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There are genetic conditions that influence production in dairy and beef cattle. The 
objective of this review was to describe relevant genetic conditions that have been 
associated with productivity and health in cattle. Genes or genomic regions that have 
been identified as a candidate for the condition will be included, and the genetic basis 
of the condition will be defined. Genes and genetic conditions included in this review 
are bovine leukocyte adhesion deficiency, deficiency of the uridine monophosphate 
synthase, bovine chronic interstitial nephritis, horn development, myostatin, complex 
vertebral malformation, leptin, osteopetrosis, apoptosis peptide activating factor 1, 
chondrodysplastic dwarfism, caseins, calpastatin, umbilical hernia, lactoglobulin, 
citrullinemia, cholesterol deficiency, prions, thyroglobulin, diacylglycerol acyltransferase, 
syndactyly, maple syrup urine disease, slick hair, Factor XI deficiency, and μ-Calpain. 
This review is not meant to be comprehensive, and relevant information is provided to 
ascertain genetic markers associated with the conditions.
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iNTRODUCTiON

Some traits or genetic conditions are controlled by a single gene (monogenic or qualitative traits), 
while others are controlled by many genes (polygenic or quantitative traits). Eighty-seven percent 
of qualitative traits in cattle are recessively inherited (1). It is not surprising that genetic conditions 
are breed specific, given that cattle breeds were developed in relative genetic isolation and indepen-
dently of each other (1). Until the advent of modern molecular biology methods, the technology was 
unavailable to identify genes associated with quantitative traits and the variants within the gene that 
produce differences in productivity or its expression.

Genome-wide association studies (GWASs) are possible due to the availability of technology 
that allows high-throughput genotyping of single-nucleotide polymorphisms (SNPs). These SNPs 
are variants, or alleles, in the DNA sequence that may be associated with the expression of a trait or 
characteristic in cattle. The technology allows deciphering the genetics behind the expression of eco-
nomically important traits. Genomic regions associated with productive traits have been identified 
in dairy (2–4) and beef cattle (5–8). It has also been possible to identify genomic regions associated 
with infectious and genetic diseases that affect performance in cattle (9, 10).

High-throughput sequencing offers the opportunity to identify causative genetic variants, which 
was previously unavailable (11). Accessibility of this technology has allowed the identification of 
unknown variants that could possibly be responsible for the conditions. This is particularly impor-
tant when a condition has been reported in several breeds, and the putative causative mutation has 
been identified in one breed but not in another. It could be possible that additional variants in the 
same gene have similar effect but are unidentified. Such is the case of double muscling in cattle (12, 
13). This technology has been successfully used to identify genetic variants that cause differences in 
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TAble 1 | Selected genes with known effects on performance and health 
of cattle.

Condition Chromosome locus Gene

Bovine leukocyte adhesion 
deficiency

BTA1 BLAD CD18

Deficiency of the uridine 
monophosphate synthase

BTA1 DUMPS UMPS

Bovine chronic interstitial 
nephritis

BTA1 CINF PCLN1/CL16

Horn development BTA1 POLL –

Myostatin BTA2 mh MSTN

Complex vertebral 
malformation

BTA3 CVM SLC35A3

Leptin BTA4 LEP LEP

Osteopetrosis BTA4 – SCL4A2

Apoptosis peptide 
activating factor 1

BTA5 HH1 APAF1

Chondrodysplastic 
dwarfism

BTA6 BCD LBN

Chondrodysplastic 
dwarfism

BTA6 – EVC2

Caseinsa BTA6 CN CSN

Calpastatin BTA7 CAST CAST

Umbilical hernia BTA8 UH –

Embryonic loss BTA8 – SMC2

Lactoglobulin BTA11 LGB LGB

Citrullinemia BTA11 ASS ASS

Cholesterol deficiency BTA11 HCD APOB

Prions BTA13 PRNP PRNP

Thyroglobulin BTA14 – TG1

Diacylglycerol 
acyltransferase

BTA14 – DGAT1

Syndactyly BTA15 Syndactyly –

Maple syrup urine disease BTA19 MSUD BCKDHA

Slick hair BTA20 – PRLR

Slick hair BTA23 – PRL

Factor XI deficiency BTA27 – FXI

μ-Calpain BTA29 – CAPN1

aInclude CSN1S1, CSN2, CSN1S2, and CSN3.
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productivity of milk (14, 15), muscling (15, 16), and fertility (17). 
Combining GWAS with high-throughput sequencing procedures 
will enable the identification of unknown causative genetic vari-
ants that could improve productivity of cattle.

Several genes have been identified as having an association 
with productivity and health-related traits in cattle. This review is 
not meant to be a comprehensive list of genes, given that science 
continually discovers the association of genes with economically 
important traits. This review is meant to provide information on 
relevant conditions that could potentially impact the productivity 
and health of the cattle industry, and not to detail modifications 
in the genome that results in each condition. This is because 
several conditions are produced by different variants in the DNA 
sequence, as it is the case for double muscling (MSTN) in beef 
cattle where different SNP and insertion/deletions are responsible 
for the condition (18, 19). For simplicity, this review was organ-
ized by bovine chromosomes, rather than by the influence of 
the gene in productivity or health of cattle. Relevant conditions 
will be discussed. Table  1 summarizes the genetic conditions 
discussed in this review.

bOviNe leUKOCYTe ADHeSiON 
DeFiCieNCY (blAD)

Although this autosomal recessive, eventually lethal condition 
was recognized in Holstein cattle, it is reported to be segregating 
in other cattle breeds where Holstein genetics were introduced 
(20). It is characterized by reduced expression of functional β2-
integrins on all leukocytes (21). β2-integrins are adhesion proteins 
that are the primary effectors of neutrophil adhesion to receptors 
on endothelial cells of postcapillary venules and the subsequent 
egress of neutrophils through intercellular cell junctions into 
extravascular tissues to defend the host against normal flora and 
pathogens. Animals affected with this condition have abnormally 
low levels of β2-integrins on all leukocytes; however, the reduced 
expression on neutrophils produces inadequate innate immunity 
against microbes in all tissues. Animals affected with this condi-
tion show severe pneumonia, ulcerative gingivitis, periodontitis, 
papillomatosis, dermatophytosis, tooth loss, poor wound healing, 
and slow growth (1, 21–28). A single point mutation at position 
383 in the transcribed RNA in the CD18 gene was identified as the 
causative mutation. The substitution results in the replacement 
of an aspartic acid with a glycine at position 128 of the protein 
(D128G). CD18 resides on chromosome 1 (29, 30). This mutation 
has been identified worldwide as responsible for the condition 
(31). A genetic test is available to identify carriers of the condition 
(29) and has been used to virtually eradicate the clinical condition 
from the Holstein breed within a period of not more than 5 years 
(32) without negatively impacting genetic merit for performance 
traits (33).

DeFiCieNCY OF THe URiDiNe 
MONOPHOSPHATe SYNTHASe

This is an autosomal recessive lethal condition resulting from a 
deficiency of an enzyme that catalyzes the conversion of orotic 
acid to uridine-5′-monophosphate, which is the precursor of 

cytosine and thymine (components of DNA). Animals with this 
condition lack growth during embryonic development. Embryo 
mortality occurs approximately at 40  days of gestation (34). 
Carriers of this condition have a high incidence of return to 
estrus and long open day periods. The uridine monophosphatase 
synthase gene resides on chromosome 1 (35, 36). The substitution 
of a cytosine to a thymine at codon 405 of the gene has been 
identified as responsible for the condition (37), so it is possible to 
identify carriers of the condition.

bOviNe CHRONiC iNTeRSTiTiAl 
NePHRiTiS (bCiN)

This is a kidney condition characterized by interstitial fibrosis 
with inflammatory cell infiltration. This condition has been 
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identified in the Wagyu, or Japanese Black Cattle. Animals with 
this condition have delayed growth and high levels of ureic 
nitrogen in blood (38). The gene resides in chromosome 1, and 
the causal mutation has been identified (39). Producers interested 
in producing export beef genetics using this breed, especially to 
the Japanese market, will be required to establish that breeding 
animals are not carriers of the condition.

HORN DevelOPMeNT

Horns may be a problem when handling cattle. It has been esti-
mated that de-horning cattle, as well as loss of meat due to bruis-
ing from horns, represents a cost of approximately $25 million 
annually to the United States beef industry (40). Losses could be 
eliminated if carriers of alleles responsible for horn development 
are identified.

The locus of the gene responsible for horn development was 
detected on chromosome 1 and was termed POLL (40, 41). 
A locus has been recently identified on cattle chromosome 1 and is 
known in cattle and buffalo only. Wunderlich et al. (42) narrowed 
the region to a 2.5-Mb region on chromosome 1. Cargill et  al. 
(43) identified 13 SNPs associated with horn development in this 
region, proposing several genes as responsible for the condition 
by sequencing a 1.6-kb region. Seichter et al. (44) identified nine 
additional SNPs in this region for the horn/polled condition. The 
gene from this locus is highly expressed in fetal tissue of horned 
animals, as compared with tissue from polled animals (45). It may 
be possible to select toward polled animals by using genomics 
information of horn development.

MYOSTATiN (MSTN)

Double muscling or muscle hypertrophy was recognized and 
documented in the nineteenth century (46). The locus that 
causes double muscling (mh locus) in cattle was localized on the 
telomeric end of chromosome 2 (12). At that time, the mh locus 
was being studied to identify the gene responsible for double 
muscling in cattle, a deletion in the transforming growth factor 
β in mice showed similar effects in mice (47). This protein was 
later named myostatin, and the symbol of the gene in the double 
muscling locus on chromosome 2 is MSTN. Later, it was demon-
strated that this was the same gene that caused double muscling 
in cattle (48). After the identification of the gene responsible for 
double muscling, several studies were directed to identify SNPs 
associated with double muscling in cattle (13, 49, 50).

Growth and carcass traits were evaluated in double-muscled 
cattle before myostatin was identified. True double-muscled ani-
mals, or animals with two copies of the allele that produces double 
muscling, are heavier at birth (46). Casas et al. (51) found that 
double-muscled animals have up to 20% more calving difficulty 
than non-double-muscled breeds, but animals with only one copy 
of the MSTN allele increase muscling without having calving 
difficulty. From this, it can be concluded that use of true double-
muscled animals can be problematic under rangeland conditions 
due to the need to assist the cow during calving. However, if this 
gene was to be used under rangeland conditions, it is neces-
sary to correctly manage the herd to produce animals with one 

copy of the gene, which would increase muscle mass without 
calving problems, avoiding the production of double-muscled 
calves. Regarding carcass traits, Arthur (46) indicates that 
double-muscled animals have up to 30% more muscle mass than 
non-double-muscled animals. However, further studies detected 
an increase of 17% in muscle yield and 66% less fat in double-
muscled animals (52). Meat of animals with double muscling has 
also been associated with tender meat (46, 53). Myostatin, as the 
gene that produces double muscling, can be considered in animal 
production to increase muscle mass, without increasing calving 
difficulty, only if managed in terminal crosses.

