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Abstract

Protected area management agencies often struggle to reliably reconstruct grazer assemblages due to a lack of historical
distribution data for their regions. Wrong predictions of grazing assemblages could potentially affect biodiversity
negatively. The objective of the study was to determine how well grazing herbivores have become established since
introduction to the Mkambati Nature Reserve, South Africa, how this was influenced by facilitation and competition, and
how indigenous grazer assemblages can best be predicted for effective ecological restoration. Population trends of several
grazing species were investigated in in order to determine how well they have become established since introduction. Five
different conceivable grazing assemblages reflecting a range of approaches that are commonly encountered during
conservation planning and management decision making were assessed. Species packing was used to predict whether
facilitation, competition or co-existence were more likely to occur, and the species packing of the different assemblages
were assessed using ANCOVA. Reconstructing a species assemblage using biogeographic and biological information
provides the opportunity for a grazer assemblage that allows for facilitatory effects, which in turn leads to an ecosystem that
is able to maintain its grazer assemblage structure. The strength of this approach lies in the ability to overcome the problem
of depauperate grazer assemblages, resulting from a lack of historical data, by using biogeographical and biological
processes, to assist in more effectively reconstructing grazer assemblages. Adaptive management of grazer assemblage
restoration through reintroduction, using this approach would further mitigate management risks.
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Introduction

There have been alarming declines in large mammal popula-

tions in protected areas in Africa in the last three decades, which

are mainly attributed to habitat loss as well as to consumptive use

[1,2]. In southern Africa, protected areas have been more

successful in maintaining their large mammal populations due to

effective conservation management [2,3]. In many of these

protected areas, the management interventions are intended to

restore ecological patterns and processes that have been affected

by anthropogenic disruption [4–6]. A common element of these

interventions is to reintroduce ‘suitable’ species to, or remove

‘undesirable’ species from, protected areas [7–11].

The reintroduction of indigenous herbivores to an ecosystem,

reintroduces natural disturbance and processes that are thought to

support or promote the re-establishment of local diversity [12]. A

reintroduction is considered to be successful if it results in a self-

sustaining population [9]. Reintroductions of large mammals to

protected areas have had various levels of success over the last few

decades [7–9]. Most of the unsuccessful reintroductions are

attributed to unsuitable habitat [13], animals being non-indige-

nous (outside of their historical distribution range) [7], and to

behavioural problems of the reintroduced animals [14,15]. Often,

however, these explanations are either tautological, or based on

suppositions. Conservation authorities opt to use a precautionary

approach when deciding which species to introduce or maintain in

protected areas, as non-indigenous species are potentially harmful

to habitats in which they did not evolve [16,17]. A critical aspect of

this restoration process is the selection of species that are ‘suitable’.

In many instances, the past is used to determine which species are

suitable, assuming that indigenous species are the most appropri-

ate to achieve restoration objectives [4,18,19]. This piecing

together of the past is frequently based on historical mammal

distribution data (historical records in diaries, journals and

correspondence of early explorers, settlers, hunters, missionaries

or naturalists as well as from archaeological records and rock

paintings) thus leading to the reconstruction of local historic

animal assemblages [5,18–20]. But the process of deciding which

species is ‘suitable’ or ‘undesirable’ is not an exact science and is

open to criticism [19,20].

Resource competition and facilitation could have a significant

effect on the structure and species-richness of large mammal

assemblages [21–23]. Allometric relationships between body size

and metabolic rate, and body size and gut capacity, predict that

larger grazers can survive on lower quality forage but require

higher bulk intake diets [24,25]. Conversely, smaller grazers

require higher quality forage, but can cope with lower quantities of

it [25]. This suggests that for species within the same guild, the

more similar in size the more similar a niche they would occupy

[21,26]. This increases the likelihood of competitive interactions
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[23,27,28], despite this interaction being modified by the type of

digestive system of these ungulates because ruminants of larger

sizes could directly compete with smaller non-ruminants [29].

Ultimately competitive interactions between species could lead to

the extinction of the lesser competitor [21,22]. When the number

of one of the herbivore species decreases, competitive release of

other species may occur as the effect of a competing herbivore

species’ declines [30]. This competitive release can cascade into

lower trophic levels, as the forage species composition shifts in

response to changed foraging behaviour of the released herbivore

species [31].

Hutchinson’s weight ratio theory predicts that character

displacement among sympatric competing species leads to

sequences in which each species is twice the mass of the next

[32]. The higher the species diversity in an area the closer the

species packing will be (i.e., reduced difference in body mass

among species) [21,22,33,34]. Closer species packing is expected

in complex or highly heterogeneous systems [35] as is the case in

African grazing ecosystems [21,36,37]. The grazing by larger

grazers decreases grass biomass as they are better suited to handle

high biomass/low nutrient quality forage [21,38–40]. Further-

more, grazing often increases quality and decreases the stem-leaf

ratio thus facilitating food intake [41,42]. These two processes lead

to facilitation for smaller grazers [21,43], which would maximize

production and subsequent utilization of the grass layer

[38,43,44]. Such facilitation will result in a higher total grazer

biomass in an area, and in closer species packing [21,37,45].

