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Abstract: Cell-derived extracellular vesicles (EVs) are newly uncovered messengers for intercellular
communication. They are released by almost all cell types in the three kingdoms, Archeabacteria,
Bacteria and Eukaryotes. They are known to mediate important biological functions and to be
increasingly involved in cell physiology and in many human diseases, especially in oncology. The aim
of this review is to recapitulate the current knowledge about EVs and to summarize our pioneering
work about Dictyostelium discoideum EVs. However, many challenges remain unsolved in the EV
research field, before any EV application for theranostics (diagnosis, prognosis, and therapy) of
human cancers, can be efficiently implemented in the clinics. Dictyostelium might be an outstanding
eukaryotic cell model for deciphering the utmost challenging problem of EV heterogeneity, and
for unraveling the still mostly unknown mechanisms of their specific functions as mediators of
intercellular communication.

Keywords: extracellular vesicles; microvesicles; exosomes; oncosomes; apoptotic bodies; intercellular
communication; human disease; cancer; Dictyostelium discoideum

1. Introduction

After a brief presentation of the extracellular vesicles (EVs) and of the eukaryotic microorganism
Dictyostelium, an overview will be given about the properties of EVs and their involvement in human
health and disease. Then, our pionnering work about Dictyostelium EVs will be presented in addition
to the assets of Dictyostelium, as a model for studying the mammalian EVs will be discussed.

1.1. Presentation of the Extracellular Vesicles

Cell theory was officially formulated in 1838–1839, stating that the cell is the basic component of
living organisms [1]. So the cell emerged slowly to birth, as the ultimate unit of life from the seventienth
to the ninetienth century. During this time, the cell was perceived as a more complex factory, regulating
its multiple biological functions by means of its many macromolecular components. As a consequence,
the DNA was attributed to the major director role, orchestrating all the other components in a different
set of pathways. Until recently, each cell was delimited by a membrane aimed to protect its precious
content from any harmful external invasion and the extracellular medium was mostly devoted to
a garbage disposal; even if a few cell-derived proteins, such as proteases or hormones already had
specific intercellular functions.

One important «earthquake» in cell biology arrived insidiously, initiated by the observation that
plasma contains a subcellular factor that promotes the clotting of blood [2]; two decades later, Wolf
showed that this subcellular factor consists of vesicles of platelet origin, named “platelet dust” [3].
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Thus, the platelet plasma membrane was no longer an impermeable border, and the cell extended its
field outside the cell factory. In 1981, Trams et al. reported the exfoliation of membrane ecto-enzymes
in the form of microvesicles [4]. Beside these pionneer observations, two Canadian teams worked
on the maturation of sheep reticulocytes into erythrocytes over a number of years, and showed
that the obsolete protein transferrin was transported outside the cells by a means of extracellular
vesicles, called “exosomes”. This was also observed for the maturation of human reticulocytes, and
the exosome-mediated release of obsolete cellular proteins was suggested as a general mechanism [5].
In 1999, Heijnen et al. observed that activated platelets release two types of membrane vesicles:
microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and
alpha-granules [6]. After the first 2005 Exosome Meeting in Canada, C. Théry and G. Raposo organised
the second International Exosome Workshop (IWE) [7]. Founding of an International Society, ISEV, was
decided and devoted to the study of all the Extracellular Vesicles—not limited to Exosomes—with a
dedicated Journal of Extracellular Vesicles, JEV, and a yearly International Congress. This was achieved
during the first 2012 ISEV Meeting with about 400 participants [8,9], whereas, the 2018 ISEV meeting
gathered about 1100 participants [10]. Before ISEV, another International Society on Thrombosis and
Haemostasis, ISTH, was founded in 1969, more centered on Microvesicles in Health and Disease [11],
but now with many aims in common. Both Societies joined for the first time at the Educational Day
before the 2016 ISEV Meeting.

