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Mitochondria are organelles responsible for bioenergetic metabolism, calcium

homeostasis, and signal transmission essential for neurons due to their high energy

consumption. Accumulating evidence has demonstrated that mitochondria play a

key role in axon degeneration and regeneration under physiological and pathological

conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration

and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics,

defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these

defective mitochondria by enhancing mitochondrial transport, clearance of reactive

oxidative species (ROS), and improving bioenergetic can greatly contribute to axon

regeneration. In this paper, we focus on the biological behavior of axonal mitochondria

in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative

diseases (Alzheimer’s disease, AD; Parkinson’s disease, PD; Amyotrophic lateral

sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also

compare the behavior of mitochondria in different diseases and outline novel therapeutic

strategies for addressing abnormal mitochondrial biological behavior to promote axonal

regeneration in neurological diseases and injuries.

Keywords: mitochondria, axon regeneration, aging, traumatic brain injury, spinal cord injury, Alzheimer’s disease,

Parkinson’s disease, Amyotrophic lateral sclerosis

INTRODUCTION

Mitochondria are dynamic organelles playing a pivotal role in energy generation, signaling, and
calcium homeostasis (Han et al., 2016). Axonal mitochondria exhibit a linearly interspersed
distribution. Approximately 87% of mitochondria are stationary, and the number of motile
mitochondria decreases from the proximal to distal axon (Cheng and Sheng, 2020). Mitochondria
are transported to specific sites in axons where high energy is in demand, such as in growth cones
and axonal branches (Morris and Hollenbeck, 1993; Tao et al., 2014). These distribution events are
stabilized when presynaptic structures and mature neurons are formed. Moreover, mitochondria
will rapidly redistribute in response to physiological or pathological stress in order to maintain
energy homeostasis. The vigorous response of axonalmitochondria redistribution is predominantly
conducted by the cooperation of microtubule-based transport and anchoring substrates, including
anchors, adaptors, and motors (Sheng, 2014, 2017; Misgeld and Schwarz, 2017; Guedes-Dias and
Holzbaur, 2019). Impairment of these substrates and process will result in the inhibition of axonal
mitochondrial transport and ultimately induce local energy depletion and axon degeneration
(Sheng and Cai, 2012).
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Axon degeneration has been observed during normal
neuronal aging, injury (e.g., traumatic brain injury, TBI;
spinal cord injury, SCI; Maxwell, 2015; Wang et al., 2019b)
and neurodegenerative diseases (e.g., Alzheimer’s disease, AD;
Parkinson’s disease, PD; Amyotrophic lateral sclerosis, ALS;
Guo et al., 2020). Axon degeneration usually occurs before
the neuronal soma’s death at the early stage of the diseases.
In most conditions above, there are two different processes
of axon degeneration. The distal axons won’t connect to
soma undergoing Wallerian degeneration while the proximal
axons will die back toward soma (Adalbert and Coleman,
2013; Gerdts et al., 2016). Axon degeneration has an intimate
association with mitochondrial dysfunction, including energy
deficits, oxidative stress, disequilibrium of mitochondrial fission
and fusion, impaired axonal mitochondrial transport, and
aberrant mitophagy (Court and Coleman, 2012; Sheng and Cai,
2012; Geden and Deshmukh, 2016). Therefore, analysis of the
mitochondrial behavior in axons may be considered a novel
target for therapeutic strategies.

The intrinsic capacity and process of axon regeneration are
different between the peripheral and central nervous systems
(PNS and CNS, respectively), and the capacity of the former
is superior to that of the latter (Fawcett and Verhaagen, 2018;
Mahar and Cavalli, 2018). Axon regeneration in PNS initiates
a vigorous regenerative response via the permissive Schwann
cell environment and form a new growth cone. This process
is supported by a regenerative program through expression of
the Regeneration-associated gene (Attwell et al., 2018; Mahar
and Cavalli, 2018). Nevertheless, axotomy at the central branch
has a minimal regenerative response and the Regeneration-
associated gene response also seems to make no difference on
axon regeneration (Chandran et al., 2016; Cartoni et al., 2017).
While in the CNS, the ability of axon regeneration is dependent
on the maturity of the neurons. Moreover, the environment of
the injured neuron is full of molecules and structures which may
suppress axon regeneration in CNS (Fawcett and Verhaagen,
2018). CNS axons cut from embryos exhibits a potential to
grow for long distance after transplanted into an adult CNS via
expressing a series of molecules inducing axon growth (Reier
et al., 1986; Lu et al., 2012). Nevertheless, axons from the
adult CNS respond to axotomy with a minimal regenerative
response and a poor change of gene expression despite being
in a permissive environment. These diverse response to injury
in PNS and CNS (mature and immature) form the concept
of intrinsic regenerative capacity of axon regeneration (Fawcett
and Verhaagen, 2018). Because this process consumes a large
amount of energy andmolecules or substrates during restoration,
alteration of mitochondria behavior may represent one of the
prominent intrinsic regenerative capacities in axon regeneration;
however, themechanisms underlying this process have just begun
to be elucidated.

In this review, we summarize the normal mechanism of
mitochondrial quality control in axons. We also describe the
behavior of mitochondria in axon degeneration under different
conditions (i.e., aging, nerve trauma, and neurodegenerative
diseases) and their role in axon regeneration and the treatment
methods derived from these effects.

NORMAL MITOCHONDRIAL BEHAVIOR IN
AXONS

Mitochondrial transport is indispensable for mitochondrial
quality control. Anterograde transport contributes to the energy
supply and neuronal survival, and retrograde transport helps
with damaged mitochondrial clearance (Chen et al., 2016). Only
a small proportion of axonal mitochondria (30–40%) is motile in
vivo and in vitro; most mitochondria are stalled and do not move
for long periods (Zheng et al., 2019). Mitochondrial transport
depends on interactions between microtubules, microtubule
motor proteins, adaptor complexes that bind the motor proteins
to mitochondria, and their anchors.

Mitochondria are transported along the microtubule filament
by the motor proteins kinesin and dynein to the plus and minus
ends, respectively (Lin and Sheng, 2015). Kinesin-1 (KIF5) is
the major motor protein involved in anterograde transport, the
other member of kinesin family such as KIF1Ba and KLP are
also participants (Zheng et al., 2019). Mitochondria interact with
motor proteins via the adaptor complex formed by Miro, a
GTPase located in the outer mitochondrial membrane (OMM),
and Milton/TRAK (TRAK 1 and 2 in mammals). TRAK1
binds both the heavy chain of KIF5 and dynein; however,
TRAK2 preferentially binds dynein (Smith and Gallo, 2018).
Compared to the preference for dynein in dendrites, axonal
mitochondria bind either kinesin or dynein via the Miro-
TRAK1 complex.

The axon-specific mitochondrial outer membrane protein
syntaphilin (SNPH) is a representative cytoskeletal tether (i.e.,
anchor), which opposes motility by increasing the force between
the mitochondria and microtubules and inhibiting ATPase
activity (Chen and Sheng, 2013). Microtubule-associated protein,
such as myosin V or myosin VI (Pathak et al., 2010), and
actin filament-based mechanisms may also regulate stalling
and transport in axons (Henderson et al., 2017). Cytosolic
calcium is another key regulator of mitochondrial transport.
There are two main mechanisms for calcium resulting in the
stalling of mitochondria (Zheng et al., 2019). For one thing,
SNPH can bind kinesin I and sequester motor protein in the
context of calcium signaling. For another, Miro has two EF
calcium binding domains and Miro will directly bind KIF5
when binding of calcium (Liu and Hajnóczky, 2009), which will
prevent motor activity. Therefore, increased intracellular calcium
levels are sufficient to inhibit this process (Woolums et al.,
2020).

