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Abstract
Cancer derived from thyroid follicular epithelial cells is common; it represents the most common endocrine malignancy. 
The molecular features of sporadic tumors have been clarified in the past decade. However the incidence of familial disease 
has not been emphasized and is often overlooked in routine practice. A careful clinical documentation of family history 
or familial syndromes that can be associated with thyroid disease can help identify germline susceptibility-driven thyroid 
neoplasia. In this review, we summarize a large body of information about both syndromic and non-syndromic familial thyroid 
carcinomas. A significant number of patients with inherited non-medullary thyroid carcinomas manifest disease that appears 
to be sporadic disease even in some syndromic cases. The cytomorphology of the tumor(s), molecular immunohistochemistry, 
the findings in the non-tumorous thyroid parenchyma and other associated lesions may provide insight into the underlying 
syndromic disorder. However, the increasing evidence of familial predisposition to non-syndromic thyroid cancers is raising 
questions about the importance of genetics and epigenetics. What appears to be “sporadic” is becoming less often truly so and 
more often an opportunity to identify and understand novel genetic variants that underlie tumorigenesis. Pathologists must 
be aware of the unusual morphologic features that should prompt germline screening. Therefore, recognition of harbingers 
of specific germline susceptibility syndromes can assist in providing information to facilitate early detection to prevent 
aggressive disease.
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Introduction

A minor proportion of thyroid tumors is caused by germline 
susceptibility; within this group, these tumors derive from C 
cells (medullary thyroid carcinoma, MTC) or from follicular 
cells. While about 25% of MTCs are hereditary and their 

genotype–phenotype relationship is well established, up to 
10% of follicular epithelial-derived thyroid carcinomas are 
hereditary and their histological and molecular characteristics 
are much less well known [1–9]. Exceptionally, in some 
populations with many relatives living close together, a 
prevalence of up to 13.5% of inherited follicular cell derived 
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carcinomas has been reported [10]. Inherited follicular 
epithelial derived thyroid carcinoma (TC) are usually referred 
to as familial non-medullary thyroid carcinomas (FNMTCs) 
and classified into two main subgroups depending whether 
the predominant cancer is the thyroid tumor (non-syndromic 
FNMTCs (NSFNMTCs)) or if it is a thyroid cancer that 
appears in a patient with a predominance of non-thyroid 
tumors (syndromic FNMTCs (SFNMTCs)) [9].

An important limitation in determining the true incidence 
of FNMTCs is related to the fact that follicular epithelial-
derived thyroid carcinomas (including incidental papillary 
microcarcinomas) are common in the general population. A 
careful clinical documentation of family history or familial 
syndromes that can be associated with thyroid disease 
can help identify germline susceptibility-driven thyroid 
neoplasia. Thyroid neoplasms in three or more family 
member or the diagnosis of differentiated thyroid carcinoma 
with paternal inheriance in the proband may be a harbinger of 
inherited disease [11]. In addition, thyroid neoplasia can be 
the first clinically detected manifestation in some SFNMTCs 
as a significant number of patients with inherited FNMTCs 
also manifest with what appears to be sporadic disease. 
Therefore, detailed cytomorphologic assessment of thyroid 
nodules, application of molecular immunohistochemistry 
for relevant biomarkers, and careful assessment of the non-
tumorous thyroid parenchyma can help diagnosticians in the 
detection of an inherited disease. From a clinicopathologic 
perspective, inherited follicular epithelial-derived thyroid 
carcinomas tend to have early onset disease with increased 
frequency of multifocal tumors that arise in the background 
of benign follicular nodular disease [11].

This article reviews the main characteristics of inherited 
follicular epithelial-derived thyroid carcinomas, emphasiz-
ing the genotype–phenotype correlations in a way that can 
be especially useful to pathologists for the recognition of the 
possible familial character of certain follicular cell-derived 
carcinomas in daily practice.

Non‑Syndromic Familial Non‑Medullary 
Thyroid Carcinoma (NSFNMTC)

To the best of our knowledge, in 1955 David Robinson and 
Thomas Orr published the first description of non-syndromic 
familial non-medullary thyroid carcinomas (NSFNMTCs) [12]; 
the patients, two identical 24-year-old twin sisters, showed sev-
eral foci of classic papillary thyroid carcinoma (PTC) in their 
thyroid lobes and lymph node metastases. As was described in 
this prototypical first example, NSFNMTCs are usually PTCs 
(> 85%) characterized by an early onset, more bilaterality and 
multifocality and nodal metastases [10, 13–15].

Given the lack of distinctive histological features in this 
group of familial thyroid tumors, it has been proposed that 

the clinical diagnosis of NSFNMTC should be based on the 
evidence of PTC in two or more first-degree relatives, or on 
the finding of multinodular goiter (MNG) in at least three 
first- or second-degree relatives of a PTC patient, of course, 
always in the absence of previous ionizing radiation expo-
sure and neoplasia syndromes [16, 17]. As secondary criteria 
the following have been proposed: the diagnosis in a patient 
younger than 33 years, multifocal or bilateral PTC, organ-
exceeding tumor growth, metastasis, and familial accumula-
tion of adolescent-onset thyroid disease [16]. Due to the gen-
eral predominance of PTC in women, the diagnosis of PTC 
in a male, particularly in a young man, is also suggestive of 
a familial predisposition [18, 19]. Since the probability that 
it is not a sporadic carcinoma rises to more than 95% when 
three family members are affected [2, 20], the most recent 
studies suggest reserving the definition of NSFNMTC for all 
those cases with a minimum of three first-degree relatives 
diagnosed with follicular cell-derived thyroid carcinomas 
[3, 8, 10, 20, 21].

