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Background: Osteoarthritis (OA) is a global healthcare problem. The increasing population of OA patients 
demands a greater bandwidth of imaging and diagnostics. It is important to provide automatic and objective 
diagnostic techniques to address this challenge. This study demonstrates the utility of unsupervised domain 
adaptation (UDA) for automated OA phenotype classification.
Methods: We collected 318 and 960 three-dimensional double-echo steady-state magnetic resonance 
images from the Osteoarthritis Initiative (OAI) dataset as the source dataset for phenotype cartilage/
meniscus and subchondral bone, respectively. Fifty three-dimensional turbo spin echo (TSE)/fast spin echo 
(FSE) MR images from our institute were collected as the target datasets. For each patient, the degree of 
knee OA was initially graded according to the MRI Knee Osteoarthritis Knee Score before being converted 
to binary OA phenotype labels. The proposed four-step UDA pipeline included (I) pre-processing, which 
involved automatic segmentation and region-of-interest cropping; (II) source classifier training, which 
involved pre-training a convolutional neural network (CNN) encoder for phenotype classification using 
the source dataset; (III) target encoder adaptation, which involved unsupervised adjustment of the source 
encoder to the target encoder using both the source and target datasets; and (IV) target classifier validation, 
which involved statistical analysis of the classification performance evaluated by the area under the receiver 
operating characteristic curve (AUROC), sensitivity, specificity and accuracy. We compared our model on 
the target data with the source pre-trained model and the model trained with the target data from scratch.
Results: For phenotype cartilage/meniscus, our model has the best performance out of the three models, 
giving 0.90 [95% confidence interval (CI): 0.79–1.02] of the AUROC score, while the other two model show 
0.52 (95% CI: 0.13–0.90) and 0.76 (95% CI: 0.53–0.98). For phenotype subchondral bone, our model gave 
0.75 (95% CI: 0.56–0.94) at AUROC, which has a close performance of the source pre-trained model (0.76, 
95% CI: 0.55–0.98), and better than the model trained from scratch on the target dataset only (0.53, 95% 
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Introduction

Osteoarthritis (OA) is a common degenerative disease. 
Ageing populations worldwide contribute to the increasing 
demand for OA diagnosis, staging and grading (1). Kellgren 
and Lawrence proposed a grading system with radiography, 
known as the Kellgren-Lawrence (K-L) grade (2), accessing 
patients’ knee joint space, osteophytes, sclerosis, and bone 
ends deformity (3). Despite its wide usage, K-L grade 
based on radiography provides a limited assessment of soft 
tissues like cartilage and meniscus in knee joints. Recently, 
several MRI-based grading systems were introduced. MRI-
based knee OA grading systems like MRI Osteoarthritis 
Knee Score (MOAKS) (4) and Whole-Organ Magnetic 
Resonance Imaging Score (WORMS) (5) measure knee 
compartments in fine detail.

Manual grading of OA is time-consuming. Methods 
to perform automatic OA grading based on deep learning 
techniques have been reported. With radiographic data, 
previous work shows superior performance in classifying 
K-L grades by deep learning. Tiulpin and Saarakkala (6) 
demonstrated a convolutional neural network (CNN)-based 
multi-task classifier to classify K-L grade and Osteoarthritis 
Research Society International (OARSI) grades (7) on the 
radiographic data from Osteoarthritis Initiative (OAI) (8) 
and Multi-Center Osteoarthritis Study (MOST) (9) 
datasets. The authors reported an accuracy of 66.68% 
and 63.58% on K-L and OARSI grade classification tasks, 
respectively. Similarly, Zhang et al. (10) reported a K-L 
grade classification accuracy of 74.81% with a knee joint 
localisation before classification. A recent approach (11) 
synthesises radiographs with a Generative Adversarial 
Network (GAN) and mixes it with real images for training. 
This generative augmentation approach achieved the best 
testing accuracy of 75.76% when mixing the real images 
with 200% synthesised images. Han et al. (12) implemented 
an OA risk prediction pipeline with follow-up radiographic 

images synthesised from baseline, showing the diagnostic 
OA information is hidden inside the latent features. Their 
approaches achieved prediction accuracies of 84.8%, 19.7%, 
44.9%, 64.0% and 59.8% for K-L grade 0, 1, 2, 3, and 4, 
respectively.