A dynamic process in mitochondria (i.e., mitochondrial
fission and fusion) continuously occurs to maintain a steady
mitochondrial morphology and population (Yan et al., 2020b).
Mitochondrial fission helps a damaged mitochondrion segregate
from the healthy one while mitochondrial fusion facilitates the
interaction and fusion of two mitochondria, which repairs each
other, demonstrating that the equilibrium of fission and fusion
acts a pivotal part in axonal mitochondria (Yu et al., 2016; Pickles
et al., 2018). Mitochondrial fission is mediated by the GTPase
dynamin-related protein 1 (Drp1), which is recruited to the
OMM and forms a contractile ring around the mitochondrion,
dividing one mitochondrion into two separate mitochondria
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(Otera et al., 2013). GTPase dynamin-related protein 1 (Drp1)-
independent mitochondrial fission can also occur (Rival et al.,
2011; Stavru et al., 2013; Roy et al., 2016). Mitochondrial fusion
involves two separate processes, the fusion of the OMM, which
is regulated by mitofusins (Mfns), and the fusion of the inner
mitochondrial membrane that is mediated by optic atrophy 1.
The fusion of the OMM is regulated by mitofusins 1 and 2 (Mfn1
and Mfn2). Both mitochondrial fission and fusion take place
along the axon (Yan et al., 2020b).

Mitophagy plays a key role in relieving oxidative stress and
preventing axonal and cytosolic defects and subsequent cell
death (Wang et al., 2018). To maintain mitochondrial quality
control in axons and cells, mitophagy degrade and recycle
damaged mitochondria undergoing physiological or pathological
processes, such as mitochondria depolarization and oxidative
stress (Martinez-Vicente, 2017). The PINK1/Parkin pathway
is a canonical mechanism of mitophagy. In addition to the
PINK1/PARKIN pathway, other OMM proteins directly interact
with LC3 and promote mitophagy in mammals, including
FUNDC1, NIX/BNIP3L, and Bcl2-L-13 (Di Rita et al., 2018).

AGING

Mitochondrial Behavior in Axon
Degeneration in Aging
Aging is a normal physiological phenomenon, and glaucoma
and many neurodegenerative diseases (e.g., Alzheimer’s disease,
Parkinson’s disease) are related to aging. Mitochondrial behavior
plays a key role in axon degeneration. First, aging has
been shown to be associated with mitochondrial transport.
Glaucoma is a chronic and progressive neurodegenerative
disease. Degeneration of ganglion cells and their axons has
been shown to be related to aging (Liu et al., 2018).
In ganglion cell neurons, with age the cross-section axon
area enlarges characterized by axoplasm disorganization and
accumulation of hyperphosphorylated neurofilaments which is
indicative of axonopathy (Cooper et al., 2016). Further, there
are more mitochondria-free regions and decreased lengths of
mitochondrial transport in degenerative axons (Mao et al., 2016).
The changes in these mitochondria with age are related to
changes in the expression of Mfn2. Among the healthy mice
in the control group, the level of Mfn2 in retina was slightly
elevated in aged mice (Nivison et al., 2017). Considering the
function of Mfn2 in maintaining mitochondrial morphology and
participating in mitochondrial transport (Misko et al., 2010),
this increase indicates the demand of mitochondrial fusion
and transport. The increase was more pronounced in retina of
DBA mice (a murine glaucoma model), which explained the
mitochondria in glaucoma neurons were elongated or fused.
However, Mfn2 is either damaged or cannot be transported
to optic nerve, resulting in a decrease in the level of this
protein in optic nerve, indicating that Mfn2 protein is not
transported down axons to function in mitochondrial transport
and repair, which leads to disease progression. Moreover, given
that phosphorylated Mfn2 is a receptor for Parkin on depolarized
mitochondria, the amount of phosphorylated Mfn2 in young

mice are also higher than the aged control indicating that the
mitochondria transport is altered (Nivison et al., 2017).

Pathological morphology of mitochondria has been reported
in degenerative axons with age. The average diameter of axonal
mitochondria increases, with few or no cristae observed in the
aging axonal mitochondria (Cao et al., 2017). This phenomenon
is attributed to reduced optic atrophy 1 and Mfn2 expression
(Rebelo et al., 2018) and even the absence of expression at the
aging axon terminal. This morphological change is also relevant
to neuronal apoptosis, P53-dependent neuronal cell death is
associated with increased mitochondrial length mediated by
reduced Drp1 and Parkin expression during aging (Wang D. B.
et al., 2013).

Different phenomena are observed for mitophagy in axons
in vivo and in vitro. In vitro, Sung et al. (2016) demonstrated
that autophagosomes co-localized with mitochondria in axons
when neurons were treated with drugs to induce mitochondrial
damage. However, evidence from in vivo imaging suggests
that either PINK1/Parkin or Parkin-dependent or mitophagy is
indispensable for mitochondria turnover and axon integrity (Cao
et al., 2017). Further research is needed to determine whether
the mitochondria in axons need to undergo mitophagy or are
transported back to the soma.

Finally, all of the described changes in mitochondrial
behavior may affect bioenergetics by influencing oxidative
phosphorylation and producing excessive reactive oxidative
species (ROS). Themolecularmechanisms regulating this process
in aging include increases in the levels of proteins related to
mitochondria and oxidative phosphorylation, more specifically,
Complex I (Kline et al., 2019).

Mitochondrial Behavior in Axon
Regeneration in Aging
The relationship between aging and axon regeneration is complex
and affected by multiple factors. Both endogenous (Geoffroy
et al., 2017) and exogenous factors (Sutherland and Geoffroy,
2020) of neurons play an important role in the ability of axons
to regenerate after damage and this process is declining with
aging (Geoffroy et al., 2016). Although young neurons have a
strong ability for axon growth, mature neurons can usually not
regenerate after injury because mature CNS axons lose their
ability to regenerate due to most mitochondria being stationary,
which is associated with high SNPH expression (Lewis et al.,
2016). Therefore, without enough local mitochondria, sufficient
ATP cannot be provided, and the process of axon regeneration,
including re-sealing cell membranes, rearranging cytoskeletal
structures, and reforming active growth cones, will be hindered
(Bradke et al., 2012). However, mitochondrial transport can be
enhanced by stimulating the cAMP/Protein Kinase A (PKA)
pathway to upregulate kinesin-1 expression to counteract its
decrease during aging (Vagnoni and Bullock, 2018). Interestingly,
the effects of cAMP or PKA on increasing mitochondrial
transport were more pronounced in the aging group than in the
younger group.

The internal components of the mitochondria also affect
axonal regeneration by modifying the biological behavior of
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mitochondria and oxidizing the respiratory chain. In addition
to acting as a transcription factor for axon regeneration in
the nucleus, STAT3 can also reach the inner mitochondrial
membrane following the activation of mitogen-activated protein
kinase (MAPK), which improves axon regeneration by enhancing
cell bioenergetics in the spinal cord (Luo et al., 2016) in mature
mice with a reduced regenerative capacity. The mitochondrial
signature phospholipid cardiolipin present in the inner leaflet of
the inner mitochondrial membrane is essential for mitochondrial
dynamics, mitochondrial biogenesis, and energy metabolism in
the mitochondria (Mårtensson et al., 2017).