The linking of these type of ecological patterns and processes to

historical distribution data is mentioned by several authors

[20,46], but few examples exist where this was actually done

[19,47]. This would suggest that conservation authorities are not

using the full set of available tools when making management

decisions for protected area restoration, especially when historical

distribution data are lacking. This is a concern, as depauperate

herbivore assemblages could have negative implications for

biodiversity and associated patterns and processes [48], both of

which are goals for protected area conservation management [49].

The aim of this study was to determine how well grazing

herbivores established since introduction, how it was influenced by

facilitation and competition, and how indigenous grazer assem-

blages can best be predicted for effective ecological restoration.

The objectives of the study were therefore to: (1) investigate the

role of facilitation and competition on species persistence for eight

grazing species post re-introduction; (2) investigate grazer diversity

for the protected area under different conceivable assemblages

based on biological principles and/or management practice; (3)

assess our results against a separate, established, grazer assem-

blage; (4) critically evaluate current conservation management

policy regarding wildlife reintroductions and removals in protected

areas and (5) make recommendations for a future management

approach.

Study Area
Mkambati Nature Reserve is a 77-km2 provincial nature reserve

situated on the east coast of the Eastern Cape Province, South

Africa (31u139–31u209S and 29u559–30u049E). The reserve was

established in 1977, before to which it was communal grazing

land. The stated objective for the current management of the

reserve is the conservation of Mkambati’s unique biodiversity

features [50]. The reserve lies within the Indian Ocean Coastal

belt bio-region [51] and Pondoland centre of plant endemism

[52], and has a mild sub-tropical climate with relatively high

rainfall (1200 mm) and humidity [53,54]. Soils originates from the

Natal Group sandstones and are acidic, dystrophic and sandy [55].

Small forest fragments occur in the reserve, and wetland patches

are abundant. Some 80% of the reserve consists of Pondoland–

Natal Sandstone Coastal Sourveld Grassland [56]. Fires, ignited

mainly by poachers, are frequent, which causes a landscape

mosaic with nutrient-rich grass patches within a matrix of older,

moribund grassland (Venter pers.observation), which are considered

to be nutrient poor [57,58].

A total of 1 344 medium to large herbivores were introduced to

Mkambati in 1979 to create a hunting ranch that aimed at an

international clientele [53]. Species introduced were blesbok

(Damaliscus pygargus phillipsi), blue wildebeest (Connochaetes taurinus),

greater kudu (Tragelaphus strepsiceros), impala (Aepyceros melampus),

springbok (Antidorcas marsupialis), gemsbok (Oryx gazelle), eland

(Tragelaphus oryx), red hartebeest (Alcelaphus buselaphus camaa),

Hartmann’s mountain zebra (Equus zebra hartmannae), plain’s zebra

(Equus burchelli) and giraffe (Giraffa camelopardalis) [53]. The animals

originated mainly from the Kwazulu-Natal Province in South

Africa, as well as from Namibia [53]. Approximately 30% (427) of

the introduced animals died shortly after introduction (Sunday

Times, South Africa, 24 August 1980), with the cause being

attributed to ‘‘stress and starvation’’ [53]. The hunting venture

failed commercially, after which Mkambati’s status was changed to

nature reserve [53]. In 2002 a culling program was initiated,

initially to reduce animal numbers, but later (2004 onwards) to

remove species that were considered to be non-indigenous from

the reserve [59]. The removals were based on recommendations

derived from historical mammal distribution data [60,61], which

later shaped the development of a large mammal management

policy [59]. Up to 2013, there were still no large predators present

in Mkambati Nature Reserve.

Methods

To determine how well grazing herbivores established in

Mkambati since introduction population data were collected from

various sources in order to establish population fluctuations from

1979 (when introductions took place) to 2010 (when the most

recent game census was carried out) [53,55,62–65]. We have

limited our investigation to mammalian species .2 kg in mass that

have grass as an important component (.10%) in their diet.

Species mass and feeding type data were sourced from literature

[21,66,67]. Some of the species investigated (e.g., eland and

impala), are mixed feeders [68,69], which allowed for a different

kind of niche differentiation (grazer/browser), but the study was

simplified by only considering them as grazers, as was done by

Prins and Olff, (1998a) and Olff et al., (2002).