Compared to radiography, MRI provides more information 
for OA diagnostics, enables imaging of soft tissues such 
as cartilage and meniscus (13), and is more suitable for 
conducting phenotyping studies for clinical trials (14). Several 
works explored OA grading from MRI, with a focus on the 
tissues that cannot be imaged by radiograph. Astuto et al. 
classified knee abnormalities on cartilage, bone marrow 
edema, meniscus, and anterior cruciate ligament (ACL) with 
a two-step approach on 3D turbo spin echo (TSE)/fast spin 
echo (FSE) MRI. The author collected 1,435 knee MRIs 
to train the deep learning model and get the area under the 
receiver operating characteristic curve (AUROC) ranging 
from 0.83 to 0.93 (15). Tuya E and colleagues classified 
patellofemoral OA with a CNN on the axial radiograph, 
reporting an AUROC of 0.91 (16). With advanced deep 
learning techniques like semi-supervised learning, Hou et al. 
present a knee MRI cartilage grading without fully labelled 
data (17). However, none of the abovementioned literature 
proposed an automated OA grading for full MRI grading 
systems like MOAKS or WORMS. These fine-grained MRI 
grading scores provide elaborate quantitative descriptions 
of the knee, but they also bring a heavy workload to the 
radiologists and challenges to developing automatic grading 
systems.

Beyond grading systems, knee OA phenotyping is an 
emerging research topic that provides a new model for 
understanding OA (18). A knee OA phenotype is a single or 
a group of characteristics connected to OA outcomes, such 
as body mass index (BMI), external mechanical hurt, and 
knee structural changes (18). Bruyère et al. argues that OA is 
a combination of phenotypes rather than a single disease (19),  
considering the various factors that can trigger OA or 

CI: 0.33–0.73).
Conclusions: By utilising a large, high-quality source dataset for training, the proposed UDA approach 
enhances the performance of automated OA phenotype classification for small target datasets. As a result, 
our technique enables improved downstream analysis of locally collected datasets with a small sample size.  
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contribute to the OA symptoms are phenotypes (20). 
Roemer and colleagues (21) define five phenotypes that 
describe knee structures under MRI: (I) inflammatory 
phenotype, defined by synovitis and/or joint effusion; 
(II) cartilage/meniscus phenotype, defined by meniscus 
pathology and reflects the cartilage loss; (III) subchondral 
bone, characterised by large bone marrow lesion (BML); 
(IV) atrophic; and (V) hypertrophic phenotype, defined by 
osteophytes. During the development, the authors employed 
a case-control study within the OAI dataset (8) dataset, 
pre-defined phenotypes with MOAKS, and evaluated the 
alignment between MOAKS and the simplified scoring 
system. Roemer et al. also conducted investigations of this 
set of phenotypes on the OAI dataset and found that knee 
OA progression is linked to both cartilage/meniscus (20) 
and subchondral bone (22) phenotypes. On the other hand, 
Namiri et al. (23) built classifiers with CNN on the OAI 
dataset for the phenotypes mentioned above. The classifiers 
take 2D sagittal and coronal MRI as input and are trained 
on a subset of OAI. This approach achieved a satisfactory 
performance on the test set, and the author predicted the 
phenotypes for the entire OAI dataset. With the phenotypes, 
the authors showed increased odds of developing OA on the 
knees with subchondral bone and hypertrophic phenotype in  
4 years. He also reported there were increased odds of total 
knee replacement in 8 years for knees with inflammatory, 
subchondral bone, and hypertrophic phenotypes (23). The 
comprehensive set of knee phenotypes proposed by Roemer 
et al. (21) was verified clinically and succinctly and clearly 
defined, which makes it easy to be adapted to modern deep 
learning systems.

Domain shift problem is common in medical imaging 
due to the variations in the sampling population, image 
acquisition hardware, software, and imaging protocols. 
In certain scenarios, a model trained on one dataset may 
fail on another dataset because the training and inference 
domains are shifted. To address the domain shift problem, 
transfer learning and domain adaptation techniques have 
been extensively explored. Transfer learning, often referred 
to as pre-train/fine-tune, takes advantage of the large 
training data (source data) to create a model with strong 
generalisability (pre-train), allowing downstream users to 
fine-tune the model with a limited amount of labelled local 
data (target data) which has domain shift from the data used 
in pre-train (24). On the other hand, unsupervised domain 
adaptation (UDA) is a technique that enables CNN trained 
on a source domain to be adapted to a target domain without 
ground truth labels from the target data (24). UDA is one 