1.2. Presentation of Dictyostelium

Dictyostelium discoideum was discovered in 1935 by Raper in a North Carolina (USA) forest [12], and
has been widely studied ever since. For simplification, Dictyostelium is further used for Dictyostelium
discoideum in this review. Dictyostelium is a eukaryotic amoeba at the border of the vegetal and animal
kingdoms, which appeared in evolution about one billion years ago, long before mankind. In the
wild, it grows on bacteria and cell divides by mitosis, but in the lab it can also grow in an axenic
medium without any calf serum [13], or even in a completely defined medium [14,15] and cell divide
also by mitosis. The individual growing cells are analogous to human leukocytes, with regard to
their size (about 10 µm in diameter) and motility, and to macrophages with regard to their capacity
for phagocytosis. In conditions of complete starvation, these Dictyostelium, “animal-like” cells, first
experience a primitive multicellular aggregation, followed by a simple differentiation into two main
“vegetal-like” cells, stalk cells, and spores. Aggregation tests in (3.5 cm in diameter) tissue culture
Petri dishes with 2 × 106 adhering cells in 1 mL KK2 buffer depict cAMP-driven chemotaxis, with
cell elongation within about 6 h of starvation, and further formation of nice aggregation figures,
either in stars or in spirals. When being at an air-interface in (4.1 cm in diameter) differentiation tests,
each complete aggregate gives rise in about 24 h from initation of starvation, to a visible so-called
fruiting body, inholding (1/3) stalk cells, programmed to death and organised into a stalk, bearing
a small balloon, including the (2/3) spores, programmed to further life by germination into new
amoebae, when recovering normal nutrition conditions [16]. Thus, for this primitive eukaryotic
species, growth and differenciation are well separated biological processes, and complete starvation
induces the transformation of individual cells (about 10 µm in diameter) into a visible fruiting body
(a few tenth of mm high). A. Einstein, watching J. T. Bonner’s 1940 video about this slime mold
development, in Princeton (USA), was impressed by this amazing microorganism [17].

Besides its quite noticeable lifestyle, Dictyostelium possess many other assets. Its small
(3.4 × 107 bp) genomic DNA has been completely sequenced [18], and covers six chromosomes, with a
90% efficient transcription into about 12,500 genes. By comparison, the human (about 109 bp) genomic
DNA is 10% transcribed, with only about twice as many genes as Dictyostelium, which is devoted with
some genes analogous to some important human genes. Dictyostelium cells also harbor mitochondria
with a fully sequenced genome [19], and plasmids. More details about Dictyostelium can be found
in the well documented website (https//www.dictybase.org), and an increasing number of specific
strains and plasmids can be ordered from the Dictyostelium Stock center.

https//www.dictybase.org
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Dictyostelium has been chosen in 1999 by the NIH (USA), as a new non-mammalian model
organism for biomedical research. In 2011, R. Escalante gathered the works from many labs to
present Dictyostelium as a model for human disease [20]. As stated by S. Bozzaro [21]: “This model
organism has been particularly useful for the study of cell motility, chemotaxis, phagocytosis,
endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more
recently, autophagy and social evolution. It has proven to be a powerful genetic and cellular model
for investigating host–pathogen interactions and microbial infections, for mitochondrial diseases,
and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human
genes responsible for a variety of diseases, including Chediak-Higashi syndrome, lissencephaly,
mucolipidosis, Huntington disease, IBMPFD—that can affect the muscles, bones, and brain—and
Shwachman-Diamond syndrome. The study of some of these genes has provided new insights on the
mechanism of action of the encoded proteins and, in some cases, on the defect underlying the disease”.

2. Overview of the Extracellular Vesicles

Here are recapitulated the main EVs characteristics and reported biological functions, with no
details about the few already elucidated mechanisms, which have to be searched in more
specialized reviews.

2.1. Definition and Characteristics of the Extracellular Vesicles

These days, the EV field is extraordinarily complex, due to the huge diversity of their observations.
After the pioneering work of Wolf on platelets [3], Apoptotic bodies, with a size up to 5 µm, released by
cells dying by apoptosis [22] were the first EVs to be observed. Microvesicles or Ectosomes, previously
named Microparticles, originated mainly from human body fluids, such as blood, plasma and urine,
and were generally observed in a clinical environment. With a size between 100 nm and 1 µm,
they were rather easy to prepare by low differential centrifugation, and to be characterised by their
membrane antigens, mostly by using specific antibodies and normal fluorescence flow cytometers,
at least above their 300 nm resolution threshold. These two EV classes shared a phosphatidylserine
(PS) transfer from the inner to the outer lipidic bilayer, and a common biogenesis, corresponding to
the shedding of pieces of the cell plasma membrane (PM), and embedding different macromolecular
cargoes. Exosomes, and Exosome-like EVs, such as Prostasomes, were smaller, with a size between 40
and 150 nm, and were first mostly prepared by differential centrifugation, ending with two final steps
of ultracentrifugation at 100,000g [23]; they were mostly characterised by western blots and proteomics
in a biological environment. Their biogenesis were linked to endocytic processes through the cells
until their accumulation into multivesicular bodies (MVBs), partly fusionning with the PM for the
release of their inner vesicles outside the cells as EVs. More recently, the EV family increased with
the appearance of Oncosomes, shed from the PM of some—not only tumor—cells, with a size up to
10 µm [24–27], therefore the EV family is always increasing.