Five conceivable assemblages were investigated, and although

assemblages one to four are specific to the circumstances of

Mkambati, they do reflect a range of approaches that are

commonly encountered during conservation planning and man-

agement decision making elsewhere (Table 1).

Assemblage 1– ‘Introduction’
This assemblage was based on the nine grazer species that were

introduced to Mkambati in 1979 together with three species

already present at that time (Table 1). The assemblage reflects

objectives that were understood to be economic (‘consumptive

use’) rather than biological (ecological or biogeographic), and

implemented at a time when experience with the restoration of

African large herbivore assemblages was still limited.

Assemblage 2– ‘Status Quo’
This assemblage was based on all grazer species that were still

present in Mkambati by the year 2010 (Table 1). The assemblage
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reflects the outcome of the original decision, the subsequent culling

(2002) and decision to remove what was considered to be non-

indigenous species (2004), and the performance of the remaining

species up to 2010.

Assemblage 3– ‘Current Policy’
This assemblage was based on all grazer species that would be

present in Mkambati if the currently approved large mammal

management policy [59] were implemented (Table 1). Assemblage

3 was similar to Assemblage 2, but took into account recommen-

dations based only on historical records [60] to modify the

assemblage. All species that were considered to be non-indigenous

are removed, and additional species that were considered to be

indigenous, but which do not occur in 2010, are reintroduced.

Assemblage 4– ‘Biogeographic’
This assemblage was based on all grazer species that would be

present in Mkambati if a biogeographic approach were followed

(Table 1). There is good evidence [51,70,71] that Mkambati falls

within the same biogeographic region as the Kwazulu-Natal and

southern Mozambique coast, which is confirmed by recent new

empirical evidence [72]. Based on the above evidence, we

accumulated historical distribution data for the Indian Ocean

coastal belt bioregion [51] in order to produce a comprehensive

species list which included all species that were recorded to have

occurred within this region in the past [61,73–76].

Assemblage 5– ‘Isimangaliso’
This assemblage was based on the grazer assemblage present in

the coastal sections of the iSimangaliso World Heritage Site [77]

(in Kwazulu-Natal Province), which falls within the same

biogeographic region as Mkambati, namely the Indian Ocean

coastal belt [51](Table 1). iSimangaliso has similar rainfall patterns

(1200–1300 mm p.a.) [78] and soil characteristics (nutrient poor

and well leached) when compared with Mkambati [56,79]. The

assemblage reflects an external reference point from within the

same biogeographical region, with a well-established indigenous

grazer assemblage, of which most have persisted naturally.

Species packing was determined to assess the role of facilitation

and competition on species persistence for all assemblage’s

following the method of Prins and Olff, (1998a) and Olff et al.,

(2002), in which the natural logarithm of body mass was regressed

against rank number, with the smallest species in the assemblage

ranked one, the next species ranked two, etc. When the natural

logarithm of species body weight is plotted against the rank

number, the slope is predicted to be ln 2 ~0:693ð Þ if there is a

sequence where each species is exactly twice as heavy as the next

[21]. Under such circumstances, the weight ratio WR equals eln 2

is 2. Therefore, the natural logarithm of body weight of the i-th

species Wið Þ is expected to depend on the rank number Rið Þ
where the regression line follows the function:

ln Wið Þ~aRizb

where Wi is the body mass of the i-th species in the assemblage

and Ri its rank number [21]. The WR is then obtained by the

function

WR~ea

Based on the Hutchinson’s rule, [21] predicted that in a

functional group, facilitation is more likely to occur at a weight

ratio WRw2 competition at WRv2, while co-existence will occur

at WR~2: They predicted that when species body mass are too

far apart; the larger grazers will keep the grass in a state of

utilization in which the vegetation quality is too low for small

herbivores, in which case facilitation will not occur. They further

predicted that when species are similar in body mass, they might

not gain enough from facilitation, and competition will increase

[21]. Based on this a weight ratio of WR§2 was considered

optimal for allowing facilitatory processes needed in an optimal

grazer assemblages. Species packing for conceivable assemblages

one to four were compared first in order to investigate differences

in historical, current and proposed conceivable assemblages within

Mkambati.

A one-way analysis of co-variance (ANCOVA) was conducted

to determine if there was a significant difference in the degree of

species packing for conceivable assemblages one to four. The

proposed ‘biogeographic’ assemblage was then compared to an

external reference point, i.e. ‘iSimangaliso’, in order to assess

accuracy of the predicted grazer assemblage. To determine if there

was a difference in species packing for assemblage four and five, a

t-test was used. Statistical analysis was conducted using IBM SPSS

Statistics for Windows, Version 19.0. (Armonk, NY: IBM Corp.).

