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Objective: Thermal quantitative sensory testing with the ‘Method-of-Limits’ is an established rationale
for detection of small nerve fiber dysfunction, but adequate reference values are crucial for such evalu-
ations, regardless of the underlying cause. This study assessed reference data for cold- (CPT) and warm-
(WPT) perception thresholds at both proximal and distal sites in eight body regions of the lower and
upper extremities, all determined within the same test session for each subject.
Methods: Seventy-five healthy subjects (aged 16–72 years) were tested according to the method-of-
limit for CPT and WPT at the dorsum of the foot, the medial and lateral lower leg, the ventral thigh,
the thenar eminence, the radial and ulnar part of the lower arm, and the anterior deltoid part of the
upper arm.
Results: Overall, thermal perception thresholds (TPT) varied with test location, but were higher in the
lower than in the upper part of the body, also WPT were generally higher than CPT. TPT at the dorsum
foot highly correlated with age, while inconsistent correlations were noted between TPT and age or
height at other tested locations.
Conclusion: This study describes for the first time reference values at eight defined body regions, at
both proximal and distal sites.
Significance: The report enables refined evaluations of general small nerve fiber function, as assessed
by quantitative thermal sensory testing with the Method-of-Limits.
� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Quantitative sensory testing (QST), of cold- (CPT) and warm-
(WPT) perception thresholds is a well-established method for
detection of small nerve fiber dysfunction, particularly in an early
stage of debuting generalised and occasionally painful small fiber
neuropathies (Abad et al., 2002; Heldestad and Nordh, 2007;
Hendriksen et al., 1993; Hoitsma et al., 2003; Krämer et al.,
2004; Løseth et al., 2008), in which patients develop symmetric
and distal symptoms of peripheral nerve dysfunction (Hughes,
2002), yet showing normal findings in nerve conduction studies
or needle-EMG examinations (Heldestad and Nordh, 2007; Løseth
et al., 2008). Neurophysiological studies of C-receptor properties
(Weider et al., 1999; Schmidt et al., 1995), have demonstrated that
some C-fiber receptors may exhibit hyperactivity, indicating that
the pain in patients with proposed ‘painful small fiber neuropathy’
not necessarily need to be caused by a generalised neuropathic loss
of small fibers. Thus, there is a need for a comprehensive rationale
for detailed descriptions of the functional state in the thin nerve
fibers in diseases with suspected small fibre affection, with or
without distal pain. Early assessment of small fibers neuropathy
is also of value to prevent from secondary foot ulcerations
(Cornblath, 2004) or other types of tissue damage in diabetic
patients, and may even be critical in particular diseases like hered-
itary Amyloidotic transthyretin polyneuropathy, where an early
detection of polyneuropathic changes may favour the outcome of
symptomatic treatment by liver transplantation (Adams et al.,
2000; Jonsén et al., 2001; Suhr et al., 2005), or new emerging phar-
maceutical treatment (Berk et al., 2013; Coelho et al., 2012).

The implementation of thermal QST is hampered by that several
testing algorithms are being used (Dyck et al., 1993; Fruhstorfer
et al, 1976; Lin et al., 2005; Yarnitsky, 1997; Yarnitsky and
Sprecher, 1994). For clinical use, the reaction-time inclusive
‘Method-of-Limits’ can be recommended, as it comprises a quick,
reliable and easy-to-use rationale (Heldestad et al., 2010;
Krøigård et al., 2015). Regardless of the method used, several
factors influence the magnitude of the noted thresholds. Due to
spatial summation (Kandel et al., 2012; Schmidt, 1978), the size
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of the stimulation probe is crucial (Dyck et al., 1993; Hilz et al.,
1998, 1999), as well as differences in the number of receptors
(Guergova and Dufour, 2011; Kandel et al., 2012; Schmidt, 1978)
and in the density of nerve terminals between body areas (Chang
et al, 2004). Also the velocity of temperature change during stimu-
lation (Palmer et al., 2000; Pertovaara and Kojo, 1985), and the ini-
tial skin temperature is of importance (Hagander et al., 2000; Hilz
et al., 1995), together with factors such as gender, age and the site
of stimulation (Blankenburg et al., 2010; Defrin et al., 2006; Dyck
et al., 1993; Hafner et al., 2015; Hagander et al., 2000; Hilz et al.,
1999; Huang et al., 2010; Lin et al., 2005; Magerl et al., 2010;
Meier et al., 2001; Yarnitsky, 1997; Yarnitsky and Sprecher, 1994).