All EV main classes differ first by their size, 40–150 nm for the exosomes, 100 nm–1 µm for the
microvesicles, up to 5 µm for the apoptotic bodies and up to 10 µm for the oncosomes. However, these
different EVs cannot be confidently discriminated by size, due to their partial overlapping. EVs differ
also by their biogenesis: microvesicles and oncosomes originate from the shedding of pieces of plasma
membrane; apoptotic bodies originate from a lesser known ultimate cell reconditioning, whereas
exosomes experience an intracellular traffic through the well-known endocytic pathways. Besides
differences in size and biogenesis, the most important characteristics of the different EVs are their
respective cargoes, with defined contents of molecular components (proteins, lipids, nucleic acids and
metabolites), giving them different densities. The known EV macromolecular compounds have been
classified in three databases [28–31]. However, EVs can neither be discriminated by their quite different
cargoes, due to the absence of some true class-specific biomarkers. Almost all cells, whatever their
kingdom, Archeabacteria, Bacteria or Eukaryotes, are physiologically releasing EVs [32,33], suggesting
that this might also be the case for the Last Universal Common Ancestor (LUCA) [34], which is the
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most recent organism from which all modern cells derive, and that EV release might indeed be of the
utmost importance for cell biology. This is also the case for the different cells of the human body and
the various body fluids, although with varying amounts. Therefore, the EV landscape seems to be a
“continuum” of different EVs, more or less well classified into four main EV populations, as were the
spectral lines of the H atom before Niels Bohr’s atomic theory. Many reviews have been devoted to
the classification of EVs [35–37]. In the absence of a general consensus about EV nomenclature [38],
the International Society ISEV advocates the general use of EVs, whatever the EV class used in the
current scientific papers.

On the other hand, EVs are endowed with important biological functions, which will be
summarized below. Moreover, EV concentrations are generally increasing in many diseases with
specific changes of their cargoes, especially in human cancers. Therefore, tumor cell-derived EVs might
be promising as biomarkers and even as therapeutic agents for drug delivery. These points of interest
will also be detailed below. After a rather slow and messy emergence until 2012, the EV field is now
experiencing a tremendous increase of interest in both biology and medicine, as shown by the fast
growing EV publication rate [39].

2.2. Extracellular Vesicles and Intercellular Communication

Besides their characterization by size, biogenesis and cargo contents, the EV biological properties,
although still mostly unknown, have been progressively discovered [40,41]. One of the earliest
observations was the externalisation of the transferrin receptor from sheep reticulocytes in vitro [42].
It was later suggested as a general exsosomal process for shedding membrane proteins [5]. Already
in 1996, it was mentioned that B-lymphocytes secrete antigen-presenting vesicles [43]. The roles of
membrane vesicles and exosomes in immune responses were further elucidated [44–46]. Microvesicles
also participate in important biological processes, such as the surface–membrane traffic and the
horizontal transfer of proteins and RNAs among neighbouring cells. In 2006, whereas the horizontal
transfer of DNA by the uptake of apoptotic bodies was already a known process [47], J. Ratajczak et al.
stressed that membrane-derived vesicles were important mediators of cell-to-cell communication [48],
and they brought evidence for the horizontal transfer of mRNA and protein delivery by embryonic
stem cell-derived microvesicles [49]. Valadi et al. reported a novel mechanism of genetic exchange
between cells, mediated by the exosome transfer of mRNA and miRNA [50]. Among other beneficial
influences of exosomes, one can mention their communication of protective messages during oxidative
stress [51]. Nowadays, the EV active participation in intercellular communication is convincingly
claimed [35,48,52–55]. As stated by Camussi et al. [56] “even though the exact physiological role of
EVs remains to be elucidated, it is becoming clear that they may transfer proteins, receptors, bioactive
lipids, messenger ribonucleic acid (mRNA), and micro-RNA (miRNA) from the cell of origin to the
recipient cell, which may modify their phenotype and functions”. The physiological roles of exosomes
is probably important for monitoring body homeostasis during health, but is less well-studied than
their pathological roles in many human diseases. The exosome-like vesicles prostasomes, originating
from the prostate, represent an exception, as their influence in normal human reproduction was one
of the earliest works of interest about EVs [57]. During normal pregnancy, placental vesicles have
been shown to have a wide range of functional activities, transferring a variety of bioactive molecules
into the maternal circulation [58]. Recently, EVs have also been implied in senescence and aging [59].
However, the EV-mediated intercellular communication is a “double-edge sword”, as cells can release
prions in association with exosomes [60], and exosomes can also mediate the functional delivery of
viral miRNA [61], whereas microvesicles too can contribute to viral infection [62].

