replication on autophagosomes.

Translocation of LC3 to vesicles can be induced by

expression of PV 2BC alone, but formation of DMVs

resembling autophagosomes requires coexpression of

2BC with 3A [16,39]. As with the coronaviruses, the

picornavirus DMVs are approximately one third the

diameter of cellular autophagosomes making it difficult

to determine if assembly of the replicase complex results

in the formation of DMVs directly, or if the DMVs

represent modified autophagosomes.

Aggresomes and pericentriolar factories
formed by nucleocytoplasmic large DNA
viruses
Virus assembly and replication can also occur in virus

factories close to the microtubule organising centre

(MTOC) [40]. These inclusions lack cellular membranes

and resemble inclusions called aggresomes that form at

the MTOC in response to protein aggregation. Aggre-

some inclusions such as Lewy and Mallory bodies are a

pathological hallmark of protein misfolding diseases, and

protect cells from the damage associated with protein

aggregation. Aggresomes and factories share many fea-

tures in common including recruitment of mitochondria,

cellular chaperones and confinement within cages of

rearranged vimentin filaments (reviewed in [40,42,43]).

Many viruses are delivered to the MTOC after entering

cells, and in common with protein aggregates, this

involves recognition by the microtubule motor protein,

dynein. It is possible that viruses may appear foreign or

misfolded to cells and stimulate an aggresome response.

For the NCLDV this may be beneficial and provide a site
www.sciencedirect.com



Virus factories, double membrane vesicles, viroplasm Netherton and Wileman 385
for replication, for other viruses it may lead to confine-

ment at the MTOC and degradation. Delivery of incom-

ing African swine fever virus (ASFV) to the MTOC is

important for the initiation of replication [41] and replica-

tion of both the ASFV and the iridovirus frog virus 3

appears to require rearrangement of vimentin [44,45].

Vimentin may provide a scaffold to prevent diffusion

of viral components into the cytoplasm. DNA and

RNA are spatially separated within vaccinia virus (VACV)

and ASFV factories [46�,47] and individual factories

appear to be distinct entities within the cell. Although

virus factories recruit many host-cell proteins to facilitate

their replication, factories also represent effector sites for

antiviral activity as VACV and ASFV replication sites are

targeted by stress granule components and Mx proteins

respectively [48,49].

Conclusions
A number of clear similarities between the membrane

rearrangements generated by the positive strand RNA

viruses are beginning to emerge [1,2] and these are shared

between animal and plant viruses. Spherules and DMVs

differ morphologically but may be formed by similar

mechanisms involving ordered assembly of replicase
Figure 2
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proteins on membrane-bound organelles leading to mem-

brane invagination (Figure 1). DMVs may be modified

spherules where close apposition of ER-derived mem-

branes follows initial invagination into the ER lumen. For

cornaviruses, and possibly picornaviruses, this may result

in loss of the pore connecting the spherule to the cytosol

and conversion of the spherule into a site for storage of

viral RNA to suppress innate immune responses to

double-stranded RNA. The site of spherule formation

differs between viruses (Figure 2) and is determined by

membrane targeting sequences in the nonstructural

proteins that recruit the RdRp. This has been demon-

strated by the work of Miller et al. who could retarget

FHV replication complexes from the mitochondria to the

ER in yeast [50]. Recent work has shown that recruitment

of RdRp may also involve modification of membrane lipids

by Arf1-dependent recruitment of PI4KIIIb to membranes

to generate PI4-P. This mechanism is shared between the

enteroviruses of the picornavirus supergroup and the fla-

vivirus HCV [25��,31�]. The membrane vesicles generated

by picornaviruses are most heterogeneous and varied be-

tween subgroups and may be derived from membrane

compartments that fragment during infection, rather than

be formed for virus replication. It is uncertain which
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membranes house the virus replicase and replication may

occur on the cytoplasmic face of the ER rather than in

vesicles [5]. Parallels between plant and animal picorna-

viruses are therefore difficult to define. The large DNA

viruses of animals such as poxviruses and other members of

the NCLDV generate perinuclear inclusions called virus

factories that assemble at the MTOC and are maintained

by dynein microtubule motor proteins. Replication com-

plexes generated in plants often move through cells

onboard microtubule motor proteins (Figure 2), but peri-

nuclear inclusions are not found for plant viruses. As

pointed out in the accompanying review by Jeanmarie

Verchot, plants lack a MTOC to concentrate motor car-

goes, and replication sites are therefore dispersed through-

out the cell.
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