of the primary methods for transferring information from 
more extensive and more generalised datasets to smaller 
datasets. The UDA process enables downstream research on 
target data with zero labels (25). In medical image analysis, 
UDA allows researchers to take advantage of high-cost 
medical image datasets to expedite local research without 
additional labelling costs. UDA approaches align the source 
and target domains using various methods, such as domain  
translation (26), statistical matching and adversarial  
learning (27). UDA has been widely studied in medical 
image analysis, giving excellent outcomes in cross-modality, 
cross-organ, and cross-task applications. Dou et al. (28) adapt 
cardiac CT to MRI in a segmentation context; a similar 
CT-to-MRI segmentation by UDA was examined by Yang 
et al. at liver (29). Panfilov et al. (30) take UDA and other 
techniques to improve the robustness of knee segmentation. 
Gao et al. (31) apply UDA to decode brain states from 
functional MRI, in which UDA helps overcome various 
individual differences. Given the volume and complexity of 
UDA and transfer learning as a whole, Jiang et al. (24) and 
Guan and Liu (32) have published comprehensive reviews of 
UDA and its application in medical image analysis.

In this study, we proposed a novel approach for automatic 
OA phenotype classification by applying UDA based 
on the Adversarial Discriminative Domain Adaptation 
(ADDA) (27) framework. We used a CNN trained on a 
publicly available dataset for automated OA phenotype 
classification on a small dataset (n=50) from our hospital 
(Prince of Wales Hospital, Sha Tin, New Territories, Hong 
Kong SAR, China). We implemented a systematic UDA 
approach for automatic OA phenotype classification. In 
this study, we (I) proposed a UDA approach for automatic 
and objective MRI-based OA phenotype classification to 
address the challenges of collecting a large labelled dataset 
associated with supervised techniques; (II) compared the 
proposed method with two classifiers trained without 
UDA, demonstrating the improved phenotype classification 
performance of our UDA approach and (III) explored the 
application of UDA for OA phenotype classification tasks 
using datasets from multiple MRI vendors, acquisition 
protocols and research institutes. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-704/rc).

Methods

This study was conducted in accordance with the 

https://qims.amegroups.com/article/view/10.21037/qims-23-704/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-704/rc
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Declaration of Helsinki (as revised in 2013). The human 
study conducted at Prince of Wales Hospital (Sha Tin, 
New Territories, Hong Kong SAR, China) was approved by 
the Institutional Review Board, and informed consent was 
obtained from all patients and volunteers.

Data and MRI acquisition

We conducted a retrospective study to demonstrate 
the application of UDA for MRI-based OA phenotype 
classification. Table 1 summarises the demographics and data 
distribution of the source and the target data.

The source dataset was a subset of the OAI dataset (8), 
including knee subjects randomly selected from the baseline 
and 4-year follow-up studies for the cartilage/meniscus and 
subchondral bone phenotype, respectively. Each data sample 
has a 3D MRI acquired with the double-echo steady-state 
sequence (DESS) (8) and corresponding MOAKS scores. 
The OAI dataset contains the MOAKS scores that were 
graded by experienced radiologists in previous studies  
(33-36). We combined the MOAKS sub-grades from these 
projects and selected subjects with knee MR images and the 
required MOAKS sub-grades to form the source dataset.

The target dataset contained knee MRI scans of 50 subjects 
collected at Prince of Wales Hospital (Sha Tin, New Territories, 
Hong Kong SAR, China) in 2020 and 2021 (37). Forty patients 
with radiographic OA and ten healthy controls received 
knee MRI exams. The average age of the participants in 
the target dataset was 61.94 years. Our target datasets 

were collected using three two-dimensional (2D) MRI 
sequences and a 3D TSE/FSE sequence (VISTA™) on 
a Philips Achieva TX 3.0T scanner (Philips Healthcare, 
Best, Netherlands). The 2D scans were used for manual 
MOAKS grading, and the 3D VISTATM scans were used 
for automated OA phenotype classification using the UDA 
pipeline. The detailed MRI protocol is reported in Table 2.

MOAKS grades and phenotype labels

Roemer et al. (21) developed the five knee OA phenotypes 
(inflammatory, cartilage/meniscus, subchondral bone, 
atrophic and hypertrophic) and introduced a protocol to 
convert MOAKS grades to knee OA phenotypes using 
the MRI collected from the OAI dataset. The phenotypes 
studied in this work were defined as follows. All subregions 
and grades were defined by the MOAKS grading system (4). 
(I) Cartilage/meniscus phenotype presents when at least one 
medial or lateral meniscus subregion was graded with one 
of complex tear, partial meniscal maceration or complete 
maceration, while any type of tear was identified on at 
least one of other subregions. Additionally, at least one of 
the cartilage grades, 2.1, 2.2, 3.2 or 3.3, should appear in 
the same knee subject. (II) Subchondral bone phenotype 
presents when at least one grade-3 BML was recorded from 
ten tibiofemoral joint (TFJ) subregions plus a grade-2 or 
grade-3 BML in additional two of ten TFJ subregions.