2.3. Extracellular Vesicles and Human Diseases

Figure 1 (taken from [63]) shows the complexity of the cell-derived EVs. This tissue-specific EV
classification points out their interest in the medical field. As stressed more recently [27], only large
oncosomes are released by some tumor cells, whereas oncosomes might also be releasd by non-tumor
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cells. The possibility of using EVs as biomarkers and even therapeutics in many human diseases has
sustained the increasing interest for EV research [39]. This approach was first experimented with the
microvesicles, as detailed in [11]. Shedding vesicles play a role in inflammation and thrombosis [64],
in vascular diseases [65] and in pre-eclampsia versus normal pregnancy [66]. Pregnancy affords a
unique opportunity for a comparative EV study in normal physiology and disease [58]. In addition,
microvesicles have important physiological roles in coagulation in vivo, by mediating the coordinate
contribution of platelets, macrophages, and neutrophils [67]. Endothelial-derived microparticles are
said to be biological conveyors at the crossroad of inflammation, thrombosis, and angiogenesis [68].
EVs have deleterious effects (pro-inflammatory, pro-angiogenic, pro-thrombic, vascular dysfonction,
and pro-apoptotic), as well as beneficial effects (anti-inflammatory, post-ischemic angiogenesis,
and anti-apoptotic), in cardiovascular pathologies, depending on the molecules they carry [69], (p. 397).
Epigenetic changes induced by EVs have been particularly studied in the context of immunology,
cancer and stem cell biology [56].
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Table 1 shows the suggested topics for abstract classifications of ISEV 2018 [10], stressing the
current huge human medical involvement of EVs. Presently, EVs are involved in the immune system,
in cardiovascular diseases and vascular disorders, in reproduction and pregnancy, and in the nervous
system (blood-brain-barrier). They are also involved in tissue injury, repair and remodeling; in viral,
bacterial, fungal, and parasitic infections; in acute and chronic inflammatory disorders; in stem
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cells and in cancer, especially in tumor immunology, angiogenesis, and metastasis; as well as in
neurodegenerative diseases [70].

Table 1. Topics for Abstracts Classification of ISEV 2018.

• EV biogenesis (from prokaryotes to eukaryotes)
• EV in environment and cross kingdom communication
• Cellular and organ targeting of EVs
• EVs in cellular differentiation & organ development
• EVs and the immune system
• EVs in the nervous system (blood-brain-barrier)
• EVs in reproduction & pregnancy
• EVs in tissue injury & coagulation
• EVs in tissue repair & remodeling
• EVs in tumor immunology
• EVs in tumor angiogenesis
• EVs and stem cells (including cancer)
• EVs in tumor metastasis
• EVs in cancer (except metastasis, immunology, angiogenesis, stem cells)
• EVs in acute and chronic inflammatory disorders
• EVs in diseases of the nervous system
• EVs in cardiovascular diseases and vascular disorders
• EVs, viruses, and viral infections
• EVs in parasitic, bacterial and fungal infections
• EV-based cancer Biomarkers
• EV-based non-cancer Biomarkers
• EV-inspired therapeutics and vaccines
• Analysis of EVs in body fluids; preparative studies, spike-ins etc
• EV proteomics & lipidomics
• EV transcriptomics
• Novel developments in EV isolation
• Novel developments in EV characterization

2.4. Extracellular Vesicles and Cancer

Cancer is by far the most studied human disease under the EV light. However, no unique
cancer-specific pathway has yet emerged. Each of the most common human cancers behaves like
a specific illness and develops its own panel of various tumor cells-derived EVs, with specific
compositions and timely influences on the tumoral near or distant environment. Many papers are
devoted to EVs with a given specific human cancer, but are out of the scope of this review. Each main
EV class can be an actor implied in cancerogenesis, but its relative importance, compared with the
ones of the other EVs classes can vary for different tumors. Microvesicles have important pathological
roles as mediators of intercellular communication in cancer [71] and in tumor progression by novel
microenvironment modulators [72], facilitating the spreading and release of cancer cells to generate
metastases [67].