INJURY

Traumatic Brain Injury
Traumatic brain injury (TBI) leads to the dynamic deformation
of the parenchyma, resulting in shear and stretch injuries to
axons, commonly known as diffuse axonal injury. Diffuse
axonal injury is demonstrated to result from the mechanical
deformation of the axonal cell membranes via calpain-
mediated proteolysis of sidearms or phosphorylation, triggering
neurofilament compaction, calcium changes, microtubules
destabilization, and metabolic dysfunction (Barkhoudarian
et al., 2016). Subsequently, axoplasmic transport mechanisms
are defective, which leads to the accumulation of transport
products that cause axonal swelling, secondary disconnection,
and Wallerian degeneration (Frati et al., 2017).

Mitochondrial Behavior in Axon Degeneration

Following TBI
Transmembrane sodium channels are damaged in TBI, leading
to an abnormal influx of calcium into the axonal plasma
(Maxwell, 2015). Calcium is also released from mitochondria
and the axoplasmic reticulum (Springer et al., 2018), leading
to axonal mitochondria dysfunction. Under Transmission
electron microscopy, the axoplasm contains damaged or lucent
mitochondria and a disorganized cytoskeleton within injured
nerve fibers (Maxwell, 2015). The axonal swellings of TBI are
characterized by the aggregation of membranous organelles,
especially mitochondria, resulted from the injury and loss of
axonal microtubules, which interact with dynein and kinesin
(Maxwell, 2015). It is reported that the loss of axonal
microtubules in TBI results in the lack of neuronal mitochondria
delivery, failing to replace those damaged by the destroyed
calcium homeostasis and to provide vesicular profiles (Maxwell
et al., 1997; Tuck and Cavalli, 2010). Within an injured
mouse optic nerve fiber, which is far away from the secondary
axotomy site, accumulating evidence demonstrated the dieback
or withdrawal of the proximal and distal terminal swellings
(Staal et al., 2010; Wang et al., 2011). In the latter study,
the proximal swellings contained intact mitochondria while the
distal swellings exhibited defected mitochondria short of cristae,
which appeared consistent with an ongoing degenerative process
(Wang et al., 2011). In addition, the distal swelling exhibits
three types of mitochondria, including mitochondria aggregating
pyroantimonate crystals, those unremarkable or intact, and those

containing electron lucent spaces in the mitochondrial matrix
(Wang et al., 2011).

Damaged mitochondria fail to generate adequate ATP and
cannot support the essential physiological and biochemical
processes and disturb the transmembrane transporter function
(Maxwell, 2015). Furthermore, oxidative stress in TBI results
from the uncontrolled influx of Ca2+, leading to calcium
accumulation in the mitochondria. The subsequent activation of
caspases and calpains correlates with the initiation of apoptosis
(Frati et al., 2017). Calpain-mediated spectrin proteolysis
reaction product, which is reported to be correlated with
damaged mitochondria, spread widely in the axoplasm at foci
of neurofilament compaction (Büki et al., 1999), suggesting the
defection of neurofilaments (Dewar et al., 2003). Moreover,
the release of cytochrome c in the damaged axons triggers
retrograde signaling by “apoptosis-inducing factor,” resulting in
the programmed cell death and apoptosis of injured neurons
(Büki et al., 2000).

Mitochondrial Behavior in Axon Regeneration

Following TBI
Mitochondrial transport and bioenergetics are enhanced to
facilitate axon regeneration following TBI (Misgeld et al., 2007).
Within axon regeneration in TBI, it is beneficial to elevate
the density of mitochondria while decreasing the density is
disadvantageous. Mitochondria are transported into the injured
zone in order to elevate the average mitochondria density.
Regenerating axons have a higher density of mitochondria than
non-regenerating axons in Caenorhabditis elegans (Han et al.,
2016). Accumulating evidence in the SNPH knockout mice
demonstrates that mitochondrial transport is strengthened to
clear impaired mitochondria, replenish healthy mitochondria
in injured axons, and ultimately reverse the energy deficits
in axon regeneration (Zhou et al., 2016; Cheng and Sheng,
2020). In contrast, the Armadillo Repeat Containing X-Linked
1 protein, responsible for connecting the Miro adaptor protein
with the mitochondrial membrane, is overexpressed, leading
to the acceleration of optic nerve regeneration following TBI
(Cartoni et al., 2016). Moreover, the dual leucine zipper
kinase 1 microtubule-associated protein kinase pathway in C.
elegans can promote adequate mitochondrial transport into
the regeneration zone independent of Miro to increase the
mitochondria density in injured axons (Han et al., 2016).
Overall, axon regeneration following TBI can be achieved
by increasing the density of mitochondria by enhancing the
transport of healthy mitochondria, which provide sufficient
energy for axonal regrowth.

Spinal Cord Injury
The damage caused by SCI is mainly divided into two stages.
The initial trauma is mainly caused by a contusion or direct
compression. The secondary injury is caused by disruption of
blood vessels, microcirculation failure, ion homeostasis disorder,
excessive production of free radicals, and inflammation (Wang S.
et al., 2019).
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Mitochondrial Behavior in Axon Degeneration

Following SCI
After acute SCI and the accompanying depolarization of neurons,
mitochondrial permeability transition pores are opened by
calcium influx, which impairs ATP synthesis, destroys the
mitochondrial outer membrane, and releases ROS and pro-
apoptotic proteins into the cytoplasm (Pivovarova and Andrews,
2010). In an SCI rat model, swollen and disrupted mitochondria
with disorganized cristae can be observed in both pre-apoptotic
neurons and astrocytes (Xu et al., 2017).

Immunofluorescence staining of post-mortem tissue from
Thy1YFP+ transgenic mice showed that a significant increase
in TOMM20 signal reflected the density of mitochondria in
the axonal spheroids and endbulbs (Rajaee et al., 2020). The
accumulation of mitochondria and tubulin polyglutamylation
indicates the disruption of axonal transport, an important
characteristic of axonal degeneration. Moreover, the failure of
mitochondria to migrate to the remote ends of axons indicates
abnormal mitochondrial axonal localization that contributes to
axon retraction.

In the early stage of SCI, mitochondria fuse to restore
the respiratory chain and inhibit mitochondrial apoptosis. In
contrast, mitochondrial fission resulting from mitochondrial
dysfunction further inhibits microtubule stabilization and axonal
regeneration and is associated with apoptosis (Csordás et al.,
2018). The dysfunction of mitochondrial fission and fusion
caused by SCI is associated with the upregulation of Drp1, which
reduces mitochondrial membrane potential, releases cytochrome
C and caspase3, and induces neuronal apoptosis (Jia et al., 2016).

Mitochondrial Behavior in Axon Regeneration

Following SCI
Within a few days to a few weeks after a person suffers axon
damage, the damaged spinal cord begins to recover. To solve
the functional defect caused by the separation of the white
matter tracts between the rostral and caudal spinal cords, axonal
regeneration is required to reconnect the caudal/rostral neurons
and form new neural circuits to restore signal conduction
(O’Shea et al., 2017). However, observations in mice showed
that the reduced growth capacity of mature neurons and scar
tissue caused by reactive astrocytes form a physical barrier, and
the upregulation of axon growth-inhibitory factors inhibit axon
regeneration (Yiu and He, 2006). However, intravital imaging of
murine spinal cord showed that the number of axons increases
significantly from 7 to 14 days after injury compared to 3 days
post-injury, indicating that a certain number of injured axons
undergo endogenous repair (Rajaee et al., 2020), demonstrating
that while the regeneration of axons is limited after SCI injury, it
can still be improved.