To enable full evaluation of small fiber dysfunction, thermal QST
should provide CPT andWPT reference data for both distal and prox-
imal body regions. Although there are several reports on normative
values for QST, both from single centre as well as frommulti-centre
studies, there is yet no comprehensive study describing full norma-
tive data for multiple body regions derived from the same group of
healthy subjects. Previously reported reference data mostly assess
distal sites in the lower and upper extremities (Blankenburg
et al., 2010; González-Duarte et al., 2016; Hafner et al., 2015; Lin
et al., 2005; Malmström et al., 2016; Magerl et al., 2010; Meier
et al., 2001; Rolke et al., 2006; van den Bosch et al., 2017;
Yarnitsky and Sprecher, 1994), although some of the studies also
include the face (Blankenburg et al., 2010; Magerl et al., 2010;
Rolke et al., 2006).

The purpose of the present study was to estimate cold and
warm perception reference thresholds with the Method-of-Limits
at different test sites both in the upper and lower extremities
and in the same group of subjects. The aim was to define reference
values for the cold and warm perception thresholds at distal and
proximal parts of the extremities at eight different test sites,
assessed from the same population of control subjects.
2. Methods

2.1. Subjects

Seventy-five subjectively healthy subjects initially volunteered
for the study (37 men and 38 women (mean age 39 years, median
38, range 16–72 years), divided at 45 years of age into two groups
(cf. Table 1 A and B for details). All had given their informed con-
sent according to the World Medical Association’s Declaration of
Helsinki, and the Regional ethics committee of Northern Sweden
approved the study. The immediate exclusion criteria were any
sensory symptoms in the extremities, like diffuse numbness,
dysesthesias and hyperesthesias, prickling, disturbances in cold-
and/or warm perception, or any form of pain. Likewise, any signs,
symptoms or diagnosis of diabetes, focal or general neuropathies,
cervical spinal injuries excluded subjects from participation. At a
Table 1
Descriptive data of (A) all subjects pooled (n = 75); (B) subjects stratified by age (<45 year

A

Data Range Mean (Median

Age (years) 16.0–72.0 39.1 (38.1)
Height (cm) 150–196 172.4 (172)
Number

B

Age group Years Range (Median) Number Fema

<45 years 16.0–45.0 (28.6) 22/24
�45 years 45.0–72.0 (53.0) 16/13
further routine neurological status screening none of the initially
recruited subjects showed any signs of reduced or asymmetric
motor functions or muscular atrophies, nor did they show any
signs of abnormalities in tactile or painful stimulus detection.
However, during the actual thermal testing procedure a few
subjects (n = 7) verbally reported symptoms of locally impaired
warmth sense in the feet and/or at the medial or lateral aspects
of the lower leg. These comments were taken as a indication of
possible small fiber dysfunction, ‘subclinical’ lumbo-sacral nerve
or spinal root affection, or of a localised alteration in central
signal processing. These subjects’ thermal data in the lower part
of the body were therefore rejected in the final analysis. After
these exclusions, the final study group consisted of sixty-eight
subjects.