We compared grazer species abundance among the five different

conceivable assemblages according to weight, by generated weight

ranges, in which each weight range is more or less half the mass of

the next heavier weight range (see [21,32]). The weight ranges

were: mini grazers (2–10 kg), small grazers (11–30 kg), small-

medium grazers (31–100 kg), medium grazers (101–200 kg),

medium-large grazers (201–500 kg), large grazers (501–1000 kg),

mega-grazers (1001–2000 kg) and mega+ -grazers (.2000 kg).

Results

Dealing with the assumed local indigenous species [60] first, the

population of red hartebeest had an initial weak decline

F 1,13ð Þ~4:160; P~0:062ð Þ until culling started in 2002, from

when population growth showed an upward trend

F 1,4ð Þ~37:973; P~0:004ð Þ (Figure 1). The number of southern

reedbuck remained relatively stable at between 20–50 individuals

F 1,3ð Þ~1:252; P~0:345ð Þ (Figure 1). Numbers of eland fluctu-

ated between 100–200 individuals before and during times when

culling took place (Figure 1).

For the assumed non-indigenous species, numbers of blesbok

declined initially after introduction, where-after their numbers

fluctuated between 500–800 individuals F 1,13ð Þ~0:120;ð
P~0:735 and F 1,5ð Þ~1:437; P~0:284Þ: Blue wildebeest

showed a strong population growth initially F 1,13ð Þ~7:966;ð
P~0:014Þ (Figure 1). The population started declining in 2002

due to culling, and was totally removed by 2011

F 1,4ð Þ~37:401; P~0:004ð Þ (Figure 1). The numbers of plain’s

zebra steadily increased to, and stabilized between 300 and 400

animals by 2010 (F 1,13ð Þ~39:096; Pv0:005 and F 1,4ð Þ~
16:026; P~0:016) (Figure 1). The number of Hartmann’s

mountain zebra started declining after introduction and the

species was extinct on Mkambati by 2000, 20 years post-

introduction F 1,5ð Þ~36:845; P~0:002ð Þ (Figure 1). The num-

bers of gemsbok declined straight after the introduction until the

species went extinct in 1999 (F 1,11ð Þ~52:783; Pv0:005)
(Figure 1). The population of impala declined after introduction,

and crashed to ,30 animals F 1,12ð Þ~17:162; P~0:001ð Þ
(Figure 1), with only a few (3) being alive in 2010

F 1,3ð Þ~1:452; P~0:315ð Þ: The springbok numbers grew initially

Grazer Assemblages for Protected Areas
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until 1992 (660 individuals) when the population started to

decline F 1,12ð Þ~0:006; P~0:939ð Þ (Figure 1), and by 2012 there

were only 11 animals left F 1,4ð Þ~0:954; P~0:384ð Þ: None of the

springbok population changes were statistically significant. Of the

supposedly indigenous species, some did well after introduction

and some less so, and, of the supposedly non-indigenous species,

the same can be said (Table 2).

When the ANCOVA were performed we first determined that

there was a linear relationship between log mass and rank number

for each conceivable assemblage, by visually assessing the

scatterplot (Figure 2). There was heterogeneity of regression slopes

as the interaction term was statistically significant, F 3,37ð Þ~ð
4:051,p~0:014Þ, but with visual inspection of the scatterplot it

was concluded that this would have a minor effect on the results

because the interaction occurred at the very lower end of the

scatterplot (Figure 2) see [80]. Standardized residuals for the

conceivable assemblages and for the overall model were normally

distributed, as assessed by Shapiro-Wilk’s test (pw0:05): There

was homoscedasticity and homogeneity of variances, as assessed by

visual inspection of a scatterplot and Levene’s test of homogeneity

of variance p~0:008ð Þ, respectively. There were no outliers in the

data, as assessed by no cases with standardized residuals greater

Figure 1. Linear regression lines indication the population growth/decline of red hartebeest, southern reedbuck, eland, blesbok,
blue wildebeest, plains zebra, Hartmann’s mountain zebra, gemsbok, impala and springbuck in Mkambati Nature Reserve before
and during culling. Dashed lines indicate the 95% CI of the predicted mean.
doi:10.1371/journal.pone.0090900.g001
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than 63 standard deviations. There was a statistically significant

difference between the different conceivable assemblages,

F 3,40ð Þ~4:994,p~0:005ð Þ: Post hoc pairwise analysis performed

with a Bonferroni adjustment indicated a significant difference

between the ‘Introduction’ and ‘biogeographical’ assemblages

versus the ‘current policy’ assemblage (Table 3). The result of the

t-test indicated that there was no significant difference in species

packing between the ‘biogeographic’ and ‘iSimangaliso’ assem-

blages t 1,2ð Þ~{0:321,p~0:750ð Þ: The WR for the ‘status quo’

and ‘current policy’ assemblages were ,2, indicating lower species

packing and thus higher potential for competitive grazing

interactions (Table 4 and Figure 2). The WR for the ‘introduc-

tion’, ‘biogeographical’ and ‘iSimangaliso’ assemblages were .2,

indicating higher species packing and thus higher potential for

facilitation among grazing species (Table 4 and Figure 2).