Given the important role of axonal mitochondria in growth
cone migration, mitochondrial transport is required for axonal
regeneration after SCI. Spinal cord injury (SCI) itself does
not directly affect mitochondrial transport in axons; however,
enhancing the transport of mitochondria after SCI is helpful for
this process. In vitro data showed that fibroblast growth factor-
13 co-localizes with mitochondria, and its increased activity and
density in axons may, in part, explain why fibroblast growth

factor-13 promotes axon regeneration in SCI models (Li et al.,
2018).

Changing mitochondrial dynamics after SCI, specifically
by promoting mitochondrial fusion and inhibiting its fission,
positively affects axon regeneration. In an SCI model, Loureirin B
significantly increased both bcl-2 and Mfn1 and doubled the size
of the mitochondria, which promoted fusion and facilitated axon
regeneration (Wang et al., 2019a). Considering the adverse effects
of Drp1 upregulation after SCI injury, mitochondrial division
inhibitor-1, an inhibitor of Drp1, promotes animal recovery and
reduces apoptosis (Jia et al., 2016).

Peripheral Nerve Injury
Once the peripheral nerve is injured, the axon is divided into two
segments; the proximal axon segment and the distal segment.
The distal axon undergoes Wallerian degeneration, while the
proximal axon possibly regenerates via a growth cone, triggering
axon extension (Neukomm et al., 2017).

Mitochondrial Behavior During Axon Degeneration

Following Peripheral Nerve Injury
In the injured peripheral neuronal axon of C. elegans and
ric-7 (resistant to inhibitors of cholinesterase) mutants, the
density of healthy mitochondria is decreased while the density
of defected mitochondria is elevated, leading to energetic
failure and oxidative stress (Rawson et al., 2014). Furthermore,
mitochondrial transport is similarly inhibited in the Thy1-
mitoCFP transgenic mouse (Thy1-MitoCFP mice expressing
CFP fused to the human cytochrome c oxidase mitochondrial
targeting sequence were from Jackson Laboratories; Misgeld
et al., 2007).

In response to injury, multiple proteins are inhibited
or activated during distal axon degeneration. Together
with increased calcium influx, decreased nicotinamide
mononucleotide adenyltransferase (NMNAT) and NAD1
activates SARM1 (Sterile Alpha and TIR Motif Containing
1), which are key initiating factors in Wallerian degeneration
(Osterloh et al., 2012). Sterile Alpha and TIR Motif Containing
1 (SARM1) activation results in mitochondrial dysfunction,
calpain-dependent defects in the cytoskeleton, and subsequent
axon degeneration (Adalbert et al., 2012; Ma et al., 2013;
Yang et al., 2015). Wallerian degeneration slow fusion protein
(WldS), comprising full NMNAT1, has been shown to alleviate
degeneration in Zebrafish and Drosophila (Coleman et al., 1998;
Conforti et al., 2000). NMNAT1 has a pivotal role in maintaining
axon integrity (O’Donnell et al., 2013; Wang Y. et al., 2015),
the activity of which is greatly inhibited by defects in healthy
mitochondria, decreases in mitochondrial transport, and ROS
accumulation during axon degeneration (Yahata et al., 2009;
Avery et al., 2012; Fang et al., 2012; O’Donnell et al., 2013). The
dual leucine zipper kinase (DLK) is a mitogen activated protein
kinase (MAP3K), and contributes to axon degeneration by
reducing energy production. Dual leucine zipper kinase (DLK)
is an axonal integrity sensor and interacts with NMNAT and
activated SARM1 (Cavalli et al., 2005; Xiong et al., 2012; Yang
et al., 2015; Gerdts et al., 2016); subsequently, SARM1 interacts
with Axundead to consume NAD1 (Essuman et al., 2017;
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Neukomm et al., 2017). Decreased NAD1 production reduces
energy generation and ATP levels, causing defects in Na+/Ca2+

exchangers and Ca2+ channels, and the loss of mitochondrial
membrane potential (Gerdts et al., 2015; Loreto et al., 2015).
Thus collectively, these proteins damage axon integrity.

Mitochondrial Behavior During Axon Regeneration

Following Peripheral Nerve Injury
In contrast to the central nerve, after peripheral nerves are
injured, axons have a strong regenerative ability to restore
function. At the proximal segment of peripheral nerve injury,
Golgi-derived vesicles transport anterogradely to aggregate near
the axon end to repair the ruptured membrane, while increasing
intracellular Ca2+ levels activate kinases and phosphatases
assemble microtubules to support the formation of new growth
cones, and drive axon elongation (Girouard et al., 2018). This
process is relevant to Schwann cells (Jessen et al., 2015; Nocera
and Jacob, 2020) and intrinsic signaling events induced by injury,
such as growth-associated protein-43 (GAP-43) (Chung et al.,
2020).

Mitochondria are essential for axon regeneration. Increased
mitochondrial density in C. elegans effectively promotes axon
regeneration (Han et al., 2016). Reduced oxidative stress and
enhanced axon regeneration are observed in a sciatic nerve crush
injury model when mitochondria are injected into injured nerves
(Kuo et al., 2017). Thus, increasing mitochondrial density at
the site of injured axons can be achieved, mainly by increasing
mitochondrial transport in axons, and increasing mitochondrial
fission. Miro overexpression enhances mitochondrial transport
in proximal segments, whereas axon regeneration is significantly
inhibited in individuals where Miro is suppressed (Han et al.,
2016). In addition, by imaging axonal mitochondrial transport in
vivo, and when the intercostal nerve is damaged, mitochondrial
anterograde transport is increased (Misgeld et al., 2007), which
may be associated with tyrosinated tubulin, and upregulated
molecular motors (Yang et al., 2021). An in vivo sciatic
nerve compression study indicates that enhanced mitochondrial
transport, via SNPH knockout in mice, accelerates axon
regeneration in the peripheral nervous system (Zhou et al., 2016).
The early fission of mitochondria after axon damage is also
associated with axon regeneration. For example, in mice, sciatic
nerve transection generates significantly increasedmitochondrial
division in damaged axons (Kiryu-Seo et al., 2016). This is
further confirmed by the inhibition of axon regeneration in
individuals with mutations in the mitochondrial fusion gene,
OPA1 (Knowlton et al., 2017).

Mitochondrial regeneration after peripheral nerve injury
highlights the importance of axon transport, to not only
provide structural components of cells such as lipid vesicles
and microtubules, but to meet the high energy requirements of
regenerating axons (Prior et al., 2017; Mahar and Cavalli, 2018).
In an in vitro sciatic nerve injury study, Hwang et al. found
that after sciatic nerve injury, axon CDK5 levels increased, they
were translocated into the mitochondria and phosphorylated
mitochondrial STAT3, thereby regulating mitochondrial activity
(Hwang and Namgung, 2021). STAT3 phosphorylation affects
microtubule assembly and energy production in axons (Selvaraj

et al., 2012). When translocated to the mitochondria, STAT3
interacts with electron transport chain proteins, regulating ROS
production and the release of cytochrome C (Szczepanek et al.,
2011), and contributing to ATP energy supply to promote
axon regeneration.