COMPleX veRTebRAl 
MAlFORMATiON (CvM)

Complex vertebral malformation is an autosomal recessive lethal 
condition of Holsteins observed in premature and mature calves 
(54). Congenital growth retardation, malformed vertebrae, and 
symmetric arthrogryposis typically characterize the condition 
although some morphological variations including various car-
diac abnormalities occur (55, 56). Moreover, significant effects on 
reproductive performance and herd life have been reported (57). 
The causal point mutation (a G to T transversion) has been found 
to reside in an allele of a Golgi-resident transporter of UDP-N-
acetylglucosamine encoded by SLC35A3 on BTA3 that results in a 
valine substitution at position 180 with a phenylalanine (V180F) 
(58). This allele was carried by many of the same animals that 
carried BLAD, and the allelic frequency of the mutant allele had 
reached as high as 20–30% in many countries before a rapid 
genetic diagnostic test was available to prevent further transmis-
sion of this mutant allele (58).

lePTiN (LEP)

Leptin is the hormone produced by the obesity gene (ob). 
It is secreted by adipocytes, and it has been associated with feed 
consumption and energy balance in mice and humans. The leptin 
gene is located on bovine chromosome 4. A genetic marker was 
identified in the sequence (59) and in the promoter region of the 
bovine gene (60). Buchanan et al. (59) proposed that the missense 
mutation in the gene sequence could be considered the causative 
mutation in differences of fat deposits in cattle. Barendse et al. (61) 
indicated that there is no association between genetic markers in 
the leptin gene with fat in cattle; however, additional studies have 
supported the theory that different alleles of the gene are associ-
ated with differences in fat in cattle (60, 62, 63). The use of genetic 
markers in the leptin gene could be of use in beef production.

OSTeOPeTROSiS

The condition osteopetrosis was identified in cattle, which is 
also known as marble bone disease. Animals are characterized 
by forming exaggeratedly dense bones. This is the result of a 
deficiency in the number, or lack of function, of osteoclasts (64). 
Animals with this condition are usually stillborn, slightly prema-
ture with small body size. They often display distinctive features 
in the skull like flat skull, impacted molars, shortened mandibles, 
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and protruding tongue (65, 66). A deletion in the SCL4A2 gene 
has been associated with the condition in Red Angus. The gene 
resides on chromosome 4 (64).

APOPTOSiS PePTiDe ACTivATiNG 
FACTOR 1 (APAF1) TRUNCATiON

A haplotype named HH1 was initially identified on BTA5 using 
high-density SNP genotyping and associated with a decrease in 
conception rates and an increase in stillbirths in Holstein cattle 
(67). The causal mutation has now been identified to be a result of 
a truncation of the APAF1 protein and has been traced to the bull 
Pawnee Farm Arlinda Chief (Chief), a bull born in 1962 that sired 
several other prominent bulls used for artificial insemination, 
some of which have since had their genomes sequenced (68, 69). 
Through the use of artificial insemination, Chief also produced 
over 16,000 daughters, 500,000 granddaughters, and 2 million 
great-granddaughters (69). Owing to the widespread use of his 
genetics, the estimated cumulative number of spontaneous abor-
tions caused by APAF1 truncation over the three decades that 
Chief ’s alleles became highly frequent to be more than 100,000 
in the United States and nearly 500,000 worldwide.

CHONDRODYSPlASTiC DwARFiSM

Dwarfism has been studied in cattle and other species. The 
principal characteristic of this condition is the abnormal bone 
ossification of extremities. It has also been associated with other 
conditions in the animal. Different genes produce dwarfism in 
different species. Chondrodysplastic dwarfism has been identified 
in the Japanese Brown Cattle. Economic losses can be attributed 
to this condition if the breed is used in breeding schemes. The 
locus responsible for this condition was identified on chromo-
some 6 (70). Two different DNA changes were identified in the 
LIMBIN gene associated with dwarfism. The first was a mutation 
that produces an alternative splicing site in the gene, and the other 
was a deletion in the gene (71). Takeda et al. (71) proposed these 
changes in the gene as responsible for chondrodysplastic dwarf-
ism in Japanese Brown cattle.

Genetic variants in the Ellis van Creveld Syndrome 2 gene 
have also been proposed as responsible for chondrodysplastic 
dwarfism in Tyrolean Grey cattle (72). This gene also resides on 
chromosome 6. A 2-bp deletion was identified as responsible for 
the condition. The deletion produces a premature stop codon and 
thus a loss of function in the protein (72). Identification of muta-
tions for the chondrodysplastic dwarfism allows genetic testing 
with the objective to eliminate this condition in cattle.

CASeiNS (CSN)

Milk proteins in ruminants have been comprehensively studied 
due to their importance in milk composition and cheese-making 
properties (73, 74). Dalgleish and Corredig (74) have described in 
detail the structure of the casein micelles and its changes during 
the processing of milk. Farrell et  al. (73) reported the current 
nomenclature of the proteins of the cow in milk, with emphasis 
on caseins. Polymorphisms identified in the genes of caseins in 

bovine have also been summarized (75). Caseins comprise 80% 
of total proteins in milk.

There are four casein molecules produced (AlphaS1, AlphaS2, 
Beta, and Kappa). These proteins are coded by four genes on 
chromosome 6. The order of these genes on the chromosome 
is CSN1S1, CSN2, CSN1S2, and CSN3. The genomic region is 
referred to as the CN locus because these four genes are tightly 
linked (74, 75). Of particular interest in cheese production has 
been the kappa-casein genetic variants. Farrell et  al. (73) have 
described in detail the genomic differences among variants in 
each casein gene. The B variant or allele is of particular interest 
because it has been associated with increased cheese production 
(76). Differences between the A and the B alleles from the kappa-
casein protein is the substitution of an isoleucine for a threonine 
at position 136 and the substitution of an alanine for an aspartic 
acid in position 148 of the protein (73). SNPs associated with 
variants in the casein genes have been developed (77).

Using high-throughput genotyping technology, additional 
associations for casein production have been identified. A GWAS 
for bovine milk caseins and lactalbumin was done in Dutch 
Holstein Friesian cows (78). Several genomic regions were associ-
ated with the proportion of different caseins in milk. Schopen et al. 
(78) concluded that the proportion of genetic variance explained 
by the SNP on chromosomes 6, 11, and 14 could be explained 
by the casein locus on chromosome 6, beta-lactoglobulin on 
chromosome 11, and diglyceride acyltransferase-1 (DGAT1) on 
chromosome 14. Gambra et  al. (79), performing a GWAS in a 
Holstein X Jersey population, identified six additional SNP, on 
chromosome 6, associated with caseins in milk. Given the prox-
imity of the casein genes in a single locus, it has been suggested 
that SNP in the casein genes can be used in haplotypes instead 
of selecting each variant independently (75, 77). Different alleles 
may be suitable for management to increase milk production or 
to increase cheese production in dairy production systems.

CAlPASTATiN (CAST)

Meat tenderness is one of the most important factors for consumer 
satisfaction. The calpastatin proteolytic axis has been identified as 
an important process to established meat tenderness. Calpastatin 
is the regulator of m-Calpain and μ-Calpain. m-Calpain and 
μ-Calpain are proteolytic enzymes responsible for the breakage of 
muscle fibers, producing postmortem tenderization of meat (80). 
Calpastatin is the natural inhibitor of calpains in this proteolytic 
system.

The gene that produces calpastatin (CAST) is located in bovine 
chromosome 7, and a genetic marker was identified within this 
gene. An association between meat tenderness and this genetic 
marker in the calpastatin gene has been observed in several 
studies (81, 82). This makes calpastatin a suitable gene to develop 
genetic markers associated with meat tenderness in other breeds, 
especially for breeds with known tough meat.

UMbiliCAl HeRNiA

Umbilical hernia is a bovine defect observed after birth. 
It  consists of the protrusion of the intestine or other organs 
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through the abdominal wall at the umbilicus. In Israeli Holstein 
populations, frequency of retained placenta increased 7% in 
first-parity cows without umbilical hernia, compared with 18% 
in first-parity cows with umbilical hernia (83).

The locus responsible for umbilical hernia resides on chromo-
some 8. The gene is still unidentified, but the gene resides within 
an 8-Mb region (83). Genomics can be of assistance in identifying 
the gene and the causative mutation for the condition. Marker-
assisted selection could be used to select against umbilical hernia 
to reduce costs associated with placenta retention.

eMbRYONiC lOSS

Fertility is an important factor that affects the dairy industry. 
The ability to produce offspring is a major component of milk 
production. Embryo loss hampers milk production for the cow, 
and it is an important economic factor in the dairy industry. 
A locus on chromosome 8 has been identified as responsible 
for death loss in Holsteins. Fritz et  al. (84) identified that the 
Holstein Haplotype 3 (HH3) was responsible for embryo losses 
in French Holstein. Daetwyler et al. (85) had the same conclu-
sion when evaluated HH3 using information from the 1,000 Bull 
Genomes Project.1 The condition was identified by the lack of 
homozygous individuals for a particular haplotype in the United 
States Holstein population. The mutation causing embryonic 
loss was estimated to reside in the Structural Maintenance 
of Chromosomes Protein-2 (SMC2) gene on chromosome 8. 
McClure et al. (17) confirmed the effect of the haplotype, within 
the SMC2 gene, as responsible for embryonic loss in Holstein.

lACTOGlObUliN (LGB)

The beta-lactoglobulin is the major protein in whey. Although 
LGB is not implicated in the coagulation process of milk, different 
variants of this gene affect renneting properties of raw milk. The 
LGB gene resides on chromosome 11, and 11 different variants 
have been described. The most common variants are alleles A 
and B in most dairy breeds; however, allele C is common in 
Jersey, and alleles D and E are common in other breeds (73, 75). 
The sequence of the variant B for this protein is considered the 
standard. Differences between variants B and A are the change of 
a glycine for an aspartic acid in position 64 and the substitution of 
an alanine for a valine in position 118 of the protein (73). Variants 
A and B have different properties affecting milk. The B variant 
of this protein denatures faster than variant A; therefore, heat 
stability is higher for the latter variant (86). Jakob and Puhan (86) 
indicate that kappa-casein reacts faster with the B variant, when 
compared to the A variant of LGB. SNP in the gene that produces 
the protein can be used to improve cheese production.