2.2. Thermal testing

QST was done with a 2.5 � 5.0 cm2 computer controlled Peltier
element (Thermotest�, Somedic AB, Hörby, Sweden). Totally nine
test sessions were performed (including one training session), con-
taining 10 individual cold respective warm stimulations with
inter-stimulus intervals randomly varying between 3 and 5 s. Dur-
ing the testing the stimulation probe was manually held with firm
contact to the subject’s skin over the entire probe stimulating area.
The subject was instructed to press an electrical switch as soon as
the thermal stimuli were perceived; as soon as a sensation of the
probe ‘‘becoming cooler” or ‘‘becoming warmer”, for testing of cold
and warm thresholds, respectively. The adapted skin start temper-
ature was 32 �C (baseline temperature), and minimum and maxi-
mum temperatures were set to 10 �C and 50 �C, respectively,
according to prevailing hospital safety regulations. The rate of
change was set to 1 �C/sec during testing, and to 3 �C/s during
return to baseline temperature.

2.3. Testing sites

Eight body sites were tested at randomly chosen side and order
(cf. Fig. 1); the dorsum of the foot, the medial and the lateral aspect
of the lower part of the leg, the ventral thigh, the thenar eminence,
the radial and the ulnar part of the lower arm, and the deltoid ante-
rior part of the upper arm.

2.4. Data conditioning and statistical analyses

Thermal data records were manually re-inspected after that
each subject had ended the full testing procedure, to ensure data
quality, and to remove responses reported by the subject as ‘erro-
neous’ or ‘unintentional’. The CPT and WPT at each test site were
defined as the mean value of the recorded consecutive individual
thresholds in the recorded cold and warm sequences, respectively,
s and �45 years) (n = 75).

) Female/Male Sides (Left/Right)

38/37 37/38

le/Men Number Left/Right Height (cm)
Range (Median)

24/22 154–190 (174)
14/15 150–196 (171)



Fig. 1. Proposed thermal cold (CT) and warm (WT) perception upper limit values, rounded to the nearest integers, at eight body sites; the dorsum of the foot (DF); the medial
(ML) and lateral (LL) aspects of the lower leg; the ventral thigh (VT); the thenar eminence (TE); the radial (RA) and the ulnar (UA) aspect of the forearm; and the deltoid part of
the upper arm (DA). With exception of the DF, the threshold limits given are the 95% percentiles of the thresholds expressed as the absolute relative values (DC�). Values for
the DF, (marked *), are based on the prediction values; cf. legend to Fig. 2.
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and were expressed as the absolute difference in �C from the
adapted baseline temperature (D�C). Descriptive statistics and
statistical analyses were performed with commercially available
programs (Microsoft Excel�, Statview� and Graph Pad Prism�).
Non-parametric descriptive tests were used; tests of differences
between groups (Mann-Whitney U test and the Wilcoxon Signed
Ranks Test). Correlation analyses (Spearman rank correlation test
and multiple regressions) were performed between thermal per-
ception thresholds and both age and height at all tested sites. A sig-
nificance level of p < 0.05 was used throughout.
3. Results

3.1. All subjects pooled

3.1.1. Thermal perception thresholds
In general, the WPT was significantly higher compared to the

CPT at all test sites (p < 0.0001). Furthermore, the CPT for separate
test sites were significantly higher at the lower compared to the
upper parts of the body (p < 0.0001), except for a lack of difference
between the deltoid anterior part of the upper arm and ventral
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thigh (p = 0.0523). Also, the WPT were significantly higher
(p < 0.0001) in test sites at the lower compared to the upper parts
of the body, except between the ventral thigh and the deltoid
anterior part of the upper arm, where WPT at the deltoid anterior
part of the upper arm were higher. No significant differences were
found between sides.

3.1.2. Gender differences
Significant gender differences were found for CPT at the thenar

eminence, (p = 0.0211), and for WPT at the ventral thigh
(p = 0.0288), at the thenar eminence (p = 0.0093), and at the radial
part of the lower arm (p = 0.0020).