Patients with NSFNMTC tend to be younger than those 
with sporadic-non-medullary thyroid carcinoma (SNMTC) 
[3, 5, 14, 22–25], although not all series have found signifi-
cant differences [1, 4, 6, 21, 26, 27]. Clinical “anticipation” 
with the second generation exhibiting the disease at an ear-
lier age and having more advanced disease at presentation 
has been described in these families with NSFNMTC [7, 
28], although the possibility of a bias due to more frequent 
evaluation in the familial group than in controls has been 
proposed [21]. Screening of at-risk family members resulted 
in earlier detection of low-risk FNMTC and was associated 
with a less aggressive initial treatment [29]. No significant 
differences in gender have been found between the sporadic 
and familial groups with thyroid carcinoma [10, 21].

Pathological Features

As previously mentioned, NSFNMTCs are primarily PTCs, 
both classical and follicular variants [10, 13, 19, 25, 28, 
30–34], with more multifocality (with or without bilater-
ality) than in sporadic cases, usually in combination with 
benign lesions (hyperplastic nodules and/or follicular adeno-
mas) [4, 10, 14, 22, 23, 26, 31–33, 35–39] (Fig. 1). Onco-
cytic change can also occur in these thyroid lesions [13, 
40–43]. Synchronous PTC with follicular thyroid carcinoma 
(FTC), Hürthle cell carcinoma (HCC), and/or MTC have 
been occasionally reported [33].

Whether NSFNMTC is a more aggressive tumor remains 
a controversial issue. Compared with SNMTC, NSFNMTC 
is associated with a higher rate of lymph node metastases 
[3, 14, 28, 31, 38, 39], including lateral neck lymph node 
metastases [10] and Hashimoto’s thyroiditis [39]. NSFN-
MTC was also associated with extrathyroidal extension [14, 
27, 38, 39] and recurrence [14, 44]. Aggressive features, 
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however, were most apparent in certain families with three 
or more affected members [21, 23, 27, 45]. Nevertheless, 
several studies found no differences in the clinical behavior 
and outcome between sporadic and NSFNMTC [1, 2, 6, 14]. 
Therefore, a recent study concluded that although NSFN-
MTC is not more aggressive than SNMTC, this may not 
apply for the cases with three or more-affected relatives [21].

The usual coexistence of NSFNMTC with follicular 
nodular disease (including follicular epithelial cell hyper-
plasia to follicular adenoma progression sequence) suggests 
a multi-step process of tumor progression [23, 36], which 
together with its frequent multifocality justifies total thy-
roidectomy as the treatment for cases of NSFNMTC [10, 
25, 26, 41]. Consistent with the current understanding of 
dynamic risk stratification in thyroid cancer, some studies 

indicate that familial papillary thyroid microcarcinoma is 
less aggressive than PTC greater than 1 cm and that a less 
invasive surgical treatment could be considered [46].

Genetic Features

NSFNMTC is genetically heterogeneous and poorly under-
stood [13, 32, 47–50]. A recent whole-genome sequencing of 
NSFNMTC identified germline alterations that highlighted 
the central role of PI3K/AKT and MAPK/ERK signaling 
pathways in this type of thyroid cancer [51]. The reported 
genes and loci associated with NSFNMTC are summarized 
in Table 1.

Although some studies support the involvement of ger-
mline FOXE1/TTF-2 (9q22.23) variants [52–54, 82], this 

Fig. 1  Non-syndromic famil-
ial non-medullary thyroid 
carcinoma case. Macroscopic 
appearance is not usually dif-
ferent from multinodular goiter 
(a). Histologically there is a 
combination of benign lesions 
(hyperplastic nodules as well 
as follicular adenomas) (b, c, 
e) with malignant follicular 
tumors. In this particular case, 
two papillary carcinomas can 
also be seen (d, f)
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association is not entirely consistent [83–85]. Nuclear 
FOXE1 immunoexpression in tumor cells in the vicinity 
of the PTC border is associated with the presence of a 
risk allele of rs1867277 (c.-238G>A) in the 5′ untrans-
lated region of the FOXE1 gene, as well as with pathologi-
cal characteristics (multifocality and capsular invasion) 

of PTC, suggesting possible FOXE1 involvement in the 
facilitation of tumor development [86].

Both NKX2-1/TTF-1 (14q13.3) and FOXE1 have been 
associated with the increased risk of sporadic PTC in Japan 
[82]. The A339V NKX2-1 mutation may be a susceptibility 
gene for MNG and PTC [55], but this association could not 

Table 1  Non-syndromic familial non-medullary thyroid carcinoma

PTC papillary thyroid carcinoma, FTC follicular thyroid carcinoma, HCC Hürthle cell carcinoma, HCA Hürthle cell adenoma, FTA follicular 
thyroid adenoma, MNG multinodular goiter, AITD autoimmune thyroid disease (Graves disease and Hashimoto’s thyroiditis)
# Concurrent FTC, HCC, and medullary thyroid carcinoma (MTC) was found in 3 classical PTC cases
$ At least some cases are probably secondary to germline DICER1 gene mutation

Chromosomal loci (designation) Gene Thyroid lesions Somatic thyroid 
tumor mutations

Additional lesions

9q22.23 [52–54] FOXE1 PTC, FTC BRAFV600E [54]
14q13.3 [55, 56] NKX2-1 PTC, MNG
12q14.2 [57] SRGAP1 PTC
15q23 [58] MAP2K5 PTC
20p12.3 [59–61] PLCB1 PTC (follicular variant), MNG (papil-

loid adenomata)
10q25.3 [62, 63] HABP2 PTC, FTA
1q41 [64] BROX PTC (classical and follicular variant)
7q31.33 [65–68] POT1 PTC (classical and follicular variant), 