The general properties inventoried for tumor EVs are related either to the transport and
intercellular transfer of active compounds, such as oncogenes, functional miRNAs, tumor suppressor
proteins, and antitumoral drug resistance proteins, or to biological functions, dealing with modified
immunological properties and angiogenesis, or specific organ-targeted metastasis. Many papers or
recent reviews summarize these observed properties of tumor EVs [25,26,63,73–81].

2.5. Extracellular Vesicles, Drug Delivery, and Cancer Therapy

The more achieved EV therapy corresponds to the early use of dendritic cell-derived exosomes,
as a novel cell-free vaccine for the eradication of murine tumors [82], which is now efficient as an
immunotherapy treatment for some human tumors.
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In 2013, Ohno et al. overviewed the potential roles of exosomes and microvesicles with respect to
clinical diagnosis and disease pathogenesis [83]. Beside their great potential as diagnostic and pronostic
biomarkers, EVs are promising drug delivery systems, following “the Trojan exosome hypothesis”,
according to which exosomes might be good candidates for crossing the rather impervious cell
biological barriers for drug delivery [84]. This has been applied to the drug delivery of RNAi [85]
and siRNA [86]. Although also being Trojan horses for viral infections [87], EVs are now considered
unique intercellular delivery vehicles [88]. Potential applications of EVs were suggested in cancer
diagnosis, prognosis, and epidemiology [89]. Basic and clinical scientists joined to summarize recent
developments and the current knowledge of EV-based therapies. Strategies to promote the therapeutic
application of EVs in future clinical studies were addressed [90]. This has been recently actualized
for the development of best practice models for EV therapies [39,91], which might bring future
improvements in cancer care [92].

2.6. Challenges Faced for Therapeutic Use of Extracellular Vesicles

EVs are quite appealing for future theranostics (diagnosis, prognosis, and therapy) of human
diseases, and especially cancer. However, no efficient clinical use is possible yet, due mainly to some
challenging unsolved problems, i.e., the absence of the consensus in regard to the EV nomenclature [38],
the absence of standardisation of the EV measurements at a large scale [93], and the crucial unsolved
problem of EV heterogeneity [94–97]. Besides the intrisic EV heterogeneity, heterogeneity is ever
present in the human body. Many different types of healthy human cells have the potential to secrete
EVs into bodily fluids, with the possible increase and modification, and contribution from sick cells;
futhermore, an important microbiome (10 times more bacteria than human cells) brings its own
capacity to externalize EVs, due to the universal process of EV secretion [33]. The general estimation
of about 100 times more viruses than human cells, their size analogy with exosomes and the recent
observation of SVF-derived gesicles [98] suggest that viruses too, might contribute to an increase in
the so-called “mammalian EVs”.

The EV field is complex not only by definition, as detailed above, but also greatly depends on
the methods used for their preparation—of which the numbers are increasing with time. Beside
the long used unique centrifugation protocols, there are some new filtration processes and some
available commercial kits, based on EVs precipitation [97,99]. When working with body fluids,
pre-analytical conditions before EVs preparation are also quite important. The standardisation of EV
measurements is an important challenge to solve a wide inter-organisation comparison of the different
EV measurements, especially in clinical set-ups. Recently, the technical challenges for working with
EVs were discussed, and some possible options to overcome them were suggested [93,99]. In 2014,
ISEV provided researchers with a minimal set of experimental requirements for the definition of EVs
and their functions [100], which was further updated [101,102]. The deciphering of EVs into specific
subpopulations, linked to their specific biological functions, remains one of the biggest challenges
to solve, before using the great potentialities of EVs in the theranostics of many human diseases,
including cancer.

It is to be noticed that up to now, many EV studies have been performed directly at the clinical level
in human body fluids, or in vitro on different human disease-related cell lines. A simple eukaryotic EV
model is urgently needed, to help solve some of the remaining challenges, which are too complex to
be worked out directly at the human level. Dictyostelium might be such an appealing eukaryotic EV
model, as argumented in the next part of this paper.