To quickly obtain the phenotype labels, we implemented 
a Python script to read the MOAKS grades from the source 

Table 1 Demographics and distribution of phenotypes among datasets

Characteristic
Source dataset

Target dataset (n=50)
Cartilage/meniscus (n=318) Subchondral bone (n=960)

Age (years) 63.52±8.85 62.70±8.94 61.94±11.57

BMI (kg/m2) 28.90±4.88 28.85±4.75 –

Gender

Male 153 (48.11) 386 (40.21) 15 (30.00)

Female 165 (51.89) 574 (59.79) 35 (70.00)

Knee

Left knee 127 (39.94) 390 (40.63) 21 (42.00)

Right knee 191 (60.06) 570 (59.38) 29 (58.00)

Cartilage/meniscus patients 106 (33.33) – 8 (8.00)

Subchondral bone patients – 320 (33.33) 5 (10.00)

Data are presented as the mean ± standard deviation or n (%). The BMI for the target dataset is missing. BMI, body mass index.
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and target datasets and then convert MOAKS grades to 
binary phenotype labels following the definitions above. 
The MOAKS grades of the source dataset were obtained 
from the OAI, and the MOAKS grades for the target 
dataset were independently graded by two musculoskeletal 
radiologists following the grading protocol used by the OAI. 
Both radiologists had more than 6 years of experience. The 
MOAKS grades prepared by the two radiologists had an 
excellent intraclass correlation coefficient of 0.999 (P<0.01). 
We provided the data preparation workflow in Figure 1.

UDA pipeline

In this work, we utilise a UDA pipeline. We hypothesised 
that the UDA pipeline could learn from the source dataset 
and improve phenotype classification performance on the 
target dataset without involving the target phenotype labels.

Figure 2 illustrates the proposed UDA pipeline adapted 
from the ADDA (27) framework. ADDA minimises the 
domain shift between the source and target datasets in a 
discriminative manner. Besides pre-processing, the ADDA 
framework involves three steps, pre-training, adversarial 
adaptation, and testing. In this work, the pre-training step 
prepared an encoder and a classifier from source data by a 
supervised training process; during adversarial adaptation, 
we froze the pre-trained source encoder to generate feature 
representations for source samples and copy the same pre-
trained encoder to generate feature representations for target 
samples (denoted as target encoder). This target encoder was 
initialised by the pre-trained weight from the source encoder 

and followed by a domain discriminator. Two neural networks 
were jointly optimised by a domain adversarial loss (38).  
The domain discriminator was designed to distinguish where 
the feature representation comes from (source or target) 
and improve the output feature from the target encoder. We 
finished the training for domain adaptation when the domain 
discriminator could not distinguish the feature origins. The 
last step was concatenating the target encoder with the 
classification head and evaluating this target classifier with 
the ground truth labels.

MR image pre-processing

As mentioned in the previous section, the phenotypes we 
adopt in this work are at the knee compartments at TFJ and 
patellofemoral joint (PFJ). Thus, we consider a volume that 
covers the TFJ and PFJ as a region of interest (ROI). We 
introduced an automatic cropping module as an MRI pre-
processing, forcing the classification model to learn from 
the ROI to enhance training efficiency. Before cropping, 
the target MR images were first resized to 160×384×384 to 
align with the source MR images (Figure 2A). The cropping 
module was navigated by segmentation masks of femoral, 
tibial, patellar cartilages and meniscus. A bounding box was 
initially estimated by merging these segmentation masks, 
then we added offsets to the bounding box in the superior, 
inferior, and anterior directions to cover subchondral bone 
areas. The cropping module can automatically adjust the 
position of the ROI box with a fixed size (128×256×256) to 
cover the TFJ and PFJ. It also involves an automatic scaling 