Treatment
Mitochondria in the injured axon have pivotal roles in axon
degeneration and regeneration. Therefore, mitochondria may
be specific therapeutic targets for inhibiting axon degeneration
and enhancing axon regeneration. Oxidative stress caused by
dysfunctional mitochondria results in a variety of adverse effects.
Thus, a potential therapeutic strategy would be to decrease this
stress. In a TBI animal model, cyclosporin, an anti-oxidative
drug, can decrease cytochrome c release from mitochondria
and inhibit Ca2+ influx into mitochondria, ultimately alleviating
mitochondrial dysfunction and axon damage (Kelsen et al.,
2019). Additionally, ROS-mediated axonal degeneration in TBI
caused by the aberrant axonal calcium homeostasis is reported
to be alleviated via the application of calcium channel blocker
(McAllister, 2011; Namjoshi et al., 2014). Moreover, Metformin
can stabilize the microstructure in injured axons of SCI
by activating the PI3K/Akt signaling pathway. Furthermore,
activation of Akt/Nrf2 signaling could be a potential approach
for axon regeneration treatment by inhibiting excessive oxidative
stress and restoring mitochondrial function (Wang et al., 2020).

Enhancing mitochondrial transport and recruitment aids
axon regeneration in injured axons and facilitates the removal
of damaged mitochondria and replenishment of healthy ones
to provide adequate ATP (Kaasik, 2016; Sheng, 2017; Smith
and Gallo, 2018). Inhibiting the microtubule-severing protein
Fidgetin (Matamoros et al., 2019) or non-muscle myosin II (Hur
et al., 2011) promotes axon regeneration after SCI by facilitating
the reorganization of microtubule and actin cytoskeletal proteins.
Moreover, Loureirin B promotes mitochondrial fusion and
suppresses ER stress by activating the Akt/GSK-3β pathway,
facilitating axon regeneration (Wang et al., 2019a). In summary,
combined approaches targeting mitochondria may provide a
novel therapeutic strategy for alleviating axon degeneration and
enhancing axon regeneration in TBI and SCI.

NEURODEGENERATIVE DISEASE

Alzheimer’s Disease
Alzheimer’s disease is an age-related neurodegenerative disease
characterized by progressive cognitive impairment, mobility
disorder, and memory loss. Hallmarks of AD include aberrant
amyloid-β (Aβ) metabolism and neurofibrillary tangles of
hyperphosphorylated Tau protein, which are particularly
significant in axon degeneration (Wang et al., 2017). β-site
amyloid precursor protein (APP) cleaving enzyme 1 (BACE1)
is the major neuronal Aβ-secretase for Aβ generation. Axon
degeneration in AD involves a complicated mechanism,
including glucose metabolism defects, mitochondrial
dysfunction, aberrant calcium homeostasis, oxidative stress,
and imbalances in energy homeostasis (Cieri et al., 2018; Mata,
2018; Swerdlow, 2018; Albensi, 2019).
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Accumulating evidence has demonstrated that aggregation
of pathological Tau and Aβ impairs mitochondria transport
(anterograde and retrograde) in axons (Wang Z. X. et al., 2015;
Sadleir et al., 2016; Cai and Tammineni, 2017; Zhang et al., 2018).
One of the first researches in this area was carried out in primary
neurons from Tg2576 mice with mutant human APP protein
(Calkins et al., 2011). Compared to wild-type neurons, primary
neurons from Tg2576 mice exhibited inhibited anterograde
mitochondrial transport as well as promoted mitochondrial
fission and inhibited mitochondrial fusion (Calkins et al., 2011).
Mitochondria transport in axons requires a variety of substrates
and molecular support, whose dysfunction can lead to negative
impact onmitochondria transport. The defected transport results
in the reduction of mitochondria density at the distal axons
and the depletion of axonal NMAT protein 2 (NMAT2), which
is continually supplemented in axons via fast axonal transport
(Ljungberg et al., 2012; Ali et al., 2016). Following axotomy, the
transport of NMNAT2 toward axons is inhibited, meanwhile,
it has a rapid decline in axons before Wallerian degeneration
occurs (Gilley and Coleman, 2010; Gerdts et al., 2016). Since
the damaged mitochondria inhibited anterograde and promoted
retrograde transport, the quantity of SNPH cargo vesicles is
significant elevated in AD axons, similar to ALS. The SNPH-
mediated response in axonal mitochondrial transport of AD-
related cortical neurons from mutant human APP-expressing
transgenic mice is summarized in the ALS section (Lin et al.,
2017a,b; Cheng and Sheng, 2020). Ultimately, the impairment
of mitochondrial axonal transport in AD inhibits OXPHOS
complex activity, causing significant energy deficiency (Spires-
Jones and Hyman, 2014).

These two AD hallmarks contribute to mitochondrial
transport pathology in axons. Defects in axon transport can
be initiated by soluble low molecular weight Aβ species in
the plasma membrane in mice (Zhang et al., 2018). Moreover,
inhibited axon transport does not promote mitochondrial
dysfunction or ATP depletion at once (Zhang et al., 2018),
suggesting that reconstruction of mitochondrial axon transport
may be advantageous at early AD stages. The restoration of
KIF5A, an isoform of kinesin-1, abrogates the impairment of
mitochondria axonal transport by Aβ, particularly anterograde
transport in 5 × FAD mice (Wang et al., 2019b). Additionally, it
is reported that axon degeneration has an intimate correlation
with mitochondrial dysfunction and mPTP (Barrientos et al.,
2011). The deficiency of cyclophilin D (CypD), a mPTP
regulator, inhibited Aβ-mediated permeability transition and
mitochondrial swelling, and alleviated oxidative stress both in
mice model and brain samples of AD. Notably, knockout of
CypD gene appears to suppress the mPTP, which may improve
cognitive and synaptic function in mouse model (Du et al., 2008,
2011). Moreover, the defection of mitochondrial axon transport
triggered by Aβ is dependent on the activation of mPTP, which
is mediated by CypD. Knockout of CypD inhibit the induction
of the p38/MAPK signaling pathway mediated by Aβ, restore
the dysfunction of axonal mitochondria and synapses (Guo
et al., 2013). Furthermore, the defective dynein-snapin coupling
mediated by Aβ seriously inhibits retrograde transport, resulting
in the aggregation of amphisomes at axonal terminals, which

can greatly contribute to mitophagy (Tammineni et al., 2017).
Therefore, it seems that there is an intimate relationship between
the impaired axonal transport and mitophagy, together consist
of the complicated mechanism of mitochondrial dysfunction in
axons of AD.

Overexpression or hyperphosphorylation of Tau not only
causes defects in mitochondrial transport but also disrupts
mitochondrial distribution and localization inmouse and cellular
AD models (Cheng and Bai, 2018). It is reported that in
tauopathies and AD, the integrity of microtubules is damaged
via hyperphosphorylation and binding with protein Tau (Misko
et al., 2010). Moreover, mitochondrial transport motor proteins
and Tau (Ser199, Ser202, Thr205) are phosphorylated, which
can lead to the dysfunction of mitochondrial transport in
AD, mediated by a serine/threonine protein kinase, Glycogen
synthase kinase 3 (Shahpasand et al., 2012). The aberrant
aggregation of Tau is also demonstrated to induce microtubule
instability, aggravating the impaired transport.