3. Dictyostelium as a Model for Studying Mammalian Extracellular Vesicles

3.1. Discovery of Dictyostelium Extracellular Vesicles by Serendipity

Dictyostelium EVs were unknown until our observation in 1998 [103]. This was the result of many
years of unprogrammed research, favored by serendipity, as outlined below.
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After a PhD in physics, I met Dictyostelium during a 1977 sabbatical at the University of British
Columbia (UBC, Vancouver, Canada). Following a method, said to discriminate the rigidity of the
cell plasma membrane of leukemic cells from the one of the normal cells [104,105], I used a newly
achieved UBC home-made fluorescence polarization set-up with an analogic photomultiplier detection
with Dictyostelium cells [106]. When coming back to the Curie’s lab in Paris, I decided to switch my
research towards biology with Dictyostelium. I was helped greatly by P. Brachet (Pasteur Institute,
Paris) for introducing this wonderful microorganism into a physics environment. I was very lucky to
manage working with it, as a CNRS scientist until 2003, and, then until 2013, as an Honorary UPMC
Research Director.

Our first goal was to build an automated set-up for fluorescence polarization measurements,
but with the photon counting technology, previously elaborated in our team. We managed to measure a
higher plasma membrane rigidity for Dictyostelium cells during early development, compared to one of
the growing cells [107]. But we also observed a quite unexpected release of fluorescent compounds into
the KK2 phosphate starvation buffer, accompanying early aggregation of the cells in suspension [108].
This was the beginning of a fruitful investigation headed by R. Klein, who deciphered the GTP
catabolism, giving rise to the pteridine pathway, and ending with the formation of a specific pterin,
named Dictyopterin [109].

We improved our set-up in order to measure the known spontaneous oscillations of
aggregation-competent cells in suspension [110]. In parallel, I remained fascinated by watching via light
microscopy, and taking pictures of Dictyostelium growing cells, and of cells further starvation-induced
into aggregation and differentiation, after incubation of the cells with many different compounds, or
without comparison. The growth of axenic Dictyostelium cells was also measured in a complete defined
medium [14], or in the same medium without 5 × 10−7 M folic acid, and their respective developments
were compared.

When becoming more familiar with Dictyostelium, I asked the first “funny” question: Why do
Dictyostelium cells never get cancer? Dictyostelium, strain (Ax-2) growing cells were incubated
with either the main carcinogenic compound of tobacco smoke, benzo (a) pyrene, B(a)P, or with
its non-carcinogenic isomer benzo (e) pyrene, B(e)P. The current theory was that only B(a)P was
metabolized into a diol-epoxide compound, which initiated the tumoral process. But with Dictyostelium
cells, we noticed that the shape recognition of the two BP isomers occurred before any metabolization:
only the fluorescent harmful B(a) P was released into the KK2 starvation medium. This was presented
at the thirteenth International Symposium on Polynuclear Aromatic Hydrocarbons [111], but was
futher rejected for publication (“nothing to do with cancer” for cancer journals/”too much dealing
with cancer” for biological journals). As M. Gottesman was then deciphering the P-glycoprotein
(P-gp)-mediated multidrug resistance [112–114], I asked whether such an ABC transporter might exist
in Dictyostelium cells and explain their already recognized high resistance against many structurally
different xenobiotics. By the help of a medical collaboration with A.-M. Faussat, using a mouse
antibody against P-gp, we showed that, in fact, Dictyostelium cells harbor a P-gp with the same 170 kDa
mass as the human P-gp [115]. However, by means of another collaboration with G. Lizard in Dijon,
we showed, by using flow cytometry, that this P-gp was non-functional [116]. At the same time, the
multidrug landscape became more complex with the appearance, beside the P-gp, of the multidrug
resistance protein (MRP), and of the lung resistance protein (LRP), acting at the nuclear membrane
level, so we have temporarily left this research field.