HCC, HCA, MNG
Melanoma, dysplastic nevi

19q13.33 [69] NOP53 PTC, HCC
22q12.1 [70] CHEK2 PTC BRAFV600E [70, 71] Breast cancer [72]
19p13.11 [43] NDUFA13 PTC (Hürthle cell variant), multiple 

Hürthle cell nodules
19p13.2 [73] TIMM44 PTC (classical and Hürthle cell vari-

ant), HCC, FTA with variable cell 
oxyphilia, multiple Hürthle cell 
nodules

4q21.21 [74] ANXA3 PTC (classical and follicular variant), 
HCC

12q22 [74] NTN4 PTC (classical and follicular variant), 
HCC

14q32.13 [74] SERPINA1 PTC
17q21.2 [74] FKBP10 PTC (classical and follicular variant)
1p36.31 [74] PLEKHG5 PTC (classical and follicular variant)
17p13.2 [74] P2RX5 PTC (classical and follicular variant)
6p21.33 [74] SAPCD1 PTC (classical and follicular variant)
19p13.2 (TCO/TCO1) [13, 40–42, 75] Unknown PTC (classical and Hürthle cell vari-

ant), HCC, FTA with variable cell 
oxyphilia, multiple Hürthle cell 
nodules

19p13.2 LOH [76]

8q24 (PTCSC1) [77] Unknown PTC, MNG, AITD Melanoma
6q22 [33] Unknown PTC(classical and follicular variant), 

FTC#, HCC#, MTC#
1q21 (fPTC/PRN) [33, 78] Unknown PTC, MNG Papillary renal neoplasia [78]
14q32 (MNG1) [79]$ Unknown PTC, MNG
2q21 (NMTC1) [42, 75, 80] Unknown PTC (follicular variant) 2q21 LOH [75]
8p23.1-p22 (FTEN) [81] Unknown PTC (classical and follicular variant), 

FTA, MNG
BRAFV600E [81]
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be replicated in another NSFNMTC study [87]. Although 
association between the 14q13 locus and a predisposition 
to a Chinese familial form of MNG with PTC have been 
reported in a more recent study [56], further validation stud-
ies are required to demonstrate the clinical usefulness of 
testing this gene mutation in NSFNMTC cases.

SRGAP1 (12q14.2) gene has been identified as a suscepti-
bility gene in families with PTC [57]. The Q149H and R617C 
variants in SRGAP1 could lead to a loss of function of the 
small G-protein CDC42 [57].

Recurrent genetic mutation of MAP2K5 (15q23) vari-
ants c.G961A and c.T1100C (p.A321T and p.M367T) have 
been identified as susceptibility loci for NSFNMTC in Chi-
nese families with PTC [58]; these mutations may result in 
an alternative activation of MEK5-ERK5 pathway in the 
MAPK signaling pathway.

The intronic PLCB1 InDel is the first variant found in 
familial multiple papilloid adenomata-type MNG patients 
with more likelihood of progression to PTC and also found in 
a subset of patients with sporadic MNG [59, 60]. The InDel 
may contribute to MNG development through overexpression 
of phospholipase C beta 1 (PLCB1) (20p12.3) [60]. In this 
familial MNG of adolescent onset, the enlarged thyroid gland 
showed multiple nodules in a thyroid background of normal 
appearance. The nodules are sharply demarcated from the 
normal thyroid and are formed by follicles lined by follicu-
lar cells with small round regular nuclei and micropapillary 
projections [59–61]. This condition is different from the com-
mon MNG where the ill-defined nodules show large colloid 
rich follicles, and the background thyroid shows similar but 
less marked changes [61].

The pathogenic HABP2 G534E variant has been 
associated with NSFNMTC [62, 63]. In addition, increased 
HABP2 protein expression in tumor samples from affected 
family members when compared with normal adjacent 
thyroid tissue and samples from sporadic cancers has been 
confirmed. [62]. Functional studies have shown that HABP2 
has a tumor suppressive effect, whereas the G534E variant 
results in loss of function [62]. However, the role of the 
HABP2 (10q25.3) gene in NSFNMTC is controversial 
[88–90] because the pathogenicity of HABP2 variants in 
NSFNMTC could not be confirmed in Chinese, Brazilian 
and European studies [90–100]. Neither does this variant 
appear to play a role in sporadic PTC [101].

A new loss-of-function variant in BROX gene at 1q41 
has been associated with the development of familial PTC 
(classical and follicular variants) [64], but more studies 
are needed to confirm this association. According to these 
researchers, BROX haploinsufficiency would induce altered 
EGFR degradation pathway in follicular cells, with EGFR 
accumulation and aberrant cell growth. [64].

POT1 (protection of telomeres 1) gene is located at 
7q31.33. Germline mutation in POT1 has been reported 

in a melanoma-prone family with thyroid cancer and 
MNG [65, 66], as well as in a family affected solely by 
NSFNMTC [68]. Thyroid lesions included PTC, benign 
and malignant Hürthle cell neoplasms and MNG [65, 66, 
68]. Loss-of-function or reduced activity of POT1 seems 
to play a pathogenetic role via dysregulation of telomere 
protection [68]. However, a lack of mutations in the POT1 
gene in selected families with NSFNMTC, with at least 
three affected members, has been reported in another 
recent study [102].

NOP53 gene, located in 19q13.33, encodes a nucleolar 
protein involved in ribosome biogenesis. The germline vari-
ant p. Asp31His in NOP53 gene has recently been reported 
associated with NSFNMTC [69]. The patients had PTC and 
Hürthle cell carcinoma in one case, sometimes coexisting 
with MNG, including toxic MNG in two of the 11 affected 
members of the three families studied. Tumor tissue showed 
a higher immunohistochemical expression of NOP53 com-
pared to the adjacent normal thyroid tissue in all four cases 
studied. [69].