CiTRUlliNeMiA

This autosomal recessive lethal genetic condition is character-
ized by high levels of ammonia in blood (87). This is due to a 

1 www.1000bullgenomes.com.

deficiency in activity of the enzyme argininosuccinate synthase 
that is produced by the gene ASS1. The enzyme is a key component 
of the urea cycle (1, 34). Animals with this condition are unable 
to excrete ammonia and have neurologic symptoms, producing 
perinatal mortality. The gene resides on chromosome 11, and 
the gene has been identified. The initial report demonstrated the 
first use in animal production of the polymerase chain reaction 
(PCR) combined with an endonuclease enzyme (AvaII) digestion 
to identify a restriction fragment length polymorphism of a frag-
ment of the gene to identify carriers of the condition (88). Current 
technology would be capable to identify the SNP responsible for 
the condition.

CHOleSTeROl DeFiCieNCY iN CATTle

A recessive condition has been recently identified in Holstein 
cattle. Calves show severe hypocholesterolemia and die soon after 
birth due to diarrhea (89). Kipp et al. (89) identified a region of 
chromosome 11 associated with this condition on chromosome 
11. The analysis of the pedigree of calves, known to have died from 
this condition, where traced to a predominant Canadian Holstein 
bull (Maughlin Storm). It was concluded that he was a carrier of 
the condition. Further analysis of this condition was pursued by 
Menzi et al. (90). An insertion of 1.3 kb of a transposable long 
terminal repeat (LTR) element within exon 5 of the APOB gene 
was identified (90). The LTR element identified is a vestige of 
viral DNA inserted in the host. These elements have also been 
identified in human (91). The insertion results in a frameshift that 
starts at amino acid 135 and produces a 97% truncation of the 
4,567 amino acid long apolipoprotein B (90). Results from Menzi 
et al. (90) can be used as a genetic test to identify carriers of the 
condition in Holstein.

PRiON (PRNP) DiSeASeS

Bovine spongiform encephalopathy (BSE) is a neurodegenera-
tive fatal condition affecting cattle. This condition is a transmis-
sible spongiform encephalopathy that is similar to scrapie in 
sheep, chronic wasting disease in deer, and Creutzfeld–Jacob 
disease (CJD) in humans. BSE is caused by an accumulation of 
an abnormally folded isoform of the prion protein in central 
nervous system tissues. While the vast majority of cases of BSE 
were the result of ingesting feed derived from animal origin 
protein products contaminated with infected central nervous 
system tissues, today there are recognized atypical BSE cases 
that are thought to arise spontaneously and are not attributed 
to a transmissible origin in feedstuffs (92). Defined by their 
atypical molecular profiles on western blots when compared 
with classical BSE, atypical BSE cases tend to occur in older 
cattle than what is seen with classical BSE. One study of PRNP 
haplotypes from six atypical BSE cases has suggested a genetic 
determinant in or near PRNP influencing susceptibility of cattle 
to atypical BSE (93). Although believed to be extremely rare (94), 
one H-type BSE case (95) was associated with a heritable E211K 
mutation in the prion protein gene (PRNP) and is now thought 
to represent the bovine ortholog of the most common form of 
genetic CJD (E200K) in humans (96). Intracranial inoculation 
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of infected brain material from the E211K BSE case into cattle 
possessing the 211K allele has demonstrated a very rapid onset 
of clinical BSE, consistent with a genetic form of BSE (97). A 
comprehensive review is available (98). The locus of the prion 
protein resides on chromosome 13 and consists of three exons. 
Initial studies identified three gene variants, differing in the 
number of repeats for eight peptides. Five, six, and seven repeats 
of the peptides were identified (99, 100). Seabury et  al. (101), 
besides evaluating the repeats, studied the promoter region 
without identifying an association. However, there were differ-
ences in allelic frequencies in the intronic region of the gene. 
Additional studies have identified two indels in the bovine PRNP 
promoter region that have been studied for their association with 
BSE (102–104). Others examined the prevalence of the indel 
polymorphisms among selected cattle populations and found no 
association with the development of experimentally transmitted 
TSEs in cattle (105–107); this provided evidence that genetic 
factors associated with resistance to classical BSE in cattle do not 
provide resistance to cattle naturally infected with atypical BSE, 
thus suggesting that atypical BSE progresses via an alternative 
pathogenesis route compared to classical BSE and therefore is 
most likely a spontaneous prion disease in cattle.

THYROGlObUliN (TG1)

The thyroglobulin gene (TG1) resides on chromosome 14. The 
first association of genetic markers in this gene was reported by 
Thaller et al. (108). Since then, several studies have established the 
association of this gene with intra- and extra-muscular fat in Bos 
taurus (109, 110). Although fat could be considered a secondary 
trait in beef production, the use of genetic markers for this trait 
could be of value in evaluating marbling in carcasses of B. taurus 
or Bos indicus origin.

DiACYlGlYCeROl  
ACYlTRANSFeRASe (DGAT1)

The gene that produces this protein is known as DGAT1, which 
is localized on chromosome 14, neighboring the TG1 gene (108, 
111). This marker was originally associated with fat yield in milk 
(111), and additional studies have validated this association (112). 
This genetic marker has also been associated with marbling and 
fat thickness in beef cattle (108, 113, 114). This genetic marker 
residing in this gene is associated with fat production in dairy 
and beef cattle.

SYNDACTYlY

This genetic condition is also known as “Mule Foot.” It is 
characterized by the fusion or stenosis of the functional 
phalanges in the bovine. The condition precludes natural 
mount in sires. This genetic condition presents susceptibility 
to hyperthermia due to high environmental temperatures. 
The locus resides on chromosome 15; however, the causative 
gene or change in the DNA has not been identified (115). 
Microsatellite markers in the neighboring region have been 

used to identify carriers of the condition (116). The LRP4 
gene has been proposed as the candidate for the condition 
in this chromosomal region, and SNPs in the gene have been 
associated with the condition (117).

MAPle SYRUP URiNe DiSeASe

Animals with this condition have sweet-smelling urine. It is a 
progressive neurological condition, resulting in the inability of 
the animal to walk and ultimately results in death. The condition 
is the result of a mutation in the BCKADH gene. The enzyme 
has four subunits (Ea-alpha, E1-beta, E2, and E3). A mutation 
in the E1-alpha subunit, from a cytosine to a thymine, produces 
an incomplete enzyme (changes from a glutamine to a stop 
codon) in Hereford cattle. Animals with this condition have 
elevated levels of isocaproic acid which is the substrate of the 
enzyme (118, 119).

The Pre-E1-alpha subunit of the branched chain alpha-ketoacid 
dehydrogenase gene resides in chromosome 19. The mutation in 
Hereford was first identified, and further studies established that a 
different mutation was responsible for the condition in Shorthorn 
(118–120). Additional studies are needed to determine the causa-
tive mutation in Shorthorn.

SliCK HAiR

This condition should be of utmost importance for milk pro-
duction under tropical and subtropical conditions. Slick hair 
coat has been observed in tropical breeds of B. taurus and has 
been studied in the Senepol and Carora breeds. These animals 
have very short, slick hair coats (121). Although it is unknown 
where the condition originated, it is known that Criollo cattle in 
the Americas possess this condition. The capability to preserve 
normal body temperature during heat stress conditions is an 
important trait in tropical and subtropical cattle. Heat stress 
is a problem for animals not adapted to tropical conditions, 
negatively impacting milk production. Senepol cattle with 
slick hair are capable of maintaining a lower body temperature 
when compared with Senepol without this condition. Senepol 
cattle are known to be as heat-tolerant as Brahman cattle (121, 
122). Mariasegaram et al. (123) reported that the locus respon-
sible for slick hair resided on chromosome 20. Further studies 
confirmed that the slick hair locus resides on chromosome 20 
(124). Dikmen et al. (124) indicate that three potential candidate 
genes are in the region where the slick hair locus resides (SKP2, 
SPEF2, and PRLR). Littlejohn et  al. (125) propose mutations 
in the prolactin receptor (PRLR) on chromosome 20 and the 
prolactin gene (PRL) on chromosome 23, as responsible for the 
slick hair condition. Littlejohn et al. (125) indicate that animals 
with the slick hair condition produced more milk than animals 
without the condition. Furthermore, Dikmen et al. (124) show 
that Holstein cattle with the slick hair condition produce more 
milk than Holstein cattle without the condition. This condition 
in dairy cattle under tropical conditions should be of economic 
importance if introduced.
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FACTOR Xi DeFiCieNCY

First reported in 1975 (126), Factor XI deficiency in Holstein 
cattle was later shown by planned matings to be inherited as 
an autosomal recessive trait (127). Factor XI is a plasma serine 
protease critical for activation of the intrinsic blood coagula-
tion cascade. Factor XI-deficient cattle can be asymptomatic or 
exhibit symptoms including prolonged bleeding times following 
injections or insect bites, production of bloody milk and anemia. 
Although first reported in an 8-year-old steer, there are reports 
of lower calving and survival rates, and increased susceptibility 
to infectious diseases (128). The initial estimate of heterozygote 
frequency based upon activated partial thromboplastin times 
ranged between 8 and 17% (127). The mutation causing Factor 
XI deficiency is a 76-bp insertion within exon 12 that introduces 
a premature stop codon, thus resulting in a truncated Factor XI 
protein that is missing the functional serine protease domain 
responsible for proteolytic activation of Factor XI (129). Limited 
conscientious testing of bulls entering artificial insemination 
programs through the use of the activated partial thromboplastin 
time test reduced the allelic frequency of the mutant allele to 
1.2% among 419 animals genotyped from the Dairy Bull DNA 
Repository at the time the DNA mutation was identified and a 
DNA PCR diagnostic test was available (129).

μ-CAlPAiN (CAPN1)

This protein is a component of the calpastatin proteolytic axis. 
Its gene is located on chromosome 29, and the gene symbol is 
CAPN1. The first SNP identified in this gene was associated with 
meat tenderness in B. taurus breeds (130). Additional SNP were 
developed and found to be of better use than the original in 
B. indicus cattle (81, 131–133). Currently, there are several efforts 
to identify SNP associated with meat tenderness in beef cattle 
from B. indicus origin (131, 134, 135) and other native breeds 
(136). There are also attempts to associate SNP of CAPN1 with 
meat quality traits (137). Genetic markers in CAPN1 are suitable 
to be used by producers in Latin America to increase meat quality.