Table 2 Magnetic resonance imaging protocol of the target dataset

Sequence 3D PD TSE (VISTA™) PD TSE SAG T2 SPAIR TSE COR PD SPAIR TSE AX

Plane Sagittal Sagittal Coronal Axial

Fat suppression SPAIR None SPAIR SPAIR

No. of slices 150 25 25 25

Field of view (mm3) 160×160×120 162×160×82 160×160×82 150×150×82

TE/TR (ms/ms) 26/900 30/3,451 62/5,429 30/5,864

X-resolution (mm) 0.71 0.4 0.227 0.293

Y-resolution (mm) 0.71 0.546 0.227 0.293

Scan time (min: s) 05:51 03:24 03:43 03:37

Usage Deep learning MOAKS MOAKS MOAKS

The 3D PD TSE (VISTA™) sequence was used for automatic phenotype classification. The remaining three sequences were prepared for 
MOAKS grading. 3D, three-dimensional; PD, proton density; TSE, turbo spin echo; SAG, sagittal; SPAIR, Spectral Attenuated Inversion 
Recovery; COR, coronal; AX, axial; TE, echo time; TR, repetition time; MOAKS, MRI Osteoarthritis Knee Score.
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scheme to guarantee full coverage of the knee joint in the 
cropped image. We used nnU-Net (39) to perform this 
segmentation for its state-of-the-art performance according 
to the comprehensive experiment reported by the authors. 
We also notice that the current deep learning segmentation 
methods have a close performance in terms of knee MRI 
segmentation from a benchmark on the OAI dataset (40).  
Thus, we trained two 2D nnU-Net models with the official 
implementation and default settings to provide segmentation 
masks. The source and target segmentation models were 
trained using 3D MR scans from the OAI-iMorphics dataset 
(141 for training, 35 for testing) and the labelled target 
dataset (17 for training, 8 for testing), respectively.

Source encoder training

Figure 2B shows the 3D DenseNet121 (41) encoder and 
classification head trained on the source dataset for each 
phenotype, giving the source classifier Cs. The augmentation 
scheme involved adding random Gaussian noise, scaling 
the intensity by a randomly selected factor from 0.8 to 1.2, 
rotating by a randomly chosen degree from −10 to 10 and 

scaling the image size by a randomly chosen factor from  
1 to 1.1. Each augment item had a probability of 50%. We 
trained the classifiers with a batch size of 2, focal loss (42) 
with a gamma of 1, an Adam (43) optimiser with a learning 
rate of 10−6 and a weight decay of 10−3. The training process 
stopped when the validation loss increased by three times, 
and the model with the best area under the precision-recall 
curve on the validation set was selected.

Target encoder adaptation

As shown in Figure 2C, the domain adaptation process 
involved a source encoder with frozen weights, a target 
encoder initialised with the weights of the source encoder, 
and a randomly initialised domain discriminator. We adopted 
the hyperparameters from the study of Jiang et al. (24), in 
which the target encoder and domain discriminator was 
optimised by a domain adversarial loss (38) and a binary 
cross entropy objective function, respectively. A stochastic 
gradient descent (44) optimiser was set with an initial 
learning rate of 0.001, a momentum of 0.9 and a weight 
decay of 10−3 at a batch size of 2. The learning rate decays 

Figure 1 Overview of dataset preparation. The MRI and MOAKS grades for the source data were directly taken from the OAI dataset. 
For the target dataset, MRI was collected by us, and the MOAKS grades were prepared by our radiologists. The MOAKS grades from 
both datasets were processed using a Python script and converted to phenotype labels. OAI, Osteoarthritis Initiative; MOAKS, MRI 
Osteoarthritis Knee Score; SAG, sagittal; 3D, three-dimensional; DESS, double echo steady state; MRI, magnetic resonance imaging; TSE, 
turbo spin echo; FSE, fast spin echo; 2D, two-dimensional.
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Figure 2 A systematic overview of the proposed UDA method. (A) MRI pre-processing included image resizing, segmentation and ROI 
extraction. Source MRI: 3D DESS, target MRI: 3D TSE/FSE. *, segmentation overlay is for display only. (B) Source classifiers for each 
OA phenotype were trained using the source MR images and labels. (C) The source encoders were adapted to the target data using UDA, 
forming target encoders for each OA phenotype. (D) Target classifiers, consisting of the adapted target encoders and the classification heads 
trained during source encoder training, were evaluated on the target dataset. MRI, magnetic resonance imaging; ROI, region of interest; 
UDA, unsupervised domain adaptation; 3D, three-dimensional; DESS, double-echo steady-state sequence; TSE, turbo spin echo; FSE, fast 
spin echo; OA, osteoarthritis.
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according to the following formula:

( )1 1 n na a n λγ −
+ = × + ×  [1]

Where an+1 and an are the learning rates at the next epoch 
and the current epoch, respectively; n is the current epoch 
count and γ and λ are hyperparameters set at 0.0003 and 
0.75, respectively. The same image augmentations used 
for the source encoder training were applied to both the 
source and target MR images. During the target encoder 
adaptation, we continuously fed samples from the source 
dataset while looping 49 target training samples for each 
epoch. Each training was run for 50 epochs, and the models 
from the last epoch were selected.