Amyloid-β (Aβ) oligomers and neurofibrillary tangles also
elicit mitochondria dysfunction and oxidative stress (Butterfield
and Boyd-Kimball, 2018; Mata, 2018), which may, in turn,
impair axonal transport. It is demonstrated that oxidative
stress is one of the typical event correlated with axon
degeneration at the early stage of AD (Alavi Naini and Soussi-
Yanicostas, 2015). Oxidative stress triggered by breaking the
equilibrium between antioxidants and pro-oxidants may induce
the excessive hyperphosphorylation of Tau. The aggregation
of Tau is reported to inhibit microtubule transport, resulting
in the decrease of peroxisome, which increase the incidence
of oxidative stress (Stamer et al., 2002). Oxidative stress
may in turn impair axon transport, which will aggravate tau
phosphorylation in animal models and neuronal cultures of AD
(Melov et al., 2007; Su et al., 2010). Interestingly, antioxidative
treatment conducted in 3xTg-AD mice is found to alleviate
oxidative stress, Tau hyperphosphorylation (Clausen et al.,
2012). Therefore, the interconnection between oxidative stress
and tau hyperphosphorylation seems to act a key role in
axon degeneration of AD. Accumulating damaged mechanisms
summarized above lead to the damage of axon homeostasis and
finally, axonal degeneration in AD, which seems to provide some
novel mitochondria-targeted therapeutic strategies in future.

Parkinson’s Disease
Parkinson’s disease is a common late-onset neurodegenerative
disease characterized by the degenerative death of dopamine
(DA) neurons in the substantia nigra region and the formation
of Lewy bodies, cytoplasmic inclusion bodies that contain α-
synuclein (α-Syn) (Gao et al., 2018). Mitochondrial dysfunction
is an early event in PD. Indeed, some familial PD cases are
caused by mutations in genes encoding mitochondria proteins
(e.g., Pink, Parkin, and DJ-1) (Cheng et al., 2010).

The degeneration of DA neurons in PD originates from the
distal axons of fragile neurons which is long and highly branched
(Surmeier et al., 2017). The increased size of axonal arborization
which resulted in elevated mitochondrial bioenergetics is
considered of the reason for the vulnerability for DA neurons
in the substantia nigra (Pacelli et al., 2015; Giguere et al., 2019).
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Highly branched axons needs increased energy to deal with
protein delivery, oxidative stress and mitochondrial dysfunction
(Bhaskar et al., 2020).

Dysfunction of mitochondrial biogenesis plays a key role
in the pathogenesis of PD. For instance, the inactivation of
Parkin, which plays an important role in the pathological
changes of familial PD, suppresses PCG-1α, a key regulator
of mitochondrial biogenesis, ultimately causing the loss of DA
neurons (Lee et al., 2017). In contrast, neurodegeneration caused
by α-Syn overexpression in zebrafish can be partially relieved
by PCG-1α upregulation (O’Donnell et al., 2014). Given that
the dopaminergic axons loss precedes the cell death in both
PD patient and PD model constructed by exposure to rotenone,
a complex I inhibitor linked to PD (Tagliaferro and Burke,
2016), mitochondrial homeostasis in distal axon may participate
in initial changes resulting in later neuron death. The limited
early increase in mitochondrial density induced by rotenone in
distal axons is due to upregulated distal axonal mitochondrial
biogenesis (Van Laar et al., 2018), which is likely a compensatory
process to mitochondrial disruption in PD.

Analysis of the post-mortem brains of PD patients showed
that the distance between the synaptic terminal andmitochondria
in DA neurons increased with a decreased volume and number of
mitochondria, suggesting that mitochondrial synaptic availability
and biomass contribute to degenerative neurons (Mallach
et al., 2019). Mutations in Parkin impair Complex I activity,
mitochondrial fusion, and the plasticity of synapses (Goldberg
et al., 2003). Another example of how dysfunction mitochondria
act in PD by disrupting synaptic plasticity comes from DJ-1,
which is located in mitochondria and plays a role in synaptic
transmission (Wang et al., 2008; Yan et al., 2020b).

Aberrant axonal transport contributes to neurodegeneration
in PD (Lamberts et al., 2015). PD can be induced in mice by
treatment with 6-hydroxydopamine (6-OHDA), which leads
to axonal degeneration in dopaminergic neurons by inducing
dysfunction of mitochondrial transport and microtubule
disruption (Fuku, 2016). Significant alterations in mitochondria
motility were observed in neurons induced from pluripotent
stem cells (iPSCs) derived from an LRRK2 mutant PD patient
(Cooper et al., 2012). Prots et al. (2018) discovered that this
alteration was associated with α-Syn oligomerization resulting
from an increased α-Syn dosage, which resulted in reduced Miro
and kinesin light chain-1 levels in axons and increased levels of
Tau in neuronal soma.

PINK1 and Parkin are two proteins that can selectively remove
damaged mitochondria. Mutations in these proteins can lead
to PD and link mitophagy with this disease. Knockout of Atg5
or Atg7 causes loss of autophagy, resulting in swelling at the
axon terminals and eventually cell death (Maday, 2016). Thus,
autophagy plays an indispensable role in axon homeostasis.
The accumulation of α-Syn and LRKK2 results from the loss
of autophagy (Friedman et al., 2012), providing further proof
that defects in autophagy cause the accumulation of abnormal
organelles in axons (e.g., mitochondria), leading to oxidative
damage and apoptotic cascades. In addition to PINK1/Parkin,
LRRK2 is involved in initiating mitophagy by forming a complex
with Miro. In pathologic LRRK2G2019S neurons, this function

is disrupted but can be rescued by reducing Miro levels (Hsieh
et al., 2016). While mitophagy has a protective effect on neurons,
determining whether increased autophagy levels are the cause or
effect of PD requires further study.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is the most common adult
motor neuron disease with characteristic progressive motor
neuron degeneration, leading to muscle atrophy, paralysis,
and ultimately death (Taylor et al., 2016). Approximately
90% of cases are sporadic (sALS), while the remaining 10%
are familial (fALS) (Turner et al., 2017). fALS is largely
associated with gene mutations, particularly in TAR DNA
Binding Protein 43 (TDP-43) and Cu/Zn superoxide dismutase
(SOD1) (Chia et al., 2018). Accumulating evidence suggests
that axon degeneration in fALS is significantly correlated with
mitochondrial damage, impairment of mitochondria transport,
and autophagy-lysosomal dysfunction. Within an early stage
in SOD1G93A mice, distal axonal transport is reported to be
impaired, meanwhile, the expression of kinesin and dynein is also
inhibited (Warita et al., 1999). In both SOD1 patients (Boillée
et al., 2006; De Vos et al., 2007) and SOD1G93A mice (Fischer
et al., 2004; Damiano et al., 2006; Tallon et al., 2016), damaged
mitochondria accumulate at distal sites, causing ATP deficiencies
and aberrant calcium homeostasis at neuromuscular junctions,
ultimately resulting in distal axon degeneration.