FiNAl ReMARKS

Relevant information regarding genetic conditions affecting 
productivity and health of cattle is available. Such is the case of the 
Quantitative Trait Loci Data Base, or QTLdb,2 which maintains 
current information of genomic regions that have been associ-
ated with traits of economic importance in cattle. The database 
contains information for 81,652 quantitative trait loci detected in 
the cattle genome. Information includes information for health, 
meat and carcass, milk production, growth, reproduction, and 
exterior traits of cattle (138). Similarly, the Online Mendelian 
Inheritance in Animals3 currently contains a list of 494 cattle 
genetic traits or disorders, of which 229 are known to be inherited 
in a Mendelian fashion. There are 130 traits or disorders of which 
the point mutation, or quantitative trait nucleotide, is known. In 

2 http://www.animalgenome.org/cattle/maps/db.html.
3 http://omia.angis.org.au/.

the current database, there is information for 181 traits in which 
cattle can be used as a model for humans (139). These sources are 
readily available to cattle producers, students, and researchers in 
the field of cattle genomics.

Recognition of genetic conditions is an important component 
in animal production. Screening for genetic conditions needs to 
be assessed by the producer, according to the production system 
and breeds used. Several genetic conditions would improve 
productivity, while others would be deleterious. For each produc-
tion system, it is necessary to screen the herd for known genetic 
conditions.

There are genetic conditions that would improve productivity 
(i.e., slick hair). For these genetic conditions, it would be possible 
to select for favorable alleles within the herd. This would increase 
productivity and make the production system more efficient. 
This is important where productivity is limited by hazardous 
environmental conditions.

The producer may want to introduce genetic conditions in the 
herd, or completely avoid them (i.e., myostatin). These genetic 
conditions need to be carefully assessed if they were to be intro-
duced in the herd. It would increase productivity by increasing 
amount of muscle mass and salable meat. However, adequate 
management of the herd needs to take place to avoid detrimental 
effects that would result in economic losses to the producer. These 
losses would be in the form of expenses due to calving difficulty, 
or losses of the calf due to poor management.

If the goal is to sell to international markets, there are genetic 
conditions that producers need to be aware (i.e., BCIN). These 
conditions have only been identified in specific breeds, and they 
would not represent a problem in other breeds. However, if the 
producer decides to introduce these breeds for international 
trade, screening for genetic conditions needs to be undertaken 
before productivity is hindered.

Deleterious genetic conditions need to be recognized (i.e., 
syndactyly). These genetic conditions will limit productivity of 
animals expressing the trait. Animals should be eliminated from 
the herd to benefit the production system. A point of caution 
is that in spite of current genetic testing being highly effective 
at accurately identifying carrier animals of particular traits, 
leukochimerism can result in erroneous test results if blood is 
used as a convenient DNA source; test results must always be 
confirmed with an independent tissue source not subject to 
mixed genotypes (140).

As advances in molecular biology continue, the impact on our 
ability to more rapidly detect traits of economic importance will 
only improve. Use of haplotype reconstruction and haplotrack-
ing with a database of >1 million cattle4 will enable discovery of 
various traits (many of which may be unrecognized) that impact 
livestock performance and production.

AUTHOR NOTe

Mention of trade name, proprietary product, or specified equip-
ment does not constitute a guarantee or warranty by the USDA 

4 http://aipl.arsusda.gov/reference/recessive_haplotypes_ARR-G3.html.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive
http://www.animalgenome.org/cattle/maps/db.html
http://omia.angis.org.au/
http://aipl.arsusda.gov/reference/recessive_haplotypes_ARR-G3.html


8

Casas and Kehrli Genes Associated with Productivity in Cattle

Frontiers in Veterinary Science | www.frontiersin.org December 2016 | Volume 3 | Article 113

ReFeReNCeS

1. Healy PJ. Testing for undesirable traits in cattle: an Australian perspective. 
J Anim Sci (1996) 74:917–22. doi:10.2527/1996.744917x 

2. Mai MD, Rychtarova J, Zink V, Lassen J, Guldbrandtsen B. Quantitative trait 
loci for milk production and functional traits in two Danish cattle breeds. 
J Anim Breed Genet (2010) 127:469–73. doi:10.1111/j.1439-0388.2010. 
00869.x 

3. Mai MD, Sahana G, Christiansen FB, Guldbrandtsen B. A genome-wide 
association study for milk production traits in Danish Jersey cattle using 
a 50K single nucleotide polymorphism chip. J Anim Sci (2010) 88:3522–8. 
doi:10.2527/jas.2009-2713 

4. Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ Jr, Crooker BA, et al. 
Genome-wide association analysis of thirty one production, health, repro-
duction and body conformation traits in contemporary U.S. Holstein cows. 
BMC Genomics (2011) 12:408. doi:10.1186/1471-2164-12-408 

5. Casas E, Shackelford SD, Keele JW, Stone RT, Kappes SM, Koohmaraie 
M. Quantitative trait loci affecting growth and carcass composition of 
cattle segregating alternate forms of myostatin. J Anim Sci (2000) 78:560–9. 
doi:10.2527/2000.783560x 

6. Casas E, Stone RT, Keele JW, Shackelford SD, Kappes SM, Koohmaraie M. A 
comprehensive search for quantitative trait loci affecting growth and carcass 
composition of cattle segregating alternative forms of the myostatin gene. 
J Anim Sci (2001) 79:854–60. doi:10.2527/2001.794854x 

7. Snelling WM, Allan MF, Keele JW, Kuehn LA, McDaneld T, Smith TP, et al. 
Genome-wide association study of growth in crossbred beef cattle. J Anim Sci 
(2010) 88:837–48. doi:10.2527/jas.2009-2257 

8. Snelling WM, Allan MF, Keele JW, Kuehn LA, Thallman RM, Bennett GL, 
et al. Partial-genome evaluation of postweaning feed intake and efficiency 
of crossbred beef cattle. J Anim Sci (2011) 89:1731–41. doi:10.2527/
jas.2010-3526 

9. Neibergs HL, Seabury CM, Wojtowicz AJ, Wang Z, Scraggs E, Kiser 
JN, et  al. Susceptibility loci revealed for bovine respiratory disease 
complex in pre-weaned Holstein calves. BMC Genomics (2014) 15:1164. 
doi:10.1186/1471-2164-15-1164 

10. Casas E, Hessman BE, Keele JW, Ridpath JF. A genome-wide association 
study for the incidence of persistent bovine viral diarrhea virus infection in 
cattle. Anim Genet (2015) 46:8–15. doi:10.1111/age.12239 

11. Djari A, Esquerré D, Weiss B, Martins F, Meersseman C, Boussaha M, et al. 
Gene-based single nucleotide polymorphism discovery in bovine muscle 
using next-generation transcriptomic sequencing. BMC Genomics (2013) 
14:307. doi:10.1186/1471-2164-14-307 

12. Charlier C, Coppieters W, Farnir F, Grobet L, Leroy PL, Michaux C, et al. The 
mh gene causing double-muscling in cattle maps to bovine chromosome 2. 
Mamm Genome (1995) 6:788–92. doi:10.1007/BF00539005 

13. Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin D, Michaux C, et  al. 
Molecular definition of an allelic series of mutations disrupting the myostatin 
function and causing double-muscling in cattle. Mamm Genome (1998) 
9:210–3. doi:10.1007/s003359900727 

14. Jiang L, Liu X, Yang J, Wang H, Jiang J, Liu L, et al. Targeted resequencing 
of GWAS loci reveals novel genetic variants for milk production traits. BMC 
Genomics (2014) 15:1105. doi:10.1186/1471-2164-15-1105 

15. Shin DH, Lee HJ, Cho S, Kim HJ, Hwang JY, Lee CK, et  al. Deleted 
copy number variation of Hanwoo and Holstein using next generation 
sequencing at the population level. BMC Genomics (2014) 15:240. 
doi:10.1186/1471-2164-15-240 

16. Tsuda K, Kawahara-Miki R, Sano S, Imai M, Noguchi T, Inayoshi Y, et al. 
Abundant sequence divergence in the native Japanese cattle Mishima-Ushi 

(Bos taurus) detected using whole-genome sequencing. Genomics (2013) 
102:372–8. doi:10.1016/j.ygeno.2013.08.002 

17. McClure MC, Bickhart D, Null D, Vanraden P, Xu L, Wiggans G, et  al. 
Bovine exome sequence analysis and targeted SNP genotyping of recessive 
fertility defects BH1, HH2, and HH3 reveal a putative causative mutation 
in SMC2 for HH3. PLoS One (2014) 9:e92769. doi:10.1371/journal.pone. 
0092769 

18. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, et  al. 
A deletion in the bovine myostatin gene causes the double-muscled pheno-
type in cattle. Nat Genet (1997) 17:71–4. doi:10.1038/ng0997-71 

19. Dunner S, Miranda ME, Amigues Y, Cañón J, Georges M, Hanset R, 
et  al. Haplotype diversity of the myostatin gene among beef cattle breeds. 
Genet Sel Evol (2003) 35:103–18. doi:10.1186/1297-9686-35-1-103 

20. Paiva DS, Fonseca I, Pinto IS, Ianella P, Campos TA, Caetano AR, et  al. 
Incidence of bovine leukocyte adhesion deficiency, complex vertebral 
malformation, and deficiency of uridine-5-monophosphate synthase 
carriers in Brazilian Girolando cattle. Genet Mol Res (2013) 12:3186–92. 
doi:10.4238/2013.August.29.2 

21. Kehrli ME Jr, Schmalstieg FC, Anderson DC, Van der Maaten MJ, Hughes BJ, 
Ackermann MR, et al. Molecular definition of the bovine granulocytopathy 
syndrome: identification of deficiency of the Mac-1 (CD11b/CD18) glyco-
protein. Am J Vet Res (1990) 51:1826–36. 

22. Kehrli ME Jr, Ackermann MR, Shuster DE, van der Maaten MJ, Schmalstieg 
FC, Anderson DC, et al. Animal model of human disease: bovine leukocyte 
adhesion deficiency: β2 integrin deficiency in Young Holstein cattle. Am 
J Path (1992) 140:1489–92. 

23. Ackermann MR, Kehrli ME Jr, Morfitt DC. Ventral dermatitis and vasculitis 
in a calf with bovine leukocyte adhesion deficiency. J Am Vet Med Assoc 
(1993) 202:413–5. 

24. Gilbert RO, Rebhun WC, Kim CA, Kehrli ME Jr, Shuster DE, Ackermann 
MR. Clinical manifestations of leukocyte adhesion deficiency in cattle: 14 
cases (1977-1991). J Am Vet Med Assoc (1993) 202:445–9. 