In order to assess the different species’ ability to persist post

introduction we needed to compare ‘introduction’ assemblage with

the ‘status quo’ assemblage. The number of species within the

small grazer, mega grazer and mega+ grazer body weight ranges,

were depauperate in both ‘introduction’ and the ‘status quo’

assemblages (Figure 3). There was a decrease in the number of

species in the medium (22) and medium-large (21) grazer weight

ranges in the period between 1979 and 2010 (i.e., time period

between ‘Introduction’ and the ‘status quo’ assemblages)(Figure 3).

There were no species present in the medium-large and mega

grazer weight ranges for the ‘current policy’ assemblage (Figure 3).

In addition there was only one species per range for the small,

small-medium, medium, and mega+ grazer weight ranges

(Figure 3). There were between 2 and 3 species for all weight

ranges in the ‘biogeographical’ assemblage, except the mega+
weight range, which only had one species (Figure 3). The species

packing results for the ‘introduction’, ‘biogeographical’ and

‘iSimagaliso’ assemblages indicate a facilitation assemblage,

achievable with a suite of 12; 16 to 15 grazing species, which

are relatively evenly spread over all weight ranges. The

‘biogeographical’ and ‘iSimagaliso’ assemblages were similar,

except for a depauperate mini grazer weight range in the

‘iSimagaliso’ assemblage (Figure 3).

Discussion

Forage quality, in many cases, decreases with increasing grass

biomass, which imposes an important constraint on net nutrient

and energy intake by grazers [21,22], which is also the case in

Mkambati [54,57]. The presence of larger grazers can decrease

grass biomass (because they are better suited to handle high

biomass/low nutrient quality forage) [21,38,39], and increase

quality as well as decrease stem-leaf ratio of forage, thereby

facilitating food intake for smaller grazers [21,41–43].

In the case of Mkambati the evidence suggests competitive

exclusion resulting in local extinction of some species. This is

supported by the species packing values that were ,2, as well as

evidence of population decline of species in certain weight ranges

in the ‘status quo’ assemblage. Shorter term effects that may in

addition indicate competitive exclusion can also be seen in the

increased population growth of red hartebeest (from 2002

onwards) after the decline of blue wildebeest due to the culling

program. Although the ‘introduction’ assemblage showed a

facilitation scenario, we reason that it happened in the lower

weight ranges, and there was a general lack of facilitation within

higher weight ranges, i.e. large and mega grazers upwards. In high

rainfall areas ($750 mm p.a.) mega grazers such as the white

rhino and hippopotamus act as influential ecosystem engineers,

creating and maintaining short grass swards, which alter habitat

for other grazers and change the fire regime [81–83]. Elephant,

through trampling effect rather than grazing, are probably also

able to facilitate availability of grazing resources in dense

overgrown areas [44]. This ecosystem engineering role cannot

be replicated by smaller grazers [81]. The lack of facilitation effects

could thus be linked to the evidence of competition driven species

decline in ‘‘overpopulated weight ranges’’ in especially the larger,

i.e. medium and medium-to-large weight ranges. It can reasonably

be argued, in the case of gemsbok and Hartman’s zebra, which

normally occur in more arid areas [84], that poor habitat

suitability and their non-indigenous status could have been the

main factor responsible for the species demise [7,13]. This

Table 2. A summary of the population trends of the large herbivores based on their presumed status of indigenous versus non-
indigenous, from when they were introduced to Mkambati Nature Reserve in 1979, until the latest game census in 2010.

Presumed status [60] Number of species Increasing population trend Decreasing population trend Stable population trend

Indigenous 3 2 0 1

Non-indigenous 7 2 3 2

doi:10.1371/journal.pone.0090900.t002

Figure 2. Linear regression lines with the natural logarithm of
species’ body mass is plotted against the rank number to
indicate the degree of species packing for the ‘Introduction’,
‘Status quo’, ‘Current policy’, ‘Biogeographic’, and ‘iSimanga-
liso’ grazer assemblages.
doi:10.1371/journal.pone.0090900.g002

Grazer Assemblages for Protected Areas

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e90900



argument could, however, be tautological in that the conclusions

are made once the species fails to establish. We argue that, in

addition to failure to establish due to a habitat suitability

disadvantage, these grazing species may also have been less

competitive. Had there been fewer effective competitors and

increased facilitation from larger grazers, these species may have

been able to overcome the habitat suitability disadvantage and

persisted. Our argument, based on missing biological processes, is

strengthened by the data showing a prolonged period (20 years) of

decline of the said species.