CHEK2 variants may be associated with NSFNMTC [70, 
72, 103]. CHEK2 (22q12.1) gene mutations may contribute 
to tumorigenesis through the haploinsufficiency mechanism 
due to low CHEK2 protein levels [70]. In fact, a lower inten-
sity of nuclear immunostaining for CHK2 protein has been 
detected in PTC cases with the CHEK2 Y139X variant than 
in sporadic PTC cases [70]. A germline CHEK2 mutation 
has been found in seven of 11 women (63%) with multiple 
primary cancers of the breast and thyroid [72]. Rare mis-
sense variants (R180C and H371Y) in cell cycle checkpoint 
kinase 2 (CHEK2) have also been identified in 2% of patients 
in a series of sporadic PTC [70]. Coexistence of CHEK2 
and BRAFV600E mutations has been reported in 10.8% of 
427 unselected PTC patients, including mainly cases of the 
classical variant, but also of the follicular, oxyphilic, diffuse 
sclerosing, and solid variants [71]. In the same series, the 
coexistence of both mutations, however, was not associated 
with more aggressive clinicopathological features of PTC, 
poorer treatment response, or disease outcome.

Benign and malignant thyroid tumors with an onco-
cytic phenotype have been associated with germline [43] 
and somatic mutations [43] in the NDUFA13/GRIM-19 
(19p13.11) gene. Another group of familial oxyphilic (onco-
cytic) thyroid tumors has been associated with the TCO 
(thyroid tumors with cell oxyphilia) gene, which has been 
mapped to chromosome 19p13.2 [13, 40–42, 75]. Interest-
ingly, a systematic screening of candidate genes mapping 
to the region of linkage in affected TCO members, led to 
the identification of novel germine changes in the TIMM44 
(19p13.2) gene [73]. In the same chromosomal region 
(19p13.2), a germline KEAP1 gene mutation has been 
reported in a Japanese family with MNG but not thyroid 
cancer [104].
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Mainly based on linkage analysis several susceptibility 
loci for NSFNMTC have been also proposed (Table 1).

A PTCSC1 (papillary thyroid carcinoma susceptibil-
ity candidate 1) gene in 8q24 as a candidate gene for PTC 
predisposition was identified through linkage, haplotype 
sharing, and gene expression analysis in families with PTC, 
MNG, autoimmune thyroid disease (Graves’ disease and 
Hashimoto’s thyroiditis), melanoma and other malignancies 
[77]. This association between 8q24 and risk for thyroid 
cancer and other cancers (prostate cancer, colorectal cancer, 
breast cancer, etc.), has been confirmed in recent studies 
[105, 106].

Linkage was identified with 2 single-nucleotide poly-
morphism markers on chromosomal loci 6q22 and 1q21 
in families with classical and follicular variant of PTC 
(in some cases coexisting with FTC, HCC, or MTC) and 
FTC [33]. Interestingly, FPTC/PRN (familial PTC/papil-
lary renal neoplasia) gene has also been mapped to 1q21 
region in families with PTC, MNG, as well as, benign 
and malignant renal papillary neoplasms [33, 78].

Locus 14q (MNG1 (multinodular goiter 1)) has 
been described as a susceptibility gene in families with 
adolescent-onset goiter, PTC and FTC [79]. Based on the 
chromosomal location and the type of lesions (multinodular 
goiter in childhood, beningn thyroid tumors, differentiated 
thyroid cancer, rhabdomyosarcoma, as well as ovarian and 
brain tumors) described in these families [79], we think 
that at least some cases are secondary to germline DICER1 
gene mutation [107] (see DICER1 syndrome below). Loci 
Xp22 (MNG2) [108, 109] and 3q26.1-q26.3 (MNG3) [110] 
have been also associated with cases of familial non-toxic 
multinodular thyroid goiter but not with NSFNMTC.

A susceptibility locus 2q21 (NMTC1 (non-medullary thyroid 
carcinoma 1) gene) has been found in a large Tasmanian fam-
ily with PTC (follicular variant) and no cell oxyphilia or renal 
cancer [80]. There is also evidence that NMTC1 (2q21) and 
TCO (19p13.2) may interact to increase risk in individuals that 
inherit both susceptibility genes [42, 75].

Another familial thyroid neoplasia susceptibility locus on 
8p23.1-p22 called FTEN (familial thyroid epithelial neopla-
sia) has been described in a large Portuguese family with 
benign thyroid lesions and PTC [81].

An ultra-rare mutation (4q32A.C) involved in the predis-
position to both PTC and ATC has been reported in a family 
with non-medullary thyroid cancer [111]. This mutation is 
located in a long-range enhancer element whose ability to 
bind the transcription factors POU2F and YY1 is significantly 
impaired, with decreased activity in the presence of the 
C-allele compared with the wild type A-allele. An enhancer 
RNA is transcribed in thyroid tissue from this region and is 
greatly downregulated in NSFNMTC [111].

A recent study from Brazil also identified seven 
novel germline variants in familial PTC; these include 

p.D283N*ANXA3, p.Y157S*NTN4, p.G172W*SERPINA1, 
p.G188S*FKBP10, p.R937C*PLEKHG5, p.L32Q*P2RX5, 
and p.Q76*SAPCD1 [74].