3.1.3. Relation to age
No systematic correlations between age and thermal perception

thresholds were found for the tested body regions. However, within
the distal part of the legs significant correlations were observed at
the dorsum of the foot (CPT; r = 0.439, p = 0.0003 and WPT;
r = 0.546, p < 0.0001) (c.f. Fig. 2). Significant correlations were also
found between age and CPT at the lateral aspect of the lower leg
(r = 0.248, p = 0.0395), and the ventral thigh (r = 0.260, p = 0.0252),
as well as between age and WPT at the lateral aspect of the lower
leg (r = 0.268, p = 0.0258), the ventral thigh (r = 0.449, p = 0.0035),
and the radial part of the lower arm (r = 0.230, p = 0.0395).

Significant relationship, with age being the most significantly
explaining factor, were also noted by multiple regression at all
tested sites in the lower part of the body, except at the lateral
aspect of the lower leg were both age and height were explaining
factors. Significant regressions was found for CPT at the dorsum of
the foot (R2 = 0.191, p = 0.0008) at the medial part of the leg
Fig. 2. Graphical overview of selected temperature threshold characteristics at the dorsu
age, with confidence intervals and significance of the relationships (CT = 0,1423 + 0,0455
plot of residuals (the deviations from the regression line of relative threshold values) vs
arrows indicate values used in Fig. 1, computed for the upper border ages of 45 and 75
(R2 = 0.085, p = 0.0453), and at the ventral thigh (R2 = 0.107,
p = 0.0169). For WPT a significant relationship was found at the
dorsum of the foot (R2 = 0.309, p < 0.0001), at the lateral aspect of
the lower part of the leg (R2 = 0.113, p = 0.0084), and at the ventral
thigh (R2 = 0.096, p = 0.0268). No systematic significant relation-
ships was found in the upper part of the body.

3.1.4. Relation to height
Between height and thermal perception thresholds, no system-

atic correlations were observed with regard to CPT, but significant
correlations were seen with regard to WPT at the lateral aspect of
the lower part of the leg (r = 0.284, p = 0.0182), at the thenar emi-
nence, (r = 0.280, p = 0.0161), and at the radial part of the lower
arm (r = 0.239, p = 0.039). Multiple regression did not show any
systematic significant relationships where height was the only
explaining factor, apart for WT at the radial part of the lower
arm (R2 = 0.104, p = 0.0194)

3.2. Differences between age groups (<45 and �45 years old)

Significantly higher thresholds at the dorsum of the foot were
found in the older compared to the younger age group, both for
CPT and WPT (p = 0.002 and p < 0.001), which is illustrated in
Fig. 2. Also CPT at the ventral thigh (p = 0.012) was significantly
higher in the older age group. Fig. 1 summarises the proposed
upper limits (mean ± 2 SD) for CPT andWPT at all eight tested body
regions, apart from at the dorsum of the foot where linear regres-
sion models in combination with a residual variation of 2 SD were
used. Table 2 (A and B) show means, medians and SD for all tested
sites.
m of the foot (DF). A/ Linear regressions of absolute values of relative thresholds vs.
* AGE � 0,0024 * HEIGHT; WT = �5,6819 + 0,0808 * AGE + 4,1993 * HEIGHT); B/Scatter
. age; C/and D/Plots of prediction intervals for cold (C) and warm (D). Thin dashed
years and a reference height of 175 cm.



Table 2
Mean, median and SD for all tested sites stratified by age ((<45 years (n = 43) and �45 years (n = 25)) showing (A) cold thermal perception threshold; (B) warm thermal
perception threshold.