The ‘current policy’ assemblage produced the lowest degree of

species packing (lowest WR), with a resulting increase of likelihood

for interspecific competition. In this case, facilitation is unlikely, as

there were several gaps in the larger weight ranges (medium-large

and mega grazers) of the grazer assemblage. There are two

noteworthy observations regarding the ‘current policy’ assem-

blage. Firstly, a small grazing species assemblage of only eight

species in a grass dominated ecosystem is unusual compared to

larger species assemblages in other African ecosystems (Mean = 20;

63 SD; n = 8) [33,36,46,74]. Secondly the lack of ‘mega’ grazers

in the assemblage is contrary to the expected assemblage of more

abundant mega grazers in high rainfall [85] or high biomass/

nutrient poor regions [86]. The ‘current policy’ assemblage,

although intended to have a restoration and thus biodiversity

conservation objective, may prove to carry the highest risk. In this

assemblage, the removal of species might trigger, and could

already have triggered, competitive release which may affect lower

trophic levels, and cause forage species composition shifts, in

response to changed foraging behaviour of the released herbivore

species, which could potentially affect biodiversity patterns and

processes [31,48,87]. The risk to biodiversity could further

increase due to a higher fire frequency, caused by fuel load

build-up when grass biomass is not effectively cropped by grazers

[88–90]. This could effectively keep Mkambati in a ‘fire trap’,

which currently seems to be the case (Venter, personal observation).

Furthermore, the lack of larger grazers creates an ecosystem

devoid of facilitatory effects which in turn leads to an ecosystem

which is unable to maintain its herbivore assemblage structure

[21].

The use of only vegetation types in combination with historical

distribution data to predict grazer distribution patterns [46,60]

could thus potentially provide inaccurate results [19,20]. Examples

exist where older historical distribution predictions were later

proven inaccurate when new evidence was produced [91,92]. For

these reasons, we therefore predict that the current policy

approach will not be able to optimally achieve Mkambati’s stated

biodiversity conservation purpose [59]. The weakness in this

approach lies inherently in the lack of a full grazer assemblage,

planned for by using insufficient historical data.

Biogeographic regions are better defined by combining verte-

brate data with vegetation data due to a large degree of

congruence in distributions caused by the effect of vertebrate

distributions [72]. Plant species tend to be responsive to localized

environmental conditions, while animal species respond to the

broader vegetation structure (i.e. biogeographical regions), which

could be a spatially more coherent representation of the floristic

patterns [72]. Medium to large grazers in Africa are well known

for their ability to move/migrate over large distances, driven by

regional seasonal changes in forage conditions [38,61,93–95],

which further supports the use of broader, biogeographical, rather

than a narrower vegetation type approach. The ‘biogeographic’

assemblage thus seems to be the more appropriate model to use.

This assemblage is similar to an established grazer assemblage in

‘iSimangaliso’ in the same biogeographic region.

The ‘biogeographic’ assemblage, with a full, evenly spread

(equal number of species for each weight class) grazer species

Table 3. Post-hoc pairwise comparisons indicating the differences between species packing amongst the different conceivable
assemblages.

Assemblage Mean Difference* Std. Error Sig. 95% Confidence Interval for Difference

Lower Bound Upper Bound

Introduction assemblage versus Status quo assemblage 20.371 0.382 1.000 21.433 0.691

Introduction assemblage versus Current policy assemblage 21.116 0.398 0.047 22.222 20.010

Introduction assemblage versus Biogeographical assemblage 0.393 0.336 1.000 20.539 1.324

Status quo assemblage versus Current policy assemblage 20.745 0.418 0.493 21.904 0.415

Status quo assemblage versus Biogeographical assemblage 0.764 0.379 0.303 20.288 1.815

Current policy assemblage versus Biogeographical assemblage 1.509 0.398 0.003 0.404 2.614

*A negative value indicates that the first assemblage have a higher species packing than the second.
doi:10.1371/journal.pone.0090900.t003

Table 4. The degree of species packing for the different conceivable assemblages in Mkambati Nature Reserve.

Assemblage Number of species R2-value Weight ratio (WR)

‘Introduction’ 12 0.837 3.669

‘Status quo’ 10 0.895 1.751

‘Current policy’ 8 0.975 1.751

‘Biogeographic’ 16 0.952 2.773

‘iSimangaliso’ 15 0.949 5.207

doi:10.1371/journal.pone.0090900.t004
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assemblage, provides the opportunity for a grazing ecosystem that

allows for facilitatory effects, that leads to an ecosystem that is able

to maintain its herbivore assemblage structure. This in turn

maximizes production and utilization in the forage layer which

could increase grazer biomass. It would also allow Mkambati to

escape from its current ‘fire trap’ of a very high fire return rate.