The BRAFV600E mutation is not a germline mutation in 
NSFNMTC [112]; however, BRAFV600E [54, 70, 71, 81] as well 
as HRAS and NRAS [81] somatic mutations have been found in 
some cases of NSFNMTC, raising the possibility of mutations 
in DNA repair genes that prevent these sporadic mutations.

Syndromic Familial Non‑Medullary Thyroid 
Carcinoma (SFNMTC)

In this group, the FNMTC is associated with syndromes 
having extrathyroid manifestations [9, 49, 113–115] (Table 2). 
The well-defined familial syndromes that are closely linked 
to FNMTC include familial adenomatous polyposis (FAP) 
syndrome, PTEN-hamartoma tumor syndrome, DICER1 
syndrome, Carney complex, and Werner syndrome; however, 
patients with MEN1 syndrome [118] Marfan syndrome [119] 
and familial paraganglioma syndromes caused by SDHx 
mutations [120] can also manifest with thyroid follicular 
epithelial-derived neoplasia. It is not clear if the association 
with papillary thyroid microcarcinomas in multiple endocrine 
neoplasia type 2A (MEN2A) patients is related to specific 
germline changes of the RET gene or is reflective of how 
carefully the thyroids of MEN2A patients are examined 
[121, 122]. Recognition of these syndromes is important so 
that cancer screening and genetic counseling can be initiated. 
Pathologists also play an important role in recognizing the 
syndromes addressed below [123–125]. Given the well 
established genotype–phenotype correlations, this section 
will focus on well-defined thyroid neoplasia-related familial 
syndromes.

Familial Adenomatous Polyposis (FAP) Syndrome

FAP is an autosomal dominant syndrome caused by inacti-
vating germline APC gene mutations and characterized by 
multiple colorectal adenomatous polyps and a high risk of 
colorectal, thyroid and other cancers [126]. Classic FAP is 
usually associated with the development of numerous (hun-
dreds to thousands) colorectal adenomatous polyps and a 
nearly 100% risk of developing colorectal adenocarcinoma 
[127]. Attenuated FAP is characterized by fewer (20–100) 
adenomas in the large bowel, as well as both a slightly lower 
risk and later onset of colorectal cancer [128]. FAP also cor-
relates with extracolonic lesions including congenital hyper-
trophy of the retinal pigment epithelium (CHRPE) [129], 
desmoid tumors [130], gastric adenocarcinoma and proximal 
polyposis of the stomach (GAPPS) [131], duodenal [132] 
and hepatobiliary tree tumors, hepatoblastoma, adrenocorti-
cal adenomas and carcinomas, osteomas, epidermal cysts, 
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Table 2  Syndromic familial non-medullary thyroid carcinoma

TC thyroid cancer, CHRPE congenital hypertrophy of the retinal pigment epithelium, GAPPS gastric adenocarcinoma and proximal polyposis of 
the stomach, MNG multinodular goiter, FTA follicular thyroid adenoma, HCA Hürthle cell adenoma, PTC papillary thyroid carcinoma, FTC fol-
licular thyroid carcinoma, HCC Hürthle cell carcinoma, ATC  anaplastic carcinoma
* P, pathognomonic criteria; M, major criteria; m, minor criteria; according to the International Cowden Consortium operational diagnostic crite-
ria [116]
** There is a 16- to 24-fold increased risk of TC [117]

Syndrome (inheritance) Gene (gene location) Thyroid lesions (incidence) Main additional lesions

Familial adenomatous polyposis (auto-
somal dominant)

APC (5q22.2) Cribriform-morular variant of TC 
(16%)

Colorectal adenomatous polyps, 
colorectal adenocarcinoma, CHRPE, 
desmoid tumors (GAPPS)

PTEN-hamartoma tumor syndrome 
(autosomal dominant)

PTEN (10q23.31) MNG (43–75%)
FTA (25%), HCA, lipoadenoma, and 

microadenomas
PTC (microcarcinoma, classical and 

follicular variant) (60%)
FTC (14–45%)
HCC (≈ 1%)
ATC (< 1%)
C-cell hyperplasia
Lymphocytic thyroiditis (55%)

Adult Lhermitte-Duclos  diseaseP*, 
mucocutaneous lesions (facial 
 trichilemmomasP, papillomatous 
 papulesP, acral  keratosisP), autism 
spectrum  disorderP, breast  cancerM, 
 macrocephalyM, endometrial 
 carcinomaM, mucocutaneous lesions 
(multiple palmoplantar  keratosisM, 
multifocal cutaneous facial  papulesM, 
macular pigmentation of the glans 
 penisM, multiple gastrointestinal (GI) 
 hamartomasM or  ganglioneuromasM, 
 FTAm,  MNGm, single GI  hamartomam 
or  ganglioneuromam, fibrocystic 
breast  diseasem,  lipomasm,  fibromasm, 
genitourinary tumors (particularly 
kidney carcinoma)m, genitourinary 
 malformationsm, uterine  fibroidsm, 
autism spectrum  disorderm

DICER1 syndrome (autosomal domi-
nant)

DICER1 (14q32.13) TC (PTC, FTC, PDTC) (rare)**
FTA
MNG

Pleuropulmonary blastoma, pulmonary 
cysts, cystic nephroma, Sertoli-
Leydig cell tumor, gynandroblastoma, 
juvenile granulosa cell tumor, ciliary 
body medulloepithelioma, nasal 
chondromesenchymal hamartoma, 
embryonal rhabdomyosarcoma, pitui-
tary blastoma, pineoblastoma, central 
nervous system sarcoma, presacral 
malignant teratoid tumor

Carney complex (autosomal dominant) PRKAR1A (17q24.2) TC (FTC, PTC) (15%)
FTA
MNG