Target classifier evaluation

We attached the trained classification head from the 
source domain to the adapted target encoder, forming the 
target classifier CT-UDA (Figure 2D). Ablation studies were 
conducted by comparing three models, CT-UDA, Cs and CT for 
OA phenotype classification. Cs was the pre-trained source 
classifier. In the ablation studies, we directly inference Cs 
with the target data. Besides, the target classifier CT was 
trained with the target data only from scratch. CT was 
trained by the same hyperparameter as Cs. By comparing 
the classification performance of these three models, we 
want to evaluate the benefits of UDA in OA phenotype 
classification when the target dataset is relatively small.

Statistical analysis

For each phenotype, the source dataset was split into 
training (70%), validation (10%) and test (20%) sets to 
train the source classifier Cs. The target classifiers CT-UDA 
and CT were trained by a leave-one-out strategy that used 
49 samples for training and 1 sample for testing. Dice 
similarity coefficient (DSC) scores were used to evaluate 
the segmentation models. AUROC, sensitivity, specificity 
and accuracy were used to assess the source and target 
classification models. When reporting AUROC scores, 
their 95% confidence intervals (CIs) and P value derived 
from DeLong et al. (45) are included. For all statistical tests, 
we set a two-sided significant level as P<0.05.

Implementation

The proposed system and scripts were implemented and 

tested using Python 3.10, PyTorch (46) 1.10, MONAI 
0.8.1, PyTorch Lightning 1.6.3 and Transfer Learning  
Library (24) 0.2 (UDA only). An NVIDIA (Santa Clara, 
CA, USA) RTX A6000 graphics processing unit was used 
to run the deep learning experiments. We conducted the 
sample size analysis with MedCalc for Windows, version 
20.1 (MedCalc Software, Ostend, Belgium), and other 
statistical analysis with SPSS for Windows, version 27 (IBM 
Crop, Armonk, NY, USA).

Results

Data collection

In this study, we have collected two datasets. The 
demographic for the datasets is available in Table 1.

Source data collection

The source data was collected from the OAI dataset. We 
first selected the participants with the MOAKS graded 
(33-36), then included the samples from the baseline and 
48-month follow-up studies. Within this subgroup, we 
keep the MOAKS reading from the earliest reading project 
for those samples with multiple MOAKS readings. After 
we converted the MOAKS subgrades to phenotypes, we 
created a balanced dataset by randomly selecting negative-
classified samples to keep the number of negative samples 
twice that of the positive samples. Figure 3 provides a flow 
chart for this procedure.

Target data collection

The target data was collected at Prince of Wales Hospital 
(Sha Tin, New Territories, Hong Kong SAR, China) (37).  
Forty patients and ten age-matched healthy controls 
were recruited following these criteria, (I) age equal to or 
greater than 18 years, (II) healthy and active knee joint 
(for healthy controls), (III) an initial OA status according 
to the classification standard from American College of 
Rheumatology (47), (IV) knee pain persists more than 
two months, and (V) presented evidence of radiographic 
OA. Then we excluded the participants have the following 
limitations, (I) restricted to MRI scans, (II) had a psychiatric 
disorder, (III) had claustrophobic, (IV) had inflammatory 
arthritis, (V) ongoing pregnancy and lactation, (VI) has a 
serious disease like advance cancer, (VII) has metal product 
in the knee, (VIII) has major blood system disease, (IX) has 
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severe deformities of the lower limbs. For this study, we 
report that 50 samples are sufficient for a target AUROC of 
0.9 when we set the type I error rate as 0.05 and the type II 
error rate as 0.2.

MR image pre-processing

We observed both segmentation models (nnU-Net) 
performed well. The DSC scores for segmented knee 
compartments ranged from 0.81 to 0.92 (detail available 
in Table 3). For the performance of the segmentation on 
the source dataset, it is comparable to the ones in previous  
work (40). We consider these scores to be satisfactory 
because the purpose of these predicted segmentation 
masks was to locate the PFJ and TFJ rather than accurate 
segmentation of tissues.

We use these models to generate segmentation for 
the knee samples. With the segmentations, we locate the 
knee joints and crop the ROI automatically. An example 
of automatic ROI selection is shown in Figure 4. The ROI 
selected the TFJ and PFJ and deleted the outer area.

Performance of source classifiers

The source classifier Cs was evaluated on the hold-out test 
set (20% randomly selected samples) separately on each 
phenotype by bootstrapping 100 times. Figure 5 shows the 

receiver operating characteristics (ROC) curves for the 
classifiers. For the cartilage/meniscus and subchondral bone 
phenotype classifications, the means ± standard deviations 
of AUROC scores were 0.78±0.06 and 0.75±0.04, the 
sensitivities were 0.44±0.11 and 0.64±0.07, the specificities 
were 0.92±0.04 and 0.76±0.04 and the accuracies were 
0.76±0.05 and 0.72±0.03, respectively.