A

Tested site Mean Median SD

<45 �45 <45 �45 <45 �45

LA 1.1 1.3 1.1 1.1 0.5 0.6
UA 0.9 0.9 0.8 0.9 0.2 0.4
RA 0.9 1.1 0.9 0.9 0.3 0.5
TE 1.0 1.1 0.9 1.0 0.3 0.3
VT 1.3 2.0 1.2 1.6 0.4 1.3
LL 1.6 1.8 1.5 1.6 0.8 0.9
ML 1.7 1.8 1.5 1.6 0.7 0.8
DF 1.4 2.5 1.2 1.9 0.6 1.5

B

Tested site Mean Median SD

<45 �45 <45 �45 <45 �45

LA 3.3 3.1 2.8 2.8 1.3 1.7
UA 2.1 2.0 2.1 2.0 0.7 0.6
RA 2.0 2.2 1.9 2.1 0.7 0.6
TE 1.4 1.4 1.3 1.4 0.4 0.3
VT 2.7 2.9 2.6 3.0 0.8 0.7
LL 4.8 5.4 4.3 4.5 1.9 2.3
ML 4.0 4.2 3.8 3.9 1.3 1.3
DF 4.1 6.3 3.9 5.5 1.6 2.7

DF, Dorsal foot; ML, Medial lower leg; LL, Lateral lower leg; VT, Ventral thigh.
TE, Thenar eminence; RA, Radial forearm; UA, Ulnar forearm; LA, Lateral upper arm.
MD. Median; SD, Standard deviation.
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4. Discussion

The objective of the present report was to define thermal QST
reference data for multiple body regions, at proximal and distal
sites, obtained from the same reference population, as such data
are lacking for multiple test sites of strategic clinical use. The pre-
sent report is the first in which such a comprehensive study has
been undertaken, and the described data will be useful for more
reliable assessments of possible neuropathic changes in small
nerve fibers sub-serving temperature detection.

The main findings in our study were that both CPT and WPT
were highly significantly correlated with age at the dorsum foot,
which are in agreement with earlier studies (Hafner et al., 2015;
Hilz et al., 1999; Huang et al., 2010; Lin et al., 2005; Magerl
et al., 2010; Rolke et al., 2006). Significant correlations were also
noted at the lateral aspect of the lower part of the leg and the ven-
tral thigh, albeit with a weaker degree of strength in the correla-
tion. This clear dependence of age for the dorsum of the foot was
also confirmed by multiple regression analyses. Finally, our find-
ings also support the notion of a decreased thermal perception
capacity in the elderly, possibly related to a decreased density of
intra-epidermal nerve fibers (Lauria et al., 2010; Thomsen et al.,
2009). All these findings are concordant with the notions in a
review by Guergova and Dufour (2011), which concludes that dis-
tal parts of the body are most severely affected by age and espe-
cially the warm sense. Furthermore, WPT were overall
significantly higher compared to the CPT at all tested body regions,
and TPT were in general significantly higher in the lower half of the
body than in the upper. These findings are also concordant with
earlier studies, in which, however, only distal test locations in
the upper and lower part of the body were tested separately in
individuals (Hafner et al., 2015; Lin et al., 2005; Magerl et al.,
2010; Meier et al., 2001; Rolke et al., 2006; Yarnitsky and
Sprecher, 1994).

Earlier reports have presented reference data for subjects of
similar ages as in the present study (Lin et al., 2005; Hafner
et al., 2015; Hilz et al., 1999; Yarnitsky and Sprecher, 1994), but
not for the same eight test locations as in this study. From a clinical
perspective, in diagnostic evaluation of patients with putative PNP,
it is particularly important to do QST at both distal and proximal
sites (Heldestad and Nordh, 2007). As a generalised and length
dependent PNP initially manifests itself with a symmetrical distal
small fiber impairment, often with early symptoms of pain or
impaired thermal sense in the feet, then successively involving
more proximal nerves, and eventually the longer abdominal and
thoracic peripheral nerves (Hughes, 2002). Thermal QST has in this
context been shown to be a very sensitive method for early detec-
tion of impaired small nerve function (Heldestad and Nordh, 2007;
Hoitsma et al., 2003; Løseth et al., 2008). The use of multiple test
sites will also facilitates clinical follow up. However, regardless of
the putative cause to a suspected small fiber dysfunction, clinical
QST evaluation should be done bilaterally, as potentially unilateral
conditions like herniated discs, lumbo-sacral stenosis, peripheral
mononeuropathies, or referred musculo-skeletal pain, may unilat-
erally influence the perceived thermal perception thresholds. This
may be of particular importance in the elderly, in which unilateral
radiculopathy or herniated discs are common in the lower part of
the body (Hsu et al., 1990). In this context, it should be noted that
the lateral part of the lower leg as a test site in thermal QST possi-
bly may relates to an increased prevalence of L5/S1 root affection
at this segmental level (Kortelainen et al., 1985) and impaired
thresholds.