Pigmentation in skin and mucosa (lips, 
conjunctiva and inner or outer canthi, 
penile and vaginal mucosa), multiple 
myxomas (cutaneous, mucous, 
cardiac and/or in the breast), primary 
pigmented nodular adrenocortical 
disease, large-cell calcifying Sertoli 
cell tumors, growth hormone-
producing pituitary adenoma, blue 
nevus, epithelioid blue nevus, breast 
ductal adenoma, osteochondromyxoma

Werner syndrome (autosomal rece-
sive)

WRN (8p12) TC (18%) (FTC, PTC, ATC)
FTA

Premature graying and/or thinning of 
scalp hair, bilateral ocular cataracts, 
deep, chronic ulcers around the 
ankles, short stature, melanoma, 
meningioma, soft-tissue sarcomas, 
leukemia and preleukemic disorders, 
osteosarcomas
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and extranumerary teeth [133]. Gardner syndrome is an 
obsolete term, and its use is not recommended since almost 
all FAP patients have these characteristics [126]. Although 
the association of FAP and brain tumors, commonly medul-
loblastomas, is referred to as Turcot syndrome, most cases 
are actually due to constitutional pathogenic mutations 
affecting the DNA mismatch repair genes, MLH1, MSH2, 
MSH6, and PMS2 [126].

The thyroid tumor associated with FAP is the cribriform-
morular variant of PTC, more recently designated as cri-
briform-morular variant of thyroid carcinoma [134, 135]. 
The prevalence of the cribriform-morular variant (C-MV) 
of TC among FAP patients reaches up to 16% when ultra-
sonographic screening is combined with fine needle aspi-
ration biopsy (FNAB) [136], and this is more common in 
young women (mean age 26 years, range 8–61 years, with a 
ratio women/men of 61:1, respectively) [134, 137, 138]. In 
these families the diagnosis of C-MV of TC precedes that 
of FAP in up to 40% of the cases [134]. Patients are gener-
ally euthyroid and C-MV of TC is sonographically more 
like a follicular tumor or MNG rather than PTC [134, 137]. 
Compared with sporadic cases, C-MV of TC associated with 
FAP are usually multifocal (and bilateral) tumors [134, 137].

Pathological Features

Although to the best of our knowledge, Crail reported the 
first case of C-MV of TC in a patient with FAP [139], it was 
Harach HR et al. who highlighted the peculiar microscopic 
characteristics of FAP-associated follicular cell-derived 
thyroid carcinoma, which usually presents as a multifocal 
and/or bilateral tumor [140]. Because of its distinctive his-
tological features, Cameselle-Teijeiro and Chan proposed 
the term “cribriform-morular variant of PTC” and reported 
apparently-sporadic tumors which, unlike the syndromic 
type, usually appear as a single nodule [141].

C-MV of TC usually presents as a solid, white, fleshy, 
encapsulated, or well-defined nodule, partially divided into 
lobes by fibrous septa [134, 140, 141]. Histologically, there 
is a mixture of papillary, follicular, cribriform, trabecular, 
and morular (squamoid) growth patterns (Fig. 2a-f) Pseu-
dopapillary and non-branched papillary structures are lined 
by cuboidal or columnar cells. The tumors, including areas 
of follicular and cribriform patterns, are usually devoid of 
colloid. In the solid areas there are oval to plump spin-
dle cells and morules with aggregates of biotin-rich nuclei 
with a peculiar chromatin clearing. The tumor cells have 
abundant eosinophilic cytoplasm and the nuclei are usually 
hyperchromatic with a variable presence of nuclear features 
of PTC such as pallor, nuclear grooves, intranuclear cyto-
plasmic inclusions, and overlapping. The mitotic activity is 
generally less than 5 per 10 high power fields. Necrosis is 
uncommon. Capsular invasion and vascular invasion have 

been reported in about 40% and 30% of cases, respectively. 
Psammoma bodies are not frequent [134]. Although the cri-
briform pattern of growth formed by anastomosing arches 
of tumor cells with non-fibrovascular stroma and morules 
are characteristic of C-MV of TC, a variable proportion 
of different patterns of growth can be found even among 
different tumors of the same patient. Adenoid cystic car-
cinoma-like areas have been reported in one case [142]. 
C-MV of TC with poorly differentiated features has also 
been reported [143].

Tumor cells are negative or focally positive for thy-
roglobulin (Fig. 2d) but always positive for TTF1 (Fig. 2f), 
and always negative for calcitonin and cytokeratin 20. 
Nuclear and cytoplasmic positivity for β-catenin is the 
hallmark of the C-MV of TC, in contrast to the membra-
nous pattern in normal follicular cells. This is the only 
thyroid tumor with both nuclear and cytoplasmic positiv-
ity for β-catenin [134] (Fig. 2e). The role of LEF-1 as a 
marker of this TC still needs confirmation [144]. Tumor 
cells are also immunoreactive for keratins using the 
pankeratin clone AE1/AE3, low molecular weight keratin 
clone CAM5.2, and clone 34βE12 that identifies cytokerat-
ins 1, 5, 10, and 14; they express epithelial membrane 
antigen, E-cadherin, vimentin, galectin-3, BCL-2, and 
p27 and are stained by the Hector Battifora mesothelial 
cell-1 (HBME1) antibody. Strong positivity for proges-
terone receptors and for α and β-estrogen receptors, as 
well as focal positivity for androgen receptors is usually 
detected [134]. Morulae are distinct from squamous meta-
plasia; the morules show nuclear positivity for β-catenin, 
are selectively positive for CDX2, CA19.9, and CD10, and 
are negative for TTF1, thyroglobulin, calcitonin, vimentin, 
and BCL2 [134, 145, 146].