Performance of target classifiers

The performance of target classifiers CT-UDA and Cs was 
improved compared with CT for both phenotypes. For the 
cartilage/meniscus phenotype, the UDA-trained classifier 
CT-UDA further outperformed the other classifiers (Cs and 
CT) in all parameters (AUROC, sensitivity, specificity and 
accuracy). Detailed performance is shown in Table 4. For 
the subchondral bone phenotype, we observed a similar 
performance among the UDA-trained classifier CT-UDA and 
the classifier Cs trained solely with the source dataset, but 
both classifiers outperformed CT, which was trained solely on 
the target dataset. Detailed performance is available in Table 5.

Discussion

In this study, we proposed a UDA application for MRI-
based OA phenotype classification. The proposed method 
adapted the CNN encoder trained on the large, publicly 

Figure 3 Data inclusion and exclusion steps for source dataset. OAI, osteoarthritis initiative; MRI, magnetic resonance imaging; MOAKS, 
MRI Osteoarthritis Knee Score; DESS, double echo steady state.

Table 3 Dice similarity coefficient scores of the source and target nnU-Net

Knee compartment Femoral cartilage Lateral meniscus Lateral tibial cartilage Medial meniscus Medial tibial cartilage Patellar cartilage

Source nnU-Net 0.92±0.02 0.91±0.02 0.92±0.02 0.87±0.05 0.90±0.03 0.87±0.08

Target nnU-Net 0.85±0.02 0.85±0.08 0.81±0.05 0.85±0.12 0.81±0.06 0.81±0.10

Numbers are the mean ± standard deviation from the leave-out test set.
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Figure 4 Examples of tissue segmentation. Columns 1 (A,C) and 2 (B,D) represent the original and cropped images with segmentation 
masks, respectively. Rows 1 (A,B) and 2 (C,D) are MRI from the source and target datasets, respectively. MRI, magnetic resonance imaging.

Figure 5 ROC and AUROC for the source classifiers. The orange curves are the averages of the 100 bootstrapping events. The shadows 
indicate the range of the curves. The dashed line indicates an AUC of 0.5. AUROC scores are shown as the mean ± standard deviation. 
AUROC, area under the receiver operating characteristic curve; ROC, receiver operating characteristics; AUC, area under the curve.
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available OAI dataset to a smaller, locally collected target 
dataset. The performance of the target classifier trained 
with UDA, as evaluated by the AUROC, sensitivity, 
specificity, and accuracy, were improved compared with the 
classifier trained without UDA. The target classifier trained 
with UDA successfully captured the crucial information 
from the source dataset for OA phenotype classification and 
adapted it to the target dataset without target data labels, 
despite the differences in MRI sequences, scanner vendors, 
acquisition parameters and patient groups between the two 
datasets.

UDA is widely used in various medical imaging tasks, 
including segmentation (28,30,48) and diagnostics (49), 
and has been successfully applied for the analysis of images 
of multiple organs, including the heart (28), brain (31), 
breast (50), liver (48) and knee (30). UDA applications in 
medical imaging address the issue of insufficient data in 
the target dataset by taking the feature from the source to 
the target. To train an excellent deep-learning model for 
OA phenotype classification requires a large amount of 
data, which can be challenging for individual hospitals. We 
propose a method that leverages the publicly available OAI 
dataset to learn a deep representation that can facilitate 
downstream research on diagnostics and prognostics in 
local patient groups using deep learning. Our method has 
the potential to address the challenges of limited data and 
high labelling costs that often hamper such research.

We develop an automatic OA phenotype classification 

system based on clinically validated phenotypes and 
standard TSE/FSE MRI acquisition. The phenotypes 
were proposed by Roemer et al. (21), who conducted 
a case-control association analysis of phenotypes with 
multiple clinical assessments from 475 knee subjects 
from the Foundation for National Institutes of Health 
OA Biomarkers Consortium cohort, a subset of the OAI  
dataset (22).  The analysis revealed a relationship 
between the subchondral bone phenotype and the risk of 
radiographic OA progression. In a longitudinal study of 
the entire OAI dataset by Namiri et al. (23), correlations 
between all phenotypes and concurrent structural OA were 
discovered. Note the phenotypes were designed for quick 
MRI knee structural screening for treatment. Our proposed 
method may speed up the screening process.