In order to get a homogeneous cell population in a given state of the cell cycle, before initiating
starvation-induced development, we reproduced a simple method for synchronizing growing
Dictyostelium cells [117]. We needed to control the cell DNA amount in a timely manner, therefore
we chose the widely used DNA-specific Hoechst 33,342 (HO342) vital stain for labeling aliquots
of the synchronized growing cells, as a function of time. Unexpectedly, Dictyostelium cells were
completely resistant to HO342 vital staining, and when watching the cells once more with a light
fluorescence microscope, we noticed that the cells were surrounded with numerous fluorescent
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particles. These particles turned out to be detoxyfing vesicles, inholding HO342, which was thus
prevented to reach its nuclear DNA target. Here, was the long-searched resistance mechanism of
Dictyostelium cells. Morover, the control experiment without HO342 labeling showed that extracellular
vesicles were present, not only as a detoxyfing mechanism, but as a common physiological process [103].
This was the beginning of the fruitful EV story of Dictyostelium cells.

3.2. Story of the Dictyostelium Extracellular Vesicles (1998–2013)

Dictyostelium cells vitally stained with the DNA-specific dye, HO342, released fluorescent material
in their culture medium. By means of lipid analysis and electron microscopy, we demonstrated the
vesicular nature of this material, which turned out to be organelles of about 100 to 300 nm, surrounded
by a lipid bilayer envelope. Furthermore, we observed that proteins and nucleic acids, both DNA and
RNA, associated with these extracellular vesicles, independently of HO342 vital staining. The main
vesicular DNA component exhibited a size > 21 kb, and its association with vesicles in physiological
growth conditions, and not concomitant with any programmed cell death, suggested a possible
involvement of these EVs in a more general intercellular mechanism, than the newly observed cellular
resistance to vital HO342 DNA-staining [103].

The second important observation was that the HO342-transporting Dictyostelium EVs were able
to completely overcome the natural resistance of Dictyostelium cells to HO342 vital staining and to
transport the dye into their DNA nuclear target. This was true not only for Dictyostelium cells, but also
for human leukemic resistant cells, K562r, as shown in a fluorescence study [118]. This gave rise
to an European patent, extended to the USA and Canada, advocating for the use of Dictyostelium
EVs for tranferring a molecule of interest to an eukaryotic cell [119]. This EV property was also
tested with hypericin (Hyp), which is used for photodynamic therapy in some cancers, and is a
very hydrophobic molecule, quite different from HO342. Here again, Dictyostelium detoxifying EVs,
inholding Hyp, were able to transfer the drug to its known target, i.e., the Golgi, into living Hela
cells [120]. Co-internalization of magnetic nanoparticles and fluorescent dextran in Dictyostelium
cells demonstrated the possibility to design multifunctional biovesicles, carrying both magnetic
agents and therapeutic molecules, for targeting a tumor area by means of magnetic attraction [121].
The Dictyostelium cells derived EV strategy for drug delivery has been further detailed [122]. In parallel,
the new EV-mediated detoxifying mechanism, discovered with Dictyostelium, was presented at the
International Exosome Workshop (IWE) [7], and further suggested to be involved as a new multidrug
resistance mechanism, at work during the failure of antitumoral treatment by chemotherapy [123].

Our whole study about Dictyostelium EVs was summarized in a poster for the first 2012 ISEV
Meeting [9]. The assets of the non-pathogenic micro-organism Dictyostelium discoideum have been
stressed, in order to promote it as an interesting model for the study of eucaryotic EVs [124].
Dictyostelium EVs were also used to elaborate a new EV characterization method, Raman Tweezers
Microspectroscopy (RTM), with a home-made set-up, in order to measure the global molecular
compostion of a single (or a few) EV(s), without any labeling. The global molecular compositions
of Dictyostelim EVs, either derived from growing cells or from aggregating cells were found to be
quite different [125]. A thorough study of this technology has recently been published [126], which
will potentially be useful for the molecular characterization of single (or a few) EV(s) in pre-defined
EV subpopulations.

3.3. Dictyostelium Could be an Outstanding Eukaryotic Model for Studying Mammalian Extracellular Vesicles

All the intracellular and extracellular vesicles present a characteristic lipid composition and
organization that governs their formation, targeting, and function. The liquid crystalline structure of
lipids plays an essential role in their function as biological nanovehicles of information [127].

One asset of Dictyostelium lies in its easy manipulation in conditioned media experiments.
Dictyostelium cells are able to grow in agitated suspensions or as adhering cells. In simple tissue
culture flasks, one can easily control the whole Dictyostelium life cycle, i.e., the growth, as well as
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starvation-induced aggregation and differentiation into fruiting bodies. The corresponding conditioned
media of this unique eukaryotic both in vitro and in vivo cell model could be easily collected. With the
current progress for EV preparation and characterization, it would be possible to address the important
challenge of EV heterogeneity (exosomes, microvesicles, apoptotic bodies, oncosomes, and their
respective subpopulations) in this simple cell model. The further easy design of conditioned media
experiments might offer the possibility to study the respective biological functions of these different
pre-defined EV subpopulations.