25. Kehrli ME Jr, Shuster DE, Ackermann MR, Smith CW, Anderson DC, Dore M, 
et al. Clinical and immunological features associated with bovine leukocyte 
adhesion deficiency. In: Lipsky PE, Rothlein R, Kishimoto TK, Faanes RB, 
Smith CW, editors. Structure, Function, and Regulation of Molecules Involved 
in Leukocyte Adhesion. New York: Springer-Verlag (1993). p. 314–27.

26. Lienau A, Stöber M, Kehrli ME, Tammen I, Schwenger B, Kuczka A, et al. 
Bovine leukocyte adhesion deficiency: clinical picture and differential diag-
nosis. Dtsch Tierärztl Wochenschr (1994) 101:405–6. 

27. Nagahata H, Nochi H, Tamoto K, Taniyama H, Noda H, Morita M, et  al. 
Bovine leukocyte adhesion deficiency: neutrophil function and pathological 
analysis. Am J Vet Res (1994) 55:40–8. 

28. Ackermann MR, Kehrli ME Jr, Laufer JA, Nusz LT. Alimentary and respi-
ratory tract lesions in eight medically fragile Holstein cattle with bovine 
leukocyte adhesion deficiency (BLAD). Vet Pathol (1996) 33:273–81. 
doi:10.1177/030098589603300303 

29. Shuster DE, Kehrli ME Jr, Ackermann MR, Gilbert RO. Identification and 
prevalence of a genetic defect that causes leukocyte adhesion deficiency in 
Holstein cattle. Proc Natl Acad Sci U S A (1992) 89:9225–9. doi:10.1073/
pnas.89.19.9225 

30. Rexroad CE, Schlapfer JS, Yang Y, Harlizius B, Womack JE. A radiation 
hybrid map of bovine chromosome one. Anim Genet (1999) 30:325–32. 
doi:10.1046/j.1365-2052.1999.00504.x 

31. Vatasescu-Balcan RA, Manea MA, Georgescu SE, Dinischiotu A, Tesio CD, 
Costache M. Evidence of single point mutation inducing BLAD disease 
in Romanian Holstein-derived cattle breed. Biotechnol Anim Husb (2007) 
23:375–81. doi:10.2298/BAH0701375V 

and does not imply approval to the exclusion of other products 
that may be suitable.

AUTHOR CONTRibUTiONS

EC and MK wrote and reviewed the manuscript.

FUNDiNG

This document is an intramural project of the USDA/ARS National 
Animal Disease Center. The funding was provided by USDA. The 
funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive
https://doi.org/10.2527/1996.744917x
https://doi.org/10.1111/j.1439-0388.2010.00869.x
https://doi.org/10.1111/j.1439-0388.2010.00869.x
https://doi.org/10.2527/jas.2009-2713
https://doi.org/10.1186/1471-2164-12-408
https://doi.org/10.2527/2000.783560x
https://doi.org/10.2527/2001.794854x
https://doi.org/10.2527/jas.2009-2257
https://doi.org/10.2527/jas.2010-3526
https://doi.org/10.2527/jas.2010-3526
https://doi.org/10.1186/1471-2164-15-1164
https://doi.org/10.1111/age.12239
https://doi.org/10.1186/1471-2164-14-307
https://doi.org/10.1007/BF00539005
https://doi.org/10.1007/s003359900727
https://doi.org/10.1186/1471-2164-15-1105
https://doi.org/10.1186/1471-2164-15-240
https://doi.org/10.1016/j.ygeno.2013.08.002
https://doi.org/10.1371/journal.pone.0092769
https://doi.org/10.1371/journal.pone.0092769
https://doi.org/10.1038/ng0997-71
https://doi.org/10.1186/1297-9686-35-1-103
https://doi.org/10.4238/2013.August.29.2
https://doi.org/10.1177/030098589603300303
https://doi.org/10.1073/pnas.89.19.9225
https://doi.org/10.1073/pnas.89.19.9225
https://doi.org/10.1046/j.1365-2052.1999.00504.x
https://doi.org/10.2298/BAH0701375V


9

Casas and Kehrli Genes Associated with Productivity in Cattle

Frontiers in Veterinary Science | www.frontiersin.org December 2016 | Volume 3 | Article 113

32. Schutz E, Scharfenstein M, Brenig B. Implication of complex vertebral mal-
formation and bovine leukocyte adhesion deficiency DNA-based testing on 
disease frequency in the Holstein population. J Dairy Sci (2008) 91:4854–9. 
doi:10.3168/jds.2008-1154 

33. Powell RL, Norman HD, Cowan CM. Relationship of bovine leukocyte 
adhesion deficiency with genetic merit for performance traits. J Dairy Sci 
(1996) 79:895–9. doi:10.3168/jds.S0022-0302(96)76438-X 

34. Citek J, Blahova B. Recessive disorders – a serious health hazard? J Appl 
Biomed (2004) 2:187–94. 

35. Ryan AM, Gallagher DS Jr, Schober S, Schwenger B, Womack JE. Somatic 
cell mapping and in situ localization of the bovine uridine monophosphate 
synthase gene (UMPS). Mamm Genome (1994) 5:46–7. doi:10.1007/ 
BF00360568 

36. Harlizius B, Schober S, Tammen I, Simon D. Isolation of the bovine uridine 
monophosphate synthase gene to identify the molecular basis of DUMPS in 
cattle. J Anim Breed Genet (1996) 113:303–9. doi:10.1111/j.1439-0388.1996.
tb00620.x 

37. Schwenger B, Schober S, Simon D. DUMPS cattle carry a point mutation 
in the uridine monophosphate synthase gene. Genomics (1993) 16:241–4. 
doi:10.1006/geno.1993.1165 

38. Kobayashi N, Hirano T, Maruyama S, Matsuno H, Mukoujima K, 
Morimoto H, et  al. Genetic mapping of a locus associated with bovine 
chronic interstitial nephritis to chromosome 1. Anim Genet (2000) 31:91–5. 
doi:10.1046/j.1365-2052.2000.00589.x 

39. Hirano T, Hirotsune S, Sasaki S, Kikuchi T, Sugimoto Y. A new deletion 
mutation in bovine claudin-16 (CL-16) deficiency and diagnosis. Anim Genet 
(2002) 33:118–22. doi:10.1046/j.1365-2052.2002.00844.x 

40. Brenneman RA, Davis SK, Sanders JO, Burns BM, Wheeler TC, Turner JW, 
et  al. The polled locus maps to BTA1 in a Bos indicus x Bos taurus cross. 
J Hered (1996) 87:156–61. doi:10.1093/oxfordjournals.jhered.a022975 

41. Georges M, Drinkwater R, King T, Mishra A, Moore SS, Nielsen D, et  al. 
Microsatellite mapping of a gene affecting horn development in Bos taurus. 
Nat Genet (1993) 4:206–10. doi:10.1038/ng0693-206 

42. Wunderlich KR, Abbey CA, Clayton DR, Song Y, Schein JE, Georges M, et al. 
A 2.5-Mb contig constructed from Angus, Longhorn and horned Hereford 
DNA spanning the polled interval on bovine chromosome 1. Anim Genet 
(2006) 37:592–4. doi:10.1111/j.1365-2052.2006.01538.x 

43. Cargill EJ, Nissing NJ, Grosz MD. Single nucleotide polymorphisms concor-
dant with the horned/polled trait in Holsteins. BMC Res Notes (2008) 1:128. 
doi:10.1186/1756-0500-1-128 

44. Seichter D, Russ I, Rothammer S, Eder J, Förster M, Medugorac I. SNP-based 
association mapping of the polled gene in divergent cattle breeds. Anim Genet 
(2012) 43:595–8. doi:10.1111/j.1365-2052.2011.02302.x 

45. Wiedemar N, Tetens J, Jagannathan V, Menoud A, Neuenschwander S, 
Bruggmann R, et al. Independent polled mutations leading to complex gene 
expression differences in cattle. PLoS One (2014) 9:e93435. doi:10.1371/
journal.pone.0093435 

46. Arthur PF. Double muscling in cattle: a review. Aust J Agric Res (1995) 
46:1493–515. doi:10.1071/AR9951493 

47. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in 
mice by a new TGF-beta superfamily member. Nature (1997) 387:83–90. 
doi:10.1038/387083a0 

48. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the 
myostatin gene. Proc Natl Acad Sci U S A (1997) 94:12457–61. doi:10.1073/
pnas.94.23.12457 

49. Dunner S, Charlier C, Farnir F, Brouwers B, Canon J, Georges M. Towards 
interbreed IBD fine mapping of the mh locus: double-muscling in the 
Asturiana de los Valles breed involves the same locus as in the Belgian Blue 
cattle breed. Mamm Genome (1997) 8:430–5. doi:10.1007/s003359900462 

50. Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) 
in double-muscled Belgian Blue and Piedmontese cattle. Genome Res (1997) 
7:910–6. 

51. Casas E, Keele JW, Fahrenkrug SC, Smith TP, Cundiff LV, Stone RT. 
Quantitative analysis of birth, weaning, and yearling weights and calving 
difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. 
J Anim Sci (1999) 77:1686–92. doi:10.2527/1999.7771686x 

52. Casas E, Bennett GL, Smith TP, Cundiff LV. Association of myostatin on early 
calf mortality, growth, and carcass composition traits in crossbred cattle. 
J Anim Sci (2004) 82:2913–8. doi:10.2527/2004.82102913x 

53. Wheeler TL, Shackelford SD, Casas E, Cundiff LV, Koohmaraie M. The effects 
of Piedmontese inheritance and myostatin genotype on the palatability of 
longissimus thoracis, gluteus medius, semimembranosus, and biceps femo-
ris. J Anim Sci (2001) 79:3069–74. doi:10.2527/2001.79123069x 

54. Agerholm JS, Bendixen C, Andersen O, Arnbjerg J. Complex vertebral 
malformation in Holstein calves. J Vet Diagn Invest (2001) 13:283–9. 
doi:10.1177/104063870101300401 

55. Agerholm JS, Andersen O, Almskou MB, Bendixen C, Arnbjerg J, Aamand 
GP, et  al. Evaluation of the inheritance of the complex vertebral malfor-
mation syndrome by breeding studies. Acta Vet Scand (2004) 45:133–7. 
doi:10.1186/1751-0147-45-133 

56. Agerholm JS, Bendixen C, Arnbjerg J, Andersen O. Morphological variation 
of “complex vertebral malformation” in Holstein calves. J Vet Diagn Invest 
(2004) 16:548–53. doi:10.1177/104063870401600609 