Because of the morphological features of C-MV of TC, 
distinction from other primary or metastatic lesions may 
be necessary [147]. C-MV of TC can simulate a colonic or 
metastatic breast carcinoma, but positivity for TTF1 can 
help determine the correct diagnosis. The lack of moru-
lar structures, positivity for thyroglobulin and negativity 
for nuclear β-catenin distinguish columnar cell variant of 
PTC from C-MV of TC. Solid areas in the C-MV of TC 
can simulate a poorly differentiated thyroid carcinoma, 
but coexistence with a cribriform and/or morular pat-
tern together with a lower mitotic index are typical of the 
C-MV of TC [147]. On the other hand, lung metastasis 
from C-MV of TC should not be misinterpreted as a pri-
mary adenocarcinoma of the lung based exclusively on 
the positivity for CK7 and TTF1 [148] can be helpful in 
this situation.

FNAB samples from C-MV of TC are commonly indica-
tive of thyroid carcinoma, showing hypercellularity, papil-
lary structures, epithelial flat monolayers, and/or morular 
structures [134, 137, 146, 147]. Tumor cells are tall and 
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columnar with spindle cytoplasm and obscure nuclei, but 
typical nuclear features of PTC (grooves, pallor, and cyto-
plasmic inclusions) are usually seen. The presence of cri-
briform and/or morular areas as well as nuclear staining for 
β-catenin however, are the keys to the diagnosis of C-MV 
of TC [134, 147].

C-MV of TC generally has a good clinical course. 
Extrathyroidal extension, local recurrence, lymph node 
metastases, distant metastases, and death were reported in 
4%, 4.5%, 10%, 6%, and 3% of cases taken from a review 
of 134 cases of C-MV of TC [134, 149]. Tumors with poor 
differentiation [143], neuroendocrine differentiation [150], 
and/or TERT promoter mutations [151] have been associ-
ated with a worse prognosis. High Ki-67 labeling indexes 
(22–70%) have been reported in cases of C-MV of TC with 
pulmonary metastases [152, 153], one of them having a good 
response to treatment with lenvatinib [153]. However, Ki-67 

not associated with numerous mitoses does not seem to por-
tend greater biological aggressiveness [154].

Genetic Features

FAP is caused by germline (constitutional) mutations in the 
APC gene (5q22.2) that result in a truncated or absent APC 
protein [126]. The severity of FAP changes according to 
the site of the germline APC gene mutation. In classic FAP, 
disease-associated germline mutations tend to be clustered 
in a small region designated the mutation cluster region 
(MCR), around codon/amino acid 1309 (codons 1286 to 
1513) [132, 155]. In attenuated FAP, associated inherited 
mutations are located nearer the N-terminus or within the 
alternatively spliced section of exon 9 [128]. In more than 
80% of patients with FAP and thyroid cancer, APC germline 
gene mutations occur between codons 140 and 1513 (largely 

Fig. 2  Cribriform-morular vari-
ant of thyroid carcinoma. This 
tumor is usually encapsulated or 
well-defined, partially divided 
by fibrous septa. Histologically, 
there is a mixture of cribriform 
(a), papillary (c), follicular, 
trabecular (b) or morular 
(squamoid) (a–c) patterns. 
Papillary or pseudopapillary 
structures are lined by cuboidal 
or columnar cells (c). Folli-
cular and cribriform areas are 
usually devoid of colloid (a, 
c, d). Tumor cells are usually 
negative for thyroglobulin; 
focal positivity may represent 
trapped nontumorous tissue 
(d). Tumor cells are always 
positive for TTF1 (f). Nuclear 
and cytoplasmic positivity for 
β-catenin is the hallmark of the 
cribriform-morular variant of 
thyroid carcinoma (e)
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outside the MCR) [137, 138, 156, 157]. Most APC germline 
mutations associated with thyroid cancer occur in the 
5′-portion of exon 15, in the same genomic area associated 
with CHRPE (codons 463–1387), and codon 1061 is also a 
hot spot for both C-MV of TC and hepatoblastoma [158]. 
While the risk of hepatoblastoma is greater in children 
younger than 3 years, the risk of developing thyroid cancer 
is greatest during the second and third decade of life [159]. 
For this reason, the fundoscopic confirmation of CHPRE 
could be an indicator of the familial character of a case 
of C-MV of TC while awaiting the result of the definitive 
genetic studies [129].

In normal follicular epithelial cells, APC protein forms a 
destruction complex with glycogen synthetase 3β (GSK3), 
casein kinase 1α and axin 1, sequestering β-catenin, and 
targeting it for degradation [160]. When the WNT pathway 
is activated, the destruction complex is uncoupled so the 
unphosphorylated β-catenin accumulates in the cytoplasm, 
translocates to the nucleus and activates transcription factors 
involved in proliferation and loss of differentiation. In multi-
centric thyroid tumors of FAP patients, it has been found that 
each tumor has a different somatic APC mutation (second 
hit), suggesting an independent development of each tumor 
through biallelic inactivation of the APC gene [157, 161]. 
The relationship between the morphology and the accumula-
tion of beta-catenin in the C-MV of TC and the APC gene 
has also been confirmed in sporadic cases in which a somatic 
APC mutation in exon 15 at codon 1309 has been detected, 
with a dominant negative effect [162]. Two somatic (bial-
lelic), inactivating APC variants have been identified in a 
sporadic case of C-MV of TC [163]. There are also sporadic 
cases of C-MV of TC associated with missense somatic 
mutations of exon 3 of the β-catenin gene (CTNNB1) with-
out mutations or loss of heterozygosity (LOH) of the APC 
gene [164]. More recently, AXIN1 somatic mutations (exons 
1 and 7) have also been reported in a sporadic and a familial 
case of C-MV of TC, respectively [165, 166]. The set of 
these molecular alterations underscores the key role of the 
WNT/β-catenin signaling pathway in the development of 
both sporadic and familial forms of C-MV of TC.