Another suggestion would be to reconsider our experiment about the inhibition of multicellular
development, which switches the cell death of Dictyostelium towards mammalian-like unicellular
apoptosis [128], by questioning the influence of EVs. Briefly, a conditioned medium was obtained
by first starving a 4 × 107 c/mL Dictyostelium cell population in agitated suspension during 22h in
a KK2 phosphate buffer (pH 6.8). After getting rid of the cells by centrifugation, the conditioned
medium was obtained and named t22, linked to the time of cell starvation in suspension. When
performing the usual aggregation test with 2 × 106 c/mL, new growing Dictyostelium cells in 1 mL of
this t22 conditioned medium, their aggregation was completely blocked and all the cells were induced
to an apoptotic death, with many characteristics of human apoptosis, including the mitochondrial
release of an apoptosis-inducing factor [129]. A t8 conditioned medium, obtained after only 8 hours of
starvation did impair the aggregation of new cells, but without further inducing cell apoptosis. EVs
were observed in the t22 conditioned medium, but not studied at that time. One can now wonder
whether EVs were involved in these observed biological effects, what was the EV differences between
the two (t8/t22) conditioned media, and whether a late-appearing EV subpopulation might be able to
induce Dictyostelium cells into a human-like apoptotic death.

The significance of Dictyostelium for deciphering EV biological functions was nicely demonstrated
recently [130]. Despite its one billion year ancestral position in evolution, Dictyostelium was brought
to scientific discovery only in 1935 [12]. Its splendid patterns of starvation-induced aggregation
remained for more than three decades under the mysterious Acrasiale power, then the orchestrating
role of c-AMP was discovered in J. T. Bonner’s lab in 1969 [131]. Many labs were further involved
in deciphering the c-AMP mechanism, but nearly five decades passed before EVs entered into this
chemotaxis process [130,132]. C. A. Parent et al. have nicely shown that a polarized Dictyostelium cell
migrating towards an agregation center expells EVs from its rear part, and that these EVs contain
all the machinery (Adenylate Cyclase and ATP) to self-assume the c-AMP biosynthesis. Moreover,
among the 68 Dictyostelium cell pumps, 13 remain associated with the EVs and one is specially devoted
to quantitatively expell the newly formed c -AMP for attracting the other following Dictyostelium
cells. The elucidation of the chemotaxis mechanism in Dictyostelium cells might help to clarify
the exosome-promoted chemotaxis of cancer cells [133]. To my knowledge, it is only the second
observation, beside the one concerning the EV-maturation of miRNAs [134], showing that EVs are not
only conveyers of important macromolecular components, involved in their now widely recognized
functions in intercellular communication, but that they also can act as cell-independent autonomous
biological entities. This shows an appealing future for Dictyostelium EVs, and the long accumulated
knowledge about this eucaryotic cell model (www.dictybase.org) might help to further elucidate this
quite new EV biological function.

4. Conclusions

For the past decade, cell biology has entered “a new galaxy” by extending its research field beyond
the cell plasma membrane and discovering the huge power of extracellular vesicles in intercellular
communication. However, this extracellular vesicle biology is only in its infancy, and many challenging
questions remain to be solved, before efficiently using EVs for the theranostics of human diseases,
including cancer.

Contrary to the about 10 years working time for developing an efficient pharmaceutical compound,
which are dealing with in vitro and in vivo tests before reaching the clinics, the current EV in vivo

www.dictybase.org
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experiments are still scarce. All the cell lines linked to a given cancer type f. ex. are interesting tools
for searching specific biomarkers, but are relatively too simple to catch an important cancer-specific
mechanism. On the opposite, EV clinical research on human bio fluids, being highly complex, is
like “looking for a needle in a haystack”. The lack of simple eukaryotic models for deciphering the
EV-mediated biological functions greatly hampers the current knowledge about EV-mediated functions
in human health and disease. Dictyostelium discoideum, which was recognised in 1999 by the National
Institutes of Health (NIH, USA), as a new interesting model for biomedical research, might help to
bridge the current gap of the human EV knowledge between in vitro and clinical research.
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