TSE/FSE sequences are widely available on MRI scanners 
and are regularly used in clinical routines and research. 
Astuto et al. (15) presented a knee OA staging system with 
multiple binary classifications from 1,786 3D TSE/FSE MR 
images, yielding AUROC values ranging from 0.83 to 0.93 
for all knee compartments. Namiri et al. (51) performed 
severity staging on ACL injuries using a 3D TSE/FSE MR 
image dataset containing knee images from 1,243 subjects, 
yielding 89% and 92% accuracy with 3D and 2D CNNs, 
respectively. Although previous studies have generated 
promising results using supervised training with large high-
quality datasets, those datasets are not publicly available. 
Meanwhile, the 3D MRI in publicly available datasets like 

Table 4 Performance of cartilage/meniscus phenotype classifiers evaluated on the target dataset

Classifier AUROC Sensitivity (%) Specificity (%) Accuracy (%)

Cs 0.76 (0.53–0.98), 0.02 50 (2/4) 73.91 (34/46) 72 (36/50)

CT 0.52 (0.13–0.90), 0.93 25 (1/4) 73.91 (34/46) 70 (35/50)

CT-UDA (ours) 0.90 (0.79–1.02), <0.01 75 (3/4) 78.26 (36/46) 78 (39/50)

The AUROC column is AUROC value (95% CI), and P statistics. AUROC, area under the receiver operating characteristic curve; UDA, 
unsupervised domain adaptation; CI, confidence interval.

Table 5 Performance of subchondral bone phenotype classifiers evaluated on the target dataset

Classifier AUROC Sensitivity (%) Specificity (%) Accuracy (%)

Cs 0.76 (0.55–0.98), 0.02 60 (3/5) 66.67 (30/45) 66 (33/50)

CT 0.53 (0.33–0.73), 0.78 60 (3/5) 42.22 (19/45) 44 (22/50)

CT-UDA (ours) 0.75 (0.56–0.94), 0.01 60 (3/5) 64.44 (29/45) 64 (32/50)

The AUROC column is AUROC value (95% CI), and P statistics. AUROC, area under the receiver operating characteristic curve; UDA, 
unsupervised domain adaptation; CI, confidence interval.
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OAI are collected by using sequence 3D DESS instead of 
3D TSE/FSE. By using a publicly available and high-quality 
OAI dataset and adapting the trained features to a small 3D 
TSE/FSE dataset, our method provides OA grading based 
on common clinical TSE/FSE sequences.

Although UDA improved the classification performance 
compared with the non-UDA models, we were limited by 
small sample sizes and an imbalanced data distribution. The 
small sample size of the target dataset (n=50) constrained 
the statistical power and deep-learning performance. 
We also observed that the UDA classifier did not gain 
improvement compared with the direct inference on the 
source classifier in subchondral bone phenotype. This is 
likely due to the intricate characteristics associated with 
the subchondral bone phenotype, which hinders the model 
training. Additionally, the sample size and spatial geometry 
imbalance of our dataset affected the classification power. 
The patient groups had much smaller sample sizes than 
the control groups, and the geometry size of the image 
features that defined the phenotypes was small compared 
with the geometry size of the 3D knee volume. The 
small sample size and geometry imbalance may have led 
to the poor performance of the CNN. We attempted 
to overcome the sample size inequality by using focal  
loss (42) and the geometry imbalance by using ROI 
cropping. Future investigations to address the data 
imbalance issue are needed. For example, zero-shot learning 
(52,53), which learns from samples of the majority classes to 
improve the minor-class classification, may be useful in this 
application. The pathology detection approach proposed 
by Desai et al. (54) can potentially address the geometry 
imbalance issue by converting the phenotype classification 
to phenotype-related feature detection tasks.

Our work is limited by the structural OA phenotypes 
based on MRI. Roemer et al. (20) acknowledged that the 
MRI-based structural phenotypes always overlap where 
multiple phenotypes appear together. This property 
challenged the deep learning models to distinguish clear 
classification boundaries, especially with limited data size. 
In this work, we only studied two phenotypes due to limited 
phenotypes manifested in our small in-house dataset. 
Further work is needed to extend the proposed method to 
more OA phenotypes.

In conclusion, we report a UDA approach for automatic 
phenotype classification of knee OA in 3D TSE/FSE MR 
images. The proposed UDA implementation transfers OA 
phenotype classification information from the publicly 
available large OAI dataset to a small in-house dataset. 

The phenotype classification performance was significantly 
improved with UDA compared to without UDA. This is 
beneficial for downstream clinical research at individual 
hospitals, which often have insufficient training data. As 
UDA is transferable to various medical imaging tasks, this 
work may provide a useful reference for further research 
across institutions, imaging devices, acquisitions, and 
patient groups.
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