57. Nielsen US, Aamand GP, Andersen O, Bendixen C, Nielsen VH, Agerholm 
JS. Effects of complex vertebral malformation on fertility traits in Holstein 
cattle. Livest Prod Sci (2003) 79:233–8. doi:10.1016/S0301-6226(02)00170-7 

58. Thomsen B, Horn P, Panitz F, Bendixen E, Petersen AH, Holm LE, et  al. 
A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-
acetylglucosamine transporter, causes complex vertebral malformation. 
Genome Res (2006) 16:97–105. doi:10.1101/gr.3690506 

59. Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim 
DC, Schmutz SM. Association of a missense mutation in the bovine leptin 
gene with carcass fat content and leptin mRNA levels. Genet Sel Evol (2002) 
34:105–16. doi:10.1186/1297-9686-34-1-105 

60. Nkrumah JD, Li C, Yu J, Hansen C, Keisler DH, Moore SS. Polymorphisms 
in the bovine leptin promoter associated with serum leptin concentration, 
growth, feed intake, feeding behavior, and measures of carcass merit. J Anim 
Sci (2005) 83:20–8. doi:10.2527/2005.83120x 

61. Barendse W, Bunch RJ, Harrison BE. The leptin C73T missense muta-
tion is not associated with marbling and fatness traits in a large gene 
mapping experiment in Australian cattle. Anim Genet (2005) 36:86–8. 
doi:10.1111/j.1365-2052.2004.01224.x 

62. Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL. The 
effect of a leptin single nucleotide polymorphism on quality grade, yield 
grade, and carcass weight of beef cattle. J Anim Sci (2005) 83:927–32. 
doi:10.2527/2005.834927x 

63. Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, et  al. 
Association of single nucleotide polymorphisms in the leptin gene with 
carcass and meat quality traits of beef cattle. J Anim Sci (2005) 83:2009–20. 
doi:10.2527/2005.8392009x 

64. Meyers SN, McDaneld TG, Swist SL, Marron BM, Steffen DJ, O’Toole D, et al. 
A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in 
Red Angus cattle. BMC Genomics (2010) 11:337. doi:10.1186/1471-2164- 
11-337 

65. Leipold HW, Doige CE, Kaye MM, Cribb PH. Congenital osteopetrosis in 
Aberdeen Angus calve. Can Vet J (1970) 11:181–5. 

66. Huston K, Leipold H. Hereditary osteopetrosis in Aberdeen-Angus 
calves. II. – genetical aspects. Ann Genet Sel Anim (1971) 3:419–23. 
doi:10.1186/1297-9686-3-4-419 

67. VanRaden PM, Olson KM, Null DJ, Hutchison JL. Harmful recessive effects 
on fertility detected by absence of homozygous haplotypes. J Dairy Sci (2011) 
94:6153–61. doi:10.3168/jds.2011-4624 

68. Larkin DM, Daetwyler HD, Hernandez AG, Wright CL, Hetrick LA, Boucek 
L, et al. Whole-genome resequencing of two elite sires for the detection of 
haplotypes under selection in dairy cattle. Proc Natl Acad Sci U S A (2012) 
109:7693–8. doi:10.1073/pnas.1114546109 

69. Adams HA, Sonstegard TS, VanRaden PM, Null DJ, Van Tassell CP, Larkin 
DM, et al. Identification of a nonsense mutation in APAF1 that is likely causal 
for a decrease in reproductive efficiency in Holstein dairy cattle. J Dairy Sci 
(2016) 99:6693–701. doi:10.3168/jds.2015-10517 

70. Yoneda K, Moritomo Y, Takami M, Hirata S, Kikukawa Y, Kunieda T. 
Localization of a locus responsible for the bovine chondrodysplastic dwarfism 
(bcd) on chromosome 6. Mamm Genome (1999) 10:597–600. doi:10.1007/
s003359901052 

71. Takeda H, Takami M, Oguni T, Tsuji T, Yoneda K, Sato H, et al. Positional 
cloning of the gene LIMBIN responsible for bovine chondrodysplastic 
dwarfism. Proc Natl Acad Sci U S A (2002) 99:10549–54. doi:10.1073/
pnas.152337899 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive
https://doi.org/10.3168/jds.2008-1154
https://doi.org/10.3168/jds.S0022-0302(96)76438-X
https://doi.org/10.1007/BF00360568
https://doi.org/10.1007/BF00360568
https://doi.org/10.1111/j.1439-0388.1996.tb00620.x
https://doi.org/10.1111/j.1439-0388.1996.tb00620.x
https://doi.org/10.1006/geno.1993.1165
https://doi.org/10.1046/j.1365-2052.2000.00589.x
https://doi.org/10.1046/j.1365-2052.2002.00844.x
https://doi.org/10.1093/oxfordjournals.jhered.a022975
https://doi.org/10.1038/ng0693-206
https://doi.org/10.1111/j.1365-2052.2006.01538.x
https://doi.org/10.1186/1756-0500-1-128
https://doi.org/10.1111/j.1365-2052.2011.02302.x
https://doi.org/10.1371/journal.pone.0093435
https://doi.org/10.1371/journal.pone.0093435
https://doi.org/10.1071/AR9951493
https://doi.org/10.1038/387083a0
https://doi.org/10.1073/pnas.94.23.12457
https://doi.org/10.1073/pnas.94.23.12457
https://doi.org/10.1007/s003359900462
https://doi.org/10.2527/1999.7771686x
https://doi.org/10.2527/2004.82102913x
https://doi.org/10.2527/2001.79123069x
https://doi.org/10.1177/104063870101300401
https://doi.org/10.1186/1751-0147-45-133
https://doi.org/10.1177/104063870401600609
https://doi.org/10.1016/S0301-6226(02)00170-7
https://doi.org/10.1101/gr.3690506
https://doi.org/10.1186/1297-9686-34-1-105
https://doi.org/10.2527/2005.83120x
https://doi.org/10.1111/j.1365-2052.2004.01224.x
https://doi.org/10.2527/2005.834927x
https://doi.org/10.2527/2005.8392009x
https://doi.org/10.1186/1471-2164-11-337
https://doi.org/10.1186/1471-2164-11-337
https://doi.org/10.1186/1297-9686-3-4-419
https://doi.org/10.3168/jds.2011-4624
https://doi.org/10.1073/pnas.1114546109
https://doi.org/10.3168/jds.2015-10517
https://doi.org/10.1007/s003359901052
https://doi.org/10.1007/s003359901052
https://doi.org/10.1073/pnas.152337899
https://doi.org/10.1073/pnas.152337899


10

Casas and Kehrli Genes Associated with Productivity in Cattle

Frontiers in Veterinary Science | www.frontiersin.org December 2016 | Volume 3 | Article 113

72. Murgiano L, Jagannathan V, Benazzi C, Bolcato M, Brunetti B, Muscatello 
LV, et  al. Deletion in the EVC2 gene causes chondrodysplastic dwarfism 
in Tyrolean Grey cattle. PLoS One (2014) 9:e94861. doi:10.1371/journal.
pone.0094861 

73. Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer 
LK, et al. Nomenclature of the proteins of cows’ milk – sixth revision. J Dairy 
Sci (2004) 87:1641–74. doi:10.3168/jds.S0022-0302(04)73319-6 

74. Dalgleish DG, Corredig M. The structure of the casein micelle of milk and 
its changes during processing. Annu Rev Food Sci Technol (2012) 3:449–67. 
doi:10.1146/annurev-food-022811-101214 

75. Caroli AM, Chessa S, Erhardt GJ. Invited review: milk protein polymor-
phisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci 
(2009) 92:5335–52. doi:10.3168/jds.2009-2461 

76. Lucey J, Kelley J. Cheese yield. J Soc Dairy Tech (1994) 47:1–14. doi:10.111
1/j.1471-0307.1994.tb01264.x 

77. Lien S, Rogne S. Bovine casein haplotypes: number, frequencies and 
applicability as genetic markers. Anim Genet (1993) 24:373–6. doi:10.111
1/j.1365-2052.1993.tb00343.x 

78. Schopen GC, Visker MH, Koks PD, Mullaart E, van Arendonk JA, Bovenhuis 
H. Whole-genome association study for milk protein composition in dairy 
cattle. J Dairy Sci (2011) 94:3148–58. doi:10.3168/jds.2010-4030 

79. Gambra R, Peñagaricano F, Kropp J, Khateeb K, Weigel KA, Lucey J, et al. 
Genomic architecture of bovine kappa-casein and beta-lactoglobulin. J Dairy 
Sci (2013) 96:5333–43. doi:10.3168/jds.2012-6324 

80. Koohmaraie M. Biochemical factors regulating the toughening and 
tenderization processes of meat. Meat Sci (1996) 43S1:193–201. 
doi:10.1016/0309-1740(96)00065-4 

81. Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley 
DG, et  al. Effects of calpastatin and micro-calpain markers in beef cattle 
on tenderness traits. J Anim Sci (2006) 84:520–5. doi:10.2527/2006. 
843520x 

82. Barendse W, Harrison BE, Hawken RJ, Ferguson DM, Thompson JM, 
Thomas MB, et  al. Epistasis between calpain 1 and its inhibitor calpasta-
tin within breeds of cattle. Genetics (2007) 176:2601–10. doi:10.1534/
genetics.107.074328 

83. Ron M, Tager-Cohen I, Feldmesser E, Ezra E, Kalay D, Roe B, et al. Bovine 
umbilical hernia maps to the centromeric end of Bos taurus autosome 8. 
Anim Genet (2004) 35:431–7. doi:10.1111/j.1365-2052.2004.01196.x 

84. Fritz S, Capitan A, Djari A, Rodriguez SC, Barbat A, Baur A, et al. Detection 
of haplotypes associated with prenatal death in dairy cattle and identification 
of deleterious mutations in GART, SHBG and SLC37A2. PLoS One (2013) 
8:e65550. doi:10.1371/journal.pone.0065550 

85. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum 
RF, et  al. Whole-genome sequencing of 234 bulls facilitates mapping of 
monogenic and complex traits in cattle. Nat Genet (2014) 46:858–65. 
doi:10.1038/ng.3034 

86. Jakob E, Puhan Z. Technological properties of milk as influenced by genetic 
polymorphism of milk proteins – a review. Int Dairy J (1992) 2:157–78. 
doi:10.1016/0958-6946(92)90014-D 

87. Healy PJ, Harper PA, Dennis JA. Bovine citrullinaemia: a clinical, patholog-
ical, biochemical and genetic study. Aust Vet J (1990) 67:255–8. doi:10.1111/ 
j.1751-0813.1990.tb07780.x 

88. Dennis JA, Healy PJ, Beaudet AL, O’Brien WE. Molecular definition of 
bovine argininosuccinate synthetase deficiency. Proc Natl Acad Sci U S A 
(1989) 86:7947–51. doi:10.1073/pnas.86.20.7947 

89. Kipp S, Segelke D, Schierenbeck S, Reinhardt F, Reents R, Wurmser C, et al. 
A New Holstein Haplotype Affecting Calf Survival. Interbull Bulletin. Orlando, 
FL: Interbull (2015). p. 49–53.