Enhancing mitochondria motility can remove the
dysfunctional mitochondria from distal synapses meanwhile
deliver the healthy ones to distal axons. Nevertheless, in
motor neurons from hSOD1G93A mice, axonal mitochondria
transport is damaged, and the defective mitochondria aberrantly
accumulate in distal axons (De Vos et al., 2007; Magrané and
Manfredi, 2009; Bilsland et al., 2010; Cozzolino et al., 2013).
In order to address this defection, a research designed to cross
hSOD1G93A and SNPH−/− mice, aiming to examine whether
enhancing mitochondria transport could make effect on the
hSOD1G93A mice (Zhu and Sheng, 2011). Although the total
mitochondrial transport is increased in the crossed mice, it
seems to have no differences in the disease course. Moreover, this
study reveals that deficits in mitochondrial transport appears to
be insufficient to cause axon degeneration in the fALS-linked
motor neurons (Zhu and Sheng, 2011), supported by an in
vitro study in mutant hSOD1 models (Marinkovic et al., 2012).
In the motor neuron of fALS-linked SOD1G93A mice and the
axons of AD-related cortical neurons from mutant human
APP-expressing transgenic mice, impaired mitochondria are
removed via the bulk release of SNPH cargo vesicles, which
are mitochondria-derived and Parkin-independent, promoting
mitochondria transport (Lin et al., 2017a). Recently, a study
demonstrated that as the disease progresses in fALS-linked
SOD1G93A and AD-linked mice, the quantity of SNPH cargo
vesicles is also altered (Cheng and Sheng, 2020). It is interesting
that at asymptomatic stages of fALS and AD, the number of
SNPH cargo vesicles is greatly elevated in the axons of motor
neurons (Lin et al., 2017a). Nevertheless, at the onset and
late stages of the disease, SNPH is significantly depleted via
mitochondrial impairment in these axons (Lin et al., 2017a).
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Furthermore, the study revealed that in response to these chronic
pathological stresses, the quantity of SNPH cargo vesicles
changes in distal axons. The defective mitochondria anchored by
SNPH are transported to the soma for recovery or degeneration
(Cheng and Sheng, 2020). The SNPH-mediated pathway acts
as a protective mechanism during the early asymptomatic
stages of fALS and AD and is independent of and acts before
PINK1/Parkin mediated mitophagy (Lin et al., 2017b). Thus, it
is regarded as a significant hallmark of diagnosis and an early
target for treatment. However, simply increasing mitochondrial
transport by turning off SNPH-mediated anchoring (Lin et al.,
2017a) or eliminating SNPH (Zhu and Sheng, 2011) fails to
replenish ATP deficiency in hSOD1G93A mutant mice. The
autophagy-lysosomal function is also defective in fALS-linked
mice at an early stage of disease both ex vivo and in vivo,
preventing the elimination of damaged mitochondria from distal
axons (Xie et al., 2015). Thus, the combination of enhanced
mitochondria transport and increased defective mitochondria
elimination may be an effective therapeutic strategy for fALS.

A study has reported that anterograde and retrograde
transport of mitochondria in primary motor neurons axons
are greatly defected via overexpression of wild-type TDP-43.
Interestingly, the study demonstrated that the loss of TDP-43
also inhibits axonal transport of mitochondria, revealing that
damaged mitochondria axonal transport may involve various
pathways mediated by TDP-43 (WangW. et al., 2013). Moreover,
a recent study showed that specific protein synthesis is inhibited
(i.e., transcripts involved in mitochondrial energy metabolism,
cytoskeletal components, and translational machinery) within
the axons of motor neurons in TDP-43-knockout mice (Briese
et al., 2020). Thus, axonal transport and mitochondria function
are significantly defected in TDP-43-knockout mice, leading to
the impairment of axon growth as well as revealing that depletion
of TDP-43 may act a predominant role in axon degeneration of
ALS (Briese et al., 2020).

Treatment
In neurodegenerative diseases, the degeneration of axons often
occurs at early disease stages. This degeneration is often
accompanied by the accumulation of damaged or fragmented
mitochondria. Therefore, maintaining mitochondrial dynamics
in axons is a common treatment strategy.

Amyloid-β (Aβ) toxicity and Tau dysfunction in AD, often
accompanied by impaired axonal mitochondrial transport,
jointly lead to disease progression. Wang et al. (2019b)
demonstrated that mitochondrial transport defects can be
corrected in Aβ-treated neurons by protecting KIF5A, suggesting
that maintaining normal mitochondrial axon transport is a
valuable treatment strategy in AD. There are many targeted
treatments for reducing the mitochondrial content caused by
defective mitochondrial trafficking, as represented by increased
retrograde transport rates in axons (Schwab et al., 2017). In
addition, glycolytic defects in oligodendrocytes induce axon
degeneration in both AD mice and patients via the Drp1-
hexokinase 1-NLRP3 (NLR family pyrin domain containing 3)
signaling axis, which is considered to be a therapeutic target
(Yan et al., 2020a; Zhang et al., 2020). Mdivi-1, Dynasore, and

P110 are promising agents that maintain axonal mitochondrial
turnover by inhibiting dynamin to prevent the production
of fragmented mitochondria, maintain normal mitochondria
morphology, and restore ATP levels in a PD model (Elfawy
and Das, 2019). Additionally, deep brain stimulation (DBS) is
a very effective intervention to treat patients with advanced
PD and its mechanism is related to the restoration of
the number and volume of mitochondria (Mallach et al.,
2019). The selective peptide inhibitor, P110 inhibits the Drp1-
Fis1 interaction and improves the structure and function
of mitochondria in G93A SOD1 mutant mice, indicating
an attractive target for ALS patients (Joshi et al., 2018).
Nicotinamide mononucleotide adenylyl transferase1 (Nmnat1),
an enzyme involved in nicotinamide adenine dinucleotide
(NAD+) synthesis, has a protective effect on mitochondrial
dynamics and morphology following vincristine-induced axon
degeneration (Berbusse et al., 2016).

Reactive oxidative species (ROS) production caused by
mitochondrial dysfunction leads to oxidative stress, an important
factor in axonal degeneration. Therefore, many treatment
strategies focus on mitigating local ROS production using
novel antioxidants that directly target mitochondria. Some
mitochondria-targeted compounds (e.g., latrepirdine, methylene
blue, triterpenoids, and the mitochondrial-targeted coenzyme
Q10 derivative MitoQ) have been extensively evaluated in in
vivo and in vitro AD and PD models (Elfawy and Das, 2019).
In addition, a significant reduction in ROS levels results from
treatment with the selective peptide inhibitor P110 and improves
motor capacity and survival rates in G93A SOD1 mutant mice
(Joshi et al., 2018).

Axon regeneration is an attractive target in neurodegenerative
diseases. Because growth cone formation requires a large
ATP supply, targeted mitochondrial therapy is key to axonal
regeneration. While mature CNS neurons almost lose their
intrinsic capacity for axon regeneration, upregulation of
axon cytoskeleton proteins was observed in the 6-OHDA-
hemiparkinsonian rat model, indicating a high plasticity and
regeneration potential in adult animals (Lessner et al., 2010).

The G2019S mutation in the conserved serine kinase
MAPK kinase domain contained in LRRK2 is the cause
of familial PD (Cookson, 2010). Therefore, reduced neurite
outgrowth and increased growth cone size were observed
in neurons of LRRK2 G2019S mutant mice and the level
of F-actin in growth cone also increases (Parisiadou et al.,
2009), suggesting that growth cone formation, an essential
step for axon regeneration is seriously impacted in PD.
However, in the 6-OHDA-induced PD animal model, there are
many compensatory responses in early-stage PD, including the
upregulation of some proteins related to axon regeneration.
Dihydropyrimidinase-related protein 2 (DPYSL2), which is
important for axon outgrowth and regeneration (Sun and
Cavalli, 2010), first decreased and then gradually recovered
in this model. Moreover, axon growth and mitochondrial
transport-related proteins (e.g., dynein, dynamin, and myosin)
were also overexpressed (Kuter et al., 2016). Thus, a potential
therapy to promote axon regeneration would be to enhance
the expression of mitochondrial transport-related proteins.
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FIGURE 1 | Mitochondrial behavior in axon degeneration and regeneration. (A) Axon regeneration: Since this process requires considerable energy, mitochondrial