Two factors are likely to primarily explain the observed signifi-
cantly higher WPT than CPT at all test sites; higher density of cold
spots within the human skin (Guergova and Dufour, 2011;
Schmidt, 1978), and difference in nerve conduction between
A- and C-fibers (Kandel et al., 2012). The general finding of signif-
icantly higher thermal perception thresholds at the lower com-
pared to the upper parts of the body is probably related to the
finding of a higher density of nerve terminals in the upper part
of the body, compared to the lower (Chang et al., 2004). Finally,
the unsystematic but significant thermal perception thresholds
differences between genders, might be in agreement with a few
previous reports of gender differences (Blankenburg et al., 2010;
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Lin et al., 2005; Hilz et al., 1999; Yarnitsky and Sprecher, 1994).
Higher thresholds for warmth as well as lower epidermal nerve
fiber density at the thigh in men compared to women have also
been reported earlier (Selim et al., 2010), which might be of rele-
vance for to observed gender differences at the ventral thigh.

It should be kept in mind that for thermal QST in particular, the
tested individual’s reports of the quality of the subjectively experi-
enced stimuli may give equally important information about the
nature of a sensory disturbance. With increasing understanding
of the mechanisms for temperature sensation (Mak et al., 2001)
it is most likely that the perceived nature of the given stimulus
may provide important cues to the underlying sensory system
impairment. This has also previously been indicated by Verdugo
and Ochoa (1992), who noted that the ‘sensation of heat pain’ is
not merely an extension of the ‘sensation of heat’, and thus that
patients may have selective losses of either one of the two, as well
as of both. For this reason, it is crucial that thermal QST is carried
out by well trained, informed and instructed personnel, who
should be observant of the vigilance of the patient, and who also
should make meticulous notes of the patient’s reported perception
of a given stimuli at each test point.

Finally, as mentioned in the introduction, there are several dif-
ferent strategies for psychophysical assessment of the human sen-
sory perception performance, all with varying pros and cons, and
with varying focus on different aspects of the sensory perception
testing process. It is thus not feasible to consider one QST rationale
as superior to others, but rather to choose a test strategy which is
apt for a specific study situation or for a specific group of subjects.
In clinical situations, where the QST assessment often is supposed
to enlighten putative presence of signs of generalised polyneuropa-
thy in sometimes elderly patients, the overall test duration is a crit-
ical factor, as an extended examination might significantly fatigue
the subject and hence deteriorate the quality of the assessment. To
this end, the M-o-L is advantageous, as the testing is easily com-
prehended and also comparatively fast. Based on the median val-
ues given in Table 2, a complete bilateral test at eight preferred
sites (feet, medial lower legs, ventral thighs, and hands) of a hypo-
thetical normal subject performing at the median values would be
approx. 30 or 35 min for the lower and higher age groups, respec-
tively. A patient with pronounced polyneuropathy (no thermal
perception in the feet or the lower legs, half the capacity of the
thighs, and a quarter of the capacity in the hands) might typically
complete the test session within about 15–20 min, as the last
seven individual tests at each of the foot and lower leg sites may
well be aborted after three runs without responses, hence shorting
the overall test duration.

The present report will facilitate stringent clinical evaluation of
any type of dysfunction of thermal sensation by providing thermal
reference data at eight different body regions, at distal and proximal
sites in the lower and upper part of the body, and hence improve
strategies for, and the quality of, clinical small fiber evaluations.
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