When an assemblage exists where there is a lack of sufficient

historical data, the biogeographic approach could be considered to

be the more responsible conservation management approach.

Furthermore this approach has the highest likelihood of achieving

Mkambati’s stated purpose and restoration objectives. The

strength of this approach lies in the ability to overcome the

problem of depauperate grazer assemblages, caused by a lack of

historical data, by using biogeography and ecological processes, to

assist in more effectively restoring grazer ecosystems. The

proposed approach however, is still very simplistic in nature and

various additional factors could be considered. Mouth anatomy

and season for example could be important factors that contribute

to niche overlap and ecosystem engineering effects [26,96].

Management Implications

It remains important that non-indigenous species are not

introduced into formal protected areas due to the potential risk

associated with such an action [11,13,16]. When there is no

confirmation from historical data that a species was present in the

immediate vicinity of the protected area, but biological or

biogeographical patterns contradicts the historical assessment,

reintroduction should be planned using a strategic adaptive

management approach [97]. This approach should take cogni-

sance of all the potential risks [13,16] and be focussed on

improving incomplete understanding and reducing the identified

risks. This should take place through an iterative process of setting

reintroduction objectives, implementing reintroduction actions

and evaluating the implications of their outcomes for future

management action [97–99]. This could involve re-introducing

certain species (as identified through biogeographical and biolog-

ical assessment tools), setting thresholds of potential concern

(TPC’s) [100], intensively monitor the species’ effect on the

ecosystem and the grazer assemblage, later deciding to remove or

maintain them, depending on conclusions derived from set TPC’s.

A protected area restoration strategy that aims to simulate the

natural processes and heterogeneity of a system should thus make

full use of all the tools available to reconstruct past species

assemblages. These tools are not limited to historical distribution

data but include biogeographic and biological approaches. The

model proposed in this study should not be seen as the ultimate

solution for predicting large herbivore assemblages but rather as a

contribution for the development of more scientifically robust and

defendable protected area restoration methodology.

Conclusion

We conclude that it is the larger grazers missing from the

Mkambati grazer suite, thus creating an ecosystem devoid of

facilitatory effects exerted by these species, which in turn leads to

Figure 3. The weight ranges for the grazing species under the five different conceivable assemblages investigated during the
study. Weight ranges were grouped as mini grazers (2–10 kg), small grazers (11–30 kg), small-medium grazers (31–100 kg), medium grazers (101–
200 kg), medium-large grazers (201–500 kg), large grazers (501–1000 kg), mega grazers (1001–2000 kg) and mega+ grazers (.2000 kg). Conceivable
assemblages ‘biogeographic’ and ‘iSimangaliso’ are considered best. Each species is represented by a silhouette.
doi:10.1371/journal.pone.0090900.g003
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an ecosystem that cannot maintain its herbivore assemblage

structure. If certain species are excluded from the system purely

based on assumptions derived from local colonial history and early

explorer travel habits, the scientific validity of the assessment of

their non-indigenous status should be questioned, especially when

biological or biogeographical patterns contradict the historical

assessment. The functioning of grazing ecosystems is driven by

various patterns and processes, and excluding certain species,

weight ranges or guilds, could potentially be just as detrimental as

including non-indigenous species.
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41. Drescher M, HeitkÃ–nig IMA, Van Den Brink PJ, Prins HHT (2006) Effects of

sward structure on herbivore foraging behaviour in a South African savanna: An

investigation of the forage maturation hypothesis. Austral Ecology 31: 76–87.

42. Drescher M, Heitkönig IMA, Raats JG, Prins HHT (2006) The role of grass

stems as structural foraging deterrents and their effects on the foraging behaviour

of cattle. Applied Animal Behaviour Science 101: 10–26.

43. McNaughton SJ (1976) Serengeti Migratory Wildebeest: Facilitation of energy

flow by grazing. Science 191: 3.

44. Vesey-FitzGerald DF (1960) Grazing succession among East African game

animals. Journal of Mammalogy 41: 161–172.

45. Cromsigt JPGM, Prins HHT, Olff H (2009) Habitat heterogeneity as a driver of

ungulate diversity and distribution patterns: interaction of body mass and

digestive strategy. Diversity & Distributions 15: 513–522.

46. Boshoff AF, Kerley GIH (2001) Potential distributions of the medium- to large-

sized mammals in the Cape Floristic Region, based on historical accounts and

habitat requirements. African Zoology 36: 245–273.

Grazer Assemblages for Protected Areas

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e90900



47. Kuemmerle T, Hickler T, Olofsson J, Schurgers G, Radeloff VC (2012)

Reconstructing range dynamics and range fragmentation of European bison for
the last 8000 years. Diversity and Distributions 18: 47–59.

48. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, et al. (2000)

Consequences of changing biodiversity. Nature 405: 234–242.
49. Venter F, Naiman R, Biggs H, Pienaar D (2008) The Evolution of Conservation

Management Philosophy: Science, Environmental Change and Social Adjust-
ments in Kruger National Park. Ecosystems 11: 173–192.

50. ECPB (2009) Intergrated Reserve Management Plan - Strategic Management

Plan: Mkambati Nature Reserve East London: Unpublished report, Eastern
Cape Parks Board.

51. Rutherford MC, Mucina L, Powrie LW (2006) Biomes and Bioregions of
Southern Africa. In: Mucina L, Rutherford MC, editors. The vegetation of

South Africa, Lesotho and Swaziland. Pretoria: South African National
Biodiversity Institute. 31–51.

52. Conservation International, South African National Biodiversity Institute (2010)

Ecosystem profile: Maputaland-Pondoland-Albany Biodiversity Hotspot. Un-
published report, Critical Ecosystem Partnership Fund.

53. de Villiers D, Costello J (2006) Mkambati and the Wild Coast. Rivonia: Div
deVilliers, John Costello & Wilderness Safaris.

54. Shackleton CM (1990) Seasonal changes in biomass concentration in three

coastal grassland communities in Transkei. Journal of the Grassland Society of
South Africa 7: 265–269.

55. Shackleton CM (1989) An ecological survey of a selected area of Pondoland
Sourveld with emphasis on its response to the management practices of burning

and grazing. Mthata: University of Transkei. 331 p.
56. Mucina L, Scott-Shaw CR, Rutherford MC, Camp KGT, Matthews WS, et al.

(2006) Indian Ocean Coastal Belt. In: Mucina L, Rutherford MC, editors. The

vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African
Biodiversity Institute.

57. Shackleton CM, Mentis MT (1992) Seasonal changes in nutrient content under
three defoliation treatments in two coastal grassland communities of Transkei.

Tydskrif van die Weidingsvereniging van Suid Afrika 9: 30–37.

58. Shackleton CM, Granger JE, Mcenzie B, Mentis MT (1991) Multivariate
analysis of coastal grasslands at Mkambati Game Reserve, north-eastern

Pondoland, Transkei. Bothalia 21: 91–107.
59. ECPB (2010) Eastern Cape Parks Board Policy on large mammal management.

East London: Internal policy, Eastern Cape Parks Board.
60. Boshoff AF, Wilson SL, Skead CJ (2004) Medium- to large-sized mammalian

herbivores in provincial nature reserves in the Eastern Cape Province: Broad

habitat types, potential species, inappropriate species and selected management
recommendations. Unpublished report Nr. C106, Terrestrial Ecology Research

Unit, University of Port Elizabeth.
61. Skead CJ (2007) Historical Incidence of the Larger Mammals in the broader

Eastern Cape; Boshoff AF, Kerley GIH, Lloyd PH, editors. Port Elizabeth:

Centre for African Conservation Ecology, Nelson Mandela Metropolitan
University.

62. Peinke D, Peinke S, Venter JA (2010) Game census report 2010. East London:
Unpublished report, Eastern Cape Parks and Tourism Agency.

63. Peinke D, Venter JA, Fanayo L (2007) Annual game estimates report. East
London: Unpublished report, Eastern Cape Parks Board.

64. Feely JM (2005) Guide to the natural history of the Qawukeni Coast, Eastern

Cape. East London: Unpublished report, Department of Environmental Affairs
and Tourism.

65. Venter JA (2007) The large herbivore population trends and carrying capacity
on Mkambati Nature Reserve: 1979 to 2007. East London: Unpublished report,

Eastern Cape Parks Board.

66. Gagnon M, Chew AE (2000) Dietary preferences in extant African Bovidae.
Journal of Mammalogy 81: 490–511.

67. Skinner JD, Chimimba CT (2005) The mammals of the Southern African
subregion. New York: Cambridge University Press.

68. Watson LH, Owen-Smith N (2000) Diet composition and habitat selection of

eland in semi-arid shrubland. African Journal of Ecology 38: 130–137.
69. Van Der Merwe J, Marshal JP (2012) Hierarchical resource selection by impala

in a savanna environment. Austral Ecology 37: 401–412.
70. Griswold C (1991) Cladistic biogeography of afromontane spiders. Australian

Systematic Botany 4: 73–89.
71. Minter LR, Burger M, Harrison JA, Braack HH, Bishop PJ, et al. (2004) Atlas

and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. Cape

Town: Smithsonian Institution. 356 p.
72. Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, et al. (2012) The
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