90. Menzi F, Besuchet-Schmutz N, Fragnière M, Hofstetter S, Jagannathan V, 
Mock T, et al. A transposable element insertion in APOB causes cholesterol 
deficiency in Holstein cattle. Anim Genet (2016) 47(2):253–7. doi:10.1111/
age.12410 

91. Marchi E, Kanapin A, Magiorkinis G, Belshaw R. Unfixed endogenous 
retroviral insertions in the human population. J Virol (2014) 88:9529–37. 
doi:10.1128/JVI.00919-14 

92. Guldimann C, Gsponer M, Drogemuller C, Oevermann A, Seuberlich T. 
Atypical H-type bovine spongiform encephalopathy in a cow born after 
the reinforced feed ban on meat-and-bone meal in Europe. J Clin Microbiol 
(2012) 50:4171–4. doi:10.1128/JCM.02178-12 

93. Clawson ML, Richt JA, Baron T, Biacabe AG, Czub S, Heaton MP, et  al. 
Association of a bovine prion gene haplotype with atypical BSE. PLoS One 
(2008) 3:e1830. doi:10.1371/journal.pone.0001830 

94. Heaton MP, Keele JW, Harhay GP, Richt JA, Koohmaraie M, Wheeler TL, 
et al. Prevalence of the prion protein gene E211K variant in U.S. cattle. BMC 
Vet Res (2008) 4:25. doi:10.1186/1746-6148-4-25 

95. Richt JA, Hall SM. BSE case associated with prion protein gene mutation. 
PLoS Pathog (2008) 4:e1000156. doi:10.1371/journal.ppat.1000156 

96. Nicholson EM, Brunelle BW, Richt JA, Kehrli ME Jr, Greenlee JJ. Identification 
of a heritable polymorphism in bovine PRNP associated with genetic trans-
missible spongiform encephalopathy: evidence of heritable BSE. PLoS One 
(2008) 3:e2912. doi:10.1371/journal.pone.0002912 

97. Greenlee JJ, Smith JD, West Greenlee MH, Nicholson EM. Clinical and 
pathologic features of H-type bovine spongiform encephalopathy associated 
with E211K prion protein polymorphism. PLoS One (2012) 7:e38678. 
doi:10.1371/journal.pone.0038678 

98. Greenlee JJ, Greenlee MH. The transmissible spongiform encephalopathies 
of livestock. ILAR J (2015) 56:7–25. doi:10.1093/ilar/ilv008 

99. Schlapfer I, Saitbekova N, Gaillard C, Dolf G. A new allelic variant in the 
bovine prion protein gene (PRNP) coding region. Anim Genet (1999) 
30:386–7. doi:10.1046/j.1365-2052.1999.00526-5.x 

100. Seabury CM, Honeycutt RL, Rooney AP, Halbert ND, Derr JN. Prion protein 
gene (PRNP) variants and evidence for strong purifying selection in func-
tionally important regions of bovine exon 3. Proc Natl Acad Sci U S A (2004) 
101:15142–7. doi:10.1073/pnas.0406403101 

101. Seabury CM, Womack JE, Piedrahita J, Derr JN. Comparative PRNP geno-
typing of U.S. cattle sires for potential association with BSE. Mamm Genome 
(2004) 15:828–33. doi:10.1007/s00335-004-2400-6 

102. Sander P, Hamann H, Pfeiffer I, Wemheuer W, Brenig B, Groschup MH, 
et  al. Analysis of sequence variability of the bovine prion protein gene 
(PRNP) in German cattle breeds. Neurogenetics (2004) 5:19–25. doi:10.1007/
s10048-003-0171-y 

103. Sander P, Hamann H, Drögemüller C, Kashkevich K, Schiebel K, Leeb T. 
Bovine prion protein gene (PRNP) promoter polymorphisms modulate 
PRNP expression and may be responsible for differences in bovine spon-
giform encephalopathy susceptibility. J Biol Chem (2005) 280:37408–14. 
doi:10.1074/jbc.M506361200 

104. Juling K, Schwarzenbacher H, Williams JL, Fries R. A major genetic compo-
nent of BSE susceptibility. BMC Biol (2006) 4:33. doi:10.1186/1741-7007-4-33 

105. Brunelle BW, Hamir AN, Baron T, Biacabe AG, Richt JA, Kunkle RA, et al. 
Polymorphisms of the prion gene promoter region that influence classical 
bovine spongiform encephalopathy susceptibility are not applicable to other 
transmissible spongiform encephalopathies in cattle. J Anim Sci (2007) 
85:3142–7. doi:10.2527/jas.2007-0208 

106. Brunelle BW, Greenlee JJ, Seabury CM, Brown CE II, Nicholson EM. 
Frequencies of polymorphisms associated with BSE resistance differ signifi-
cantly between Bos taurus, Bos indicus, and composite cattle. BMC Vet Res 
(2008) 4:36. doi:10.1186/1746-6148-4-36 

107. Brunelle BW, Kehrli ME Jr, Stabel JR, Spurlock DM, Hansen LB, Nicholson 
EM. Short communication: allele, genotype, and haplotype data for bovine 
spongiform encephalopathy-resistance polymorphisms from healthy US 
Holstein cattle. J Dairy Sci (2008) 91:338–42. doi:10.3168/jds.2007-0423 

108. Thaller G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, et al. DGAT1, a 
new positional and functional candidate gene for intramuscular fat deposition 
in cattle. Anim Genet (2003) 34:354–7. doi:10.1046/j.1365-2052.2003.01011.x 

109. Hou GY, Yuan ZR, Zhou HL, Zhang LP, Li JY, Gao X, et al. Association of 
thyroglobulin gene variants with carcass and meat quality traits in beef cattle. 
Mol Biol Rep (2011) 38:4705–8. doi:10.1007/s11033-010-0605-1 

110. Bennett GL, Shackelford SD, Wheeler TL, King DA, Casas E, Smith TP. 
Selection for genetic markers in beef cattle reveals complex associations of 
thyroglobulin and casein1-s1 with carcass and meat traits. J Anim Sci (2013) 
91:565–71. doi:10.2527/jas.2012-5454 

111. Thaller G, Krämer W, Winter A, Kaupe B, Erhardt G, Fries R. Effects of 
DGAT1 variants on milk production traits in German cattle breeds. J Anim 
Sci (2003) 81:1911–8. doi:10.2527/2003.8181911x 

112. Beribe MJ, Carignano HA, Lopez-Villalobos N, Poli MA, Roldan DL. 
QTL detection for fat yield on BTA14 using linkage disequilibrium based 
methods. 10th World Cong Genet Appl Livest Prod. Vancouver, BC (2014). 
Communication # 617.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive
https://doi.org/10.1371/journal.pone.0094861
https://doi.org/10.1371/journal.pone.0094861
https://doi.org/10.3168/jds.S0022-0302(04)73319-6
https://doi.org/10.1146/annurev-food-022811-101214
https://doi.org/10.3168/jds.2009-2461
https://doi.org/10.1111/j.1471-0307.1994.tb01264.x
https://doi.org/10.1111/j.1471-0307.1994.tb01264.x
https://doi.org/10.1111/j.1365-2052.1993.tb00343.x
https://doi.org/10.1111/j.1365-2052.1993.tb00343.x
https://doi.org/10.3168/jds.2010-4030
https://doi.org/10.3168/jds.2012-6324
https://doi.org/10.1016/0309-1740(96)00065-4
https://doi.org/10.2527/2006.843520x
https://doi.org/10.2527/2006.843520x
https://doi.org/10.1534/genetics.107.074328
https://doi.org/10.1534/genetics.107.074328
https://doi.org/10.1111/j.1365-2052.2004.01196.x
https://doi.org/10.1371/journal.pone.0065550
https://doi.org/10.1038/ng.3034
https://doi.org/10.1016/0958-6946(92)90014-D
https://doi.org/10.1111/j.1751-0813.1990.tb07780.x
https://doi.org/10.1111/j.1751-0813.1990.tb07780.x
https://doi.org/10.1073/pnas.86.20.7947
https://doi.org/10.1111/age.12410
https://doi.org/10.1111/age.12410
https://doi.org/10.1128/JVI.00919-14
https://doi.org/10.1128/JCM.02178-12
https://doi.org/10.1371/journal.pone.0001830
https://doi.org/10.1186/1746-6148-4-25
https://doi.org/10.1371/journal.ppat.1000156
https://doi.org/10.1371/journal.pone.0002912
https://doi.org/10.1371/journal.pone.0038678
https://doi.org/10.1093/ilar/ilv008
https://doi.org/10.1046/j.1365-2052.1999.00526-5.x
https://doi.org/10.1073/pnas.0406403101
https://doi.org/10.1007/s00335-004-2400-6
https://doi.org/10.1007/s10048-003-0171-y
https://doi.org/10.1007/s10048-003-0171-y
https://doi.org/10.1074/jbc.M506361200
https://doi.org/10.1186/1741-7007-4-33
https://doi.org/10.2527/jas.2007-0208
https://doi.org/10.1186/1746-6148-4-36
https://doi.org/10.3168/jds.2007-0423
https://doi.org/10.1046/j.1365-2052.2003.01011.x
https://doi.org/10.1007/s11033-010-0605-1
https://doi.org/10.2527/jas.2012-5454
https://doi.org/10.2527/2003.8181911x


11

Casas and Kehrli Genes Associated with Productivity in Cattle

Frontiers in Veterinary Science | www.frontiersin.org December 2016 | Volume 3 | Article 113

113. Wu XX, Yang ZP, Shi XK, Li JY, Ji DJ, Mao YJ, et al. Association of SCD1 and 
DGAT1 SNPs with the intramuscular fat traits in Chinese Simmental cattle 
and their distribution in eight Chinese cattle breeds. Mol Biol Rep (2012) 
39:1065–71. doi:10.1007/s11033-011-0832-0 

114. Tait RG Jr, Shackelford SD, Wheeler TL, King DA, Keele JW, Casas E, et al. 
CAPN1, CAST, and DGAT1 genetic effects on preweaning performance, 
carcass quality traits, and residual variance of tenderness in a beef cattle 
population selected for haplotype and allele equalization. J Anim Sci (2014) 
92:5382–93. doi:10.2527/jas.2013-7075 