density at distal axons is elevated to provide sufficient ATP. Not only is anterograde transport of healthy mitochondria promoted, but so too is retrograde transport of

damaged mitochondria, to increase mitochondrial density at regenerative zones. SNPH knockout in TBI models, or the bulk release of SNPH cargo vesicles at AD and

fALS early stages, both enhance axonal mitochondrial transport. (B) Axon degeneration: Mitochondrial dysfunction and oxidative stress occur in injured axons. When

axonal mitochondrial transport is seriously impaired, damaged mitochondria aggregate at distal zones and the healthy ones fail to transport from the proximal zones to

replenish ATP insufficiency. A decrease in SNPH cargo vesicle release at later stages of AD and fALS, as well as increased SNPH expression in SCI models inhibit

mitochondrial transport. Moreover, axonal microtubule loss contributes to impaired axonal transport in TBI. Mitochondrial dynamics are also defective during axon

degeneration. Due to increased Drp1-mediated fission in SCI, mitochondrial fragmentation is aggravated, causing mitochondrial damage. These organelle fuse with

healthy mitochondria, however, most undergo mitophagy. In PD, Pink1-Parkin dependent mitophagy is defective, facilitating damaged mitochondrial accumulation

and apoptotic cascades. These processes are interconnected in response to stress, and collectively lead to axon degeneration. SNPH, syntaphilin; TBI, traumatic

brain injury; AD, Alzheimer’s disease; fALS, familial amyotrophic lateral sclerosis; SCI, spinal cord injury; PD, Parkinson’s disease.

A new promising therapeutic method involving exogenous
mitochondrial transplant effectively attenuates the progression of
neurologic disorders, including experimental Parkinson’s disease
(Shi et al., 2017). Supportive mitochondrial-targeting therapy
is a promising approach for future therapeutic intervention in
the CNS to promote axon regeneration. However, it should

be noted that there are currently very limited ways to treat
neurodegenerative diseases by promoting axon regeneration
because of the diminishing intrinsic axonal regeneration in
mature CNS neurons compared to PNS neurons, and there
are no optimal treatments for these neurodegenerative diseases.
Thus, researchers have focused on stopping the degeneration of
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these nerves. With the deepening understanding of the treatment
of mitochondria to prevent neural degeneration, we believe
that axonal mitochondria regeneration will become a better
therapeutic target for treating neurodegenerative diseases.

DISCUSSION

Axon degeneration and regeneration are essential parts of CNS
neuronal death and restoration of CNS neurons, respectively,
in aging, injury, and neurodegenerative diseases. However,
the decline in the intrinsic regrowth capacity of mature
CNS axons leads to a failure to regenerate after neuronal
impairment (Fawcett and Verhaagen, 2018). Accumulating
evidence demonstrates that mitochondrial dysfunction is
intimately correlated with the initiation of axon degeneration
and inhibition of axon regeneration (Qian and Zhou, 2020).
Despite the mechanism underlying is still elusive, it suggests that
mitochondrial quality control is an important intrinsic capacity
of axon regeneration. For axon degeneration, mitochondrial
dysfunction not only causes energy deficits and oxidative stress
but also comprises mitochondrial dynamics, axonal transport,
and mitophagy (Court and Coleman, 2012; Vasic et al., 2019).
In contrast, restoring and enhancing these processes during
axon regeneration increases the capacity of intrinsic regrowth
(Figure 1). It comes to a consensus that axon regeneration
requires adequate energy production and mitochondrial
transport both in aging and in diseases (Zhou et al., 2016;
Sheng, 2017; Zheng et al., 2019). Defected mitochondria can
be replaced via mitochondria injection, which is demonstrated
to decrease oxidative stress and trigger axon regeneration both
in vitro and in vivo (Kuo et al., 2017). Thus, further study
of axonal mitochondrial behavior under these conditions is
important, not only for the alleviation and treatment of axon
degeneration but also for identifying potential targets to enhance
axon regeneration.

It is generally accepted that diminished intrinsic regeneration
is a major barrier for axon regeneration in mature CNS neurons.
Analysis of intrinsic axon degeneration and regeneration
pathways and signaling networks can bring new insights
for potential mitochondria-targeted therapeutic strategies. For
example, a novel therapeutic strategy for enhancing the
intrinsic capacity of axon regeneration may include genetic
reprogramming through epigenome modifications and the
transcriptome (Qian and Zhou, 2020). Mitochondrial damage-
associated molecular patterns (mtDAMPs) released by injured
axonal mitochondria can activate Schwann cell processes
mediated by formylpeptide receptor 2 (FPR2) and toll-like
receptor 9 (TLR9), which have a pivotal role in axon
regeneration and cell migration (Korimová et al., 2018).
Therefore, regulation of these mitochondria-targeted genetic
reprogramming can be considered to be a promising molecular
strategy for activating axon regeneration. At the cellular level,
enhancing mitochondrial transport could greatly contribute
to axon regeneration by removing defective mitochondria
and replenishing healthy mitochondria at injured axon sites
(Zheng et al., 2019). In addition, glial cells (astrocytes,

oligodendrocytes, and microglia) contribute to mitochondrial
dysfunction during axon growth inhibition and regeneration
failure in the adult CNS (Brosius Lutz and Barres, 2014;
Cregg et al., 2014; Silver and Silver, 2014). Astrocytes inhibit
axonal mitochondrial energy metabolism by increasing nitric
oxide production, glutamate levels, and intracellular calcium
influx during Multiple Sclerosis (MS) (Correale and Farez,
2015). Similarly, astrocytes can release mitochondria containing
particles, and transport them to defective axons following
stroke (Babenko et al., 2015; Hayakawa et al., 2016). In
vitro astrocyte-to-neuron mitochondrial delivery and in vivo
astrocyte-derived mitochondrial transport improves neuronal
survival, plasticity, and behavior outcomes (Hayakawa et al.,
2016). Reactive oxygen and nitrogen species generated by
microglia directly damage neurons by inhibiting cytochrome C
oxidase and mitochondrial respiratory chain complex IV, causing
axonal mitochondrial dysfunction in MS (Nikić et al., 2011).
Furthermore, oligodendrocytes and astrocytes provide axonal
mitochondria with pyruvate or lactate, which are imported
into the mitochondria for energy metabolism during MS and
AD (Fünfschilling et al., 2012; Correale et al., 2019; Zhang
et al., 2020). Clearance of damaged mitochondria not only
relies on mitophagy at the injury sites but also depends on
mitochondrial retrograde transport, which involves SNPH and
dual leucine zipper kinase 1 (Han et al., 2016; Cheng and
Sheng, 2020). However, many molecules and substrates engaged
in mitochondrial transport or dynamics need to be clarified.
Moreover, to strengthen the intrinsic capacity for regrowth,
improving the extrinsic inhibiting environment could make
a critical difference in axon regeneration. Drugs targeted at
oxidative stress via the clearance of ROS (Geden and Deshmukh,
2016) or directed at the restoration of calcium homeostasis
by inhibiting calcium channels and calcium-activated enzymes
(Mu et al., 2015) will aid axon regeneration. Furthermore,
remodeling the neuronal cytoskeletonmay be a novel mechanism
to alleviate the extrinsic inhibitory cues (Qian and Zhou, 2020).
In conclusion, combined approaches that target mitochondria,
which increase the intrinsic capacity and decrease the extrinsic
inhibiting environment, may provide an effective therapeutic
strategy to enhance axon regeneration in aging, injury, and
neurodegenerative diseases.
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