115. Charlier C, Farnir F, Berzi P, Vanmanshoven P, Brouwers B, Vromans H, 
et al. Identity-by-descent mapping of recessive traits in livestock: application 
to map the bovine syndactyly locus to chromosome 15. Genome Res (1996) 
6:580–9. doi:10.1101/gr.6.7.580 

116. Drogemuller C, Distl O. Genetic analysis of syndactyly in German Holstein 
cattle. Vet J (2006) 171:120–5. doi:10.1016/j.tvjl.2004.09.009 

117. Drögemüller C, Leeb T, Harlizius B, Tammen I, Distl O, Höltershinken M, 
et al. Congenital syndactyly in cattle: four novel mutations in the low density 
lipoprotein receptor-related protein 4 gene (LRP4). BMC Genet (2007) 8:5. 
doi:10.1186/1471-2156-8-5 

118. Healy PJ, Dennis JA. Molecular heterogeneity for bovine maple syrup 
urine disease. Anim Genet (1994) 25:329–32. doi:10.1111/j.1365-2052. 
1994.tb00366.x 

119. Dennis JA, Healy PJ. Definition of the mutation responsible for maple syrup 
urine disease in Poll Shorthorns and genotyping Poll Shorthorns and Poll 
Herefords for maple syrup urine disease alleles. Res Vet Sci (1999) 67:1–6. 
doi:10.1053/rvsc.1998.0296 

120. Zhang B, Healy PJ, Zhao Y, Crabb DW, Harris RA. Premature translation 
termination of the pre-E1 alpha subunit of the branched chain alpha-ketoacid 
dehydrogenase as a cause of maple syrup urine disease in Polled Hereford 
calves. J Biol Chem (1990) 265:2425–7. 

121. Olson TA, Lucena C, Chase CC Jr, Hammond AC. Evidence of a major gene 
influencing hair length and heat tolerance in Bos taurus cattle. J Anim Sci 
(2003) 81:80–90. doi:10.2527/2003.81180x 

122. Hammond AC, Chase CC Jr, Bowers EJ, Olson TA, Randel RD. Heat tolerance 
in Tuli-, Senepol-, and Brahman-sired F1 Angus heifers in Florida. J Anim Sci 
(1998) 76:1568–77. doi:10.2527/1998.7661568x 

123. Mariasegaram M, Chase CC Jr, Chaparro JX, Olson TA, Brenneman RA, 
Niedz RP. The slick hair coat locus maps to chromosome 20 in Senepol-
derived cattle. Anim Genet (2007) 38:54–9. doi:10.1111/j.1365-2052.2007. 
01560.x 

124. Dikmen S, Khan FA, Huson HJ, Sonstegard TS, Moss JI, Dahl GE, et al. The 
SLICK hair locus derived from Senepol cattle confers thermotolerance to 
intensively managed lactating Holstein cows. J Dairy Sci (2014) 97:5508–20. 
doi:10.3168/jds.2014-8087 

125. Littlejohn MD, Henty KM, Tiplady K, Johnson T, Harland C, Lopdell T, et al. 
Functionally reciprocal mutations of the prolactin signalling pathway define 
hairy and slick cattle. Nat Commun (2014) 5:5861. doi:10.1038/ncomms6861 

126. Gentry PA, Crane S, Lotz F. Factor XI (plasma thromboplastin antecedent) 
deficiency in cattle. Can Vet J (1975) 16:160–3. 

127. Gentry PA, Black WD. Prevalence and inheritance of factor XI (plasma 
thromboplastin antecedent) deficiency in cattle. J Dairy Sci (1980) 63:616–20. 
doi:10.3168/jds.S0022-0302(80)82980-8 

128. Liptrap RM, Gentry PA, Ross ML, Cummings E. Preliminary findings of 
altered follicular activity in Holstein cows with coagulation factor XI defi-
ciency. Vet Res Commun (1995) 19:463–71. doi:10.1007/BF01839334 

129. Marron BM, Robinson JL, Gentry PA, Beever JE. Identification of a mutation 
associated with factor XI deficiency in Holstein cattle. Anim Genet (2004) 
35:454–6. doi:10.1111/j.1365-2052.2004.01202.x 

130. Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, et al. 
Evaluation of single-nucleotide polymorphisms in CAPN1 for association 
with meat tenderness in cattle. J Anim Sci (2002) 80:3077–85. doi:10.2527/
2002.80123077x 

131. Riley DG, Chase CC Jr, Pringle TD, West RL, Johnson DD, Olson TA, et al. 
Effect of sire on mu- and m-calpain activity and rate of tenderization as 
indicated by myofibril fragmentation indices of steaks from Brahman cattle. 
J Anim Sci (2003) 81:2440–7. doi:10.2527/2003.81102440x 

132. White SN, Casas E, Wheeler TL, Shackelford SD, Koohmaraie M, Riley 
DG, et  al. A new single nucleotide polymorphism in CAPN1 extends the 
current tenderness marker test to include cattle of Bos indicus, Bos taurus, and 
crossbred descent. J Anim Sci (2005) 83:2001–8. doi:10.2527/2005.8392001x 

133. Morris CA, Cullen NG, Hickey SM, Dobbie PM, Veenvliet BA, Manley TR, et al. 
Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. 
longissimus dorsi steaks from Jersey x Limousin, Angus and Hereford-cross 
cattle. Anim Genet (2006) 37:411–4. doi:10.1111/j.1365-2052.2006.01483.x 

134. Cafe LM, McIntyre BL, Robinson DL, Geesink GH, Barendse W, Greenwood 
PL. Production and processing studies on calpain-system gene markers for 
tenderness in Brahman cattle: 1. Growth, efficiency, temperament, and car-
cass characteristics. J Anim Sci (2010) 88:3047–58. doi:10.2527/jas.2009-2679 

135. Cafe LM, McIntyre BL, Robinson DL, Geesink GH, Barendse W, Pethick DW, 
et al. Production and processing studies on calpain-system gene markers for 
tenderness in Brahman cattle: 2. Objective meat quality. J Anim Sci (2010) 
88:3059–69. doi:10.2527/jas.2009-2679 

136. Lee SH, Kim SC, Chai HH, Cho SH, Kim HC, Lim D, et al. Mutations in 
calpastatin and mu-calpain are associated with meat tenderness, flavor and 
juiciness in Hanwoo (Korean cattle): molecular modeling of the effects 
of substitutions in the calpastatin/mu-calpain complex. Meat Sci (2014) 
96:1501–8. doi:10.1016/j.meatsci.2013.11.026 

137. Casas E, Duan Q, Schneider MJ, Shackelford SD, Wheeler TL, Cundiff LV, 
et al. Polymorphisms in calpastatin and mu-calpain genes are associated with 
beef iron content. Anim Genet (2014) 45:283–4. doi:10.1111/age.12108 

138. Hu ZL, Park CA, Reecy JM. Developmental progress and current status of 
the animal QTLdb. Nucleic Acids Res (2016) 44:D827–33. doi:10.1093/nar/
gkv1233 

139. Faculty of Veterinary Science, U. S. Online Mendelian Inheritance in Animals. 
(2011). Available from: http://omia.angis.org.au/

140. Ryncarz RE, Dietz AB, Kehrli ME Jr. Recognition of leukochimerism during 
genotyping for bovine leukocyte adhesion deficiency (BLAD) by poly-
merase-chain-reaction-amplified DNA extracted from blood. J Vet Diagn 
Invest (1995) 7:569–72. doi:10.1177/104063879500700431 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Casas and Kehrli. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s) 
or licensor are credited and that the original publication in this journal is cited, in 
accordance with accepted academic practice. No use, distribution or reproduction is 
permitted which does not comply with these terms.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive
https://doi.org/10.1007/s11033-011-0832-0
https://doi.org/10.2527/jas.2013-7075
https://doi.org/10.1101/gr.6.7.580
https://doi.org/10.1016/j.tvjl.2004.09.009
https://doi.org/10.1186/1471-2156-8-5
https://doi.org/10.1111/j.1365-2052.1994.tb00366.x
https://doi.org/10.1111/j.1365-2052.1994.tb00366.x
https://doi.org/10.1053/rvsc.1998.0296
https://doi.org/10.2527/2003.81180x
https://doi.org/10.2527/1998.7661568x
https://doi.org/10.1111/j.1365-2052.2007.01560.x
https://doi.org/10.1111/j.1365-2052.2007.01560.x
https://doi.org/10.3168/jds.2014-8087
https://doi.org/10.1038/ncomms6861
https://doi.org/10.3168/jds.S0022-0302(80)82980-8
https://doi.org/10.1007/BF01839334
https://doi.org/10.1111/j.1365-2052.2004.01202.x
https://doi.org/10.2527/2002.80123077x
https://doi.org/10.2527/2002.80123077x
https://doi.org/10.2527/2003.81102440x
https://doi.org/10.2527/2005.8392001x
https://doi.org/10.1111/j.1365-2052.2006.01483.x
https://doi.org/10.2527/jas.2009-2679
https://doi.org/10.2527/jas.2009-2679
https://doi.org/10.1016/j.meatsci.2013.11.026
https://doi.org/10.1111/age.12108
https://doi.org/10.1093/nar/gkv1233
https://doi.org/10.1093/nar/gkv1233
http://omia.angis.org.au/
https://doi.org/10.1177/104063879500700431
http://creativecommons.org/licenses/by/4.0/

	A Review of Selected Genes with Known Effects on Performance and Health of Cattle
	Introduction
	Bovine Leukocyte Adhesion Deficiency (BLAD)
	Deficiency of the Uridine Monophosphate Synthase
	Bovine Chronic Interstitial Nephritis (BCIN)
	Horn Development
	Myostatin (MSTN)
	Complex Vertebral Malformation (CVM)
	Leptin (LEP)
	Osteopetrosis
	Apoptosis Peptide Activating Factor 1 (APAF1) Truncation
	Chondrodysplastic Dwarfism
	Caseins (CSN)
	Calpastatin (CAST)
	Umbilical Hernia
	Embryonic Loss
	Lactoglobulin (LGB)
	Citrullinemia
	Cholesterol Deficiency in Cattle
	Prion (PRNP) Diseases
	Thyroglobulin (TG1)
	Diacylglycerol Acyltransferase (DGAT1)
	Syndactyly
	Maple Syrup Urine Disease
	Slick Hair
	Factor XI Deficiency
	μ-Calpain (CAPN1)
	Final Remarks
	Author Note
	Author Contributions
	Funding
	References