Somatic molecular alterations typical of conventional 
(not hereditary) thyroid cancer such as RET/PTC rear-
rangements have been reported in some familial cases of 
C-MV of TC [150, 167–169]. KRAS, but not HRAS nor 
NRAS has been detected in 7.6% of these tumors, including 
in one sporadic case [170] and in another FAP-associated 
case [165]. PIK3CA somatic mutations (exon 9, codon 
545) have been reported in 3 sporadic cases of C-MV of 
TC [171]. TERT promotor mutation has been reported in a 
sporadic case with aggressive behavior [151]. Rare somatic 
mutations in thyroid tumors such as in the KMT2C and 
KMT2D genes have been described in 1 and 4 cases of 
C-MV of TC, respectively, coexisting with the germline 

mutation of the APC gene [138]. In this same series of 
patients with FAP and thyroid tumors, BRAFV600E somatic 
mutations have been detected in conventional PTCs but not 
in the cases displaying a C-MV phenotype [138]. Neither 
BRAFV600E mutations nor PAX8/PPARγ rearrangements 
have been described in the C-MV of TC [138, 151, 165, 
170–172].

It has been proposed that the sporadic cases of C-MV of 
TC result from a combination of somatic mutations in phe-
notypically equivalent genes such as APC, CTNNB1, and/
or AXIN1 [134]. A similar possible pathogenetic mecha-
nism has also been proposed for somatic mutations in the 
KMT2D gene. [136]. Somatic mutations in RAS, PIK3CA, 
KMT2C, and/or BRAFV600E, as well as somatic RET/PTC 
rearrangements could act as a somatic “second-hit” in the 
development of other forms of thyroid cancers in affected 
individuals [9, 134, 138]. A tumor growth-promoting role 
has been attributed to the sex hormones due to the striking 
predominance of C-MV of TC in women and the strong 
expression of estrogen and progesterone receptors by tumor 
cells. [134]. Sporadic thyroid carcinomas unrelated to the 
pathogenesis of C-MV of TC may also occur in the thyroid 
of patients with FAP.

PTEN Hamartoma Tumor Syndromes (PTHS)

PTEN hamartoma tumor syndrome (PHTS) is an 
autosomal dominant disorder caused by inactivating 
germline PTEN gene mutations [173–176]. PHTS 
patients have diverse phenotypes such as Cowden disease 
(CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), 
PTEN-related Proteus syndrome (PS), and Proteus-like 
syndromes, but the PHTS designation should be used for 
all these syndromes, when a germline PTEN mutation 
is detected [173, 175, 177]. CS is a multiple hamartoma 
syndrome presenting in adulthood usually having 
macrocephaly, a high risk for benign and malignant 
tumors of the thyroid, breast and endometrium, multiple 
hamartomas and also various other lesions as well (see 
Table 2). BRRS (including Bannayan-Rubalcaba-Riley 
syndrome, Bannayan-Zonana syndrome, and Myhre-
Riley-Smith syndrome) is a pediatric syndrome typically 
displaying macrocephalia, intestinal hamartomatous 
polyposis, lipomas, penile freckling, and the same 
cancer risk as CS [173, 174, 176, 177]. PS and Proteus-
like syndromes are congenital disorders associated with 
malformations and hamartomatous tissue overgrowths, 
connective tissue nevi, hyperostoses and other lesions 
[173–176]. Most of these disorganized overgrowths 
of essentially mesenchymal elements have been more 
recently termed PTEN hamartoma of soft tissue 
(PHOST) [178]. In rare cases of Cowden and Cowden-
like syndromes as well as in proteus syndrome, other 
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susceptibility genes have been reported (see below) 
[179–182].

The risk of TC in patients with PHTS ranges from 14 
to 38% [183–187]. TC can occur at any age although it 
is more common in young adults (median 44 years), pre-
dominates in women and its clinical features are similar 
to those of sporadic TC [180, 187, 188]. Because thyroid 
cancer can occur in early childhood, ultrasound surveil-
lance for all patients with pathogenic germline PTEN 
variants, regardless of their age, has been proposed 
[189]. Due to the fact that thyroid tumors are multifocal 
and there is increased risk of early progression to thyroid 
carcinoma, total thyroidectomy instead of lobectomy has 
been recommended in these patients [123, 185, 190].

Pathological Features

As appears in the first description of Cowden syndrome in 
1963 [191], thyroid involvement is typically multinodular 
and bilateral, with no pathological differences between the 
thyroid findings in CS [123, 125, 187, 192] and BRRS [189, 
192] (Fig. 3a). The thyroid gland in PHTS shows multifocal 
adenoma-to-carcinoma progression sequence. Histologi-
cally, follicular epithelial-derived thyroid carcinomas arise 
in the background of multiple cellular follicular adenomas 
(Fig. 3b) including lipoadenomas (Fig. 3d) as well as numer-
ous cellular nodules (so-called microadenomas) [123, 125, 
188, 189] (Fig. 3c, e).

Multinodular goiter due to multiple follicular adeno-
mas appears in 43–75% of patients, sometimes including 

Fig. 3  PTEN-hamartoma tumor 
syndrome (PHTS). In this case, 
thyroid involvement is typically 
multinodular and bilateral (a). 
Microscopically, the presence of 
multiple bilateral adenomatous 
nodules (“microadenomas”) (c) 
and adenomas (b), including 
adenolipomas (d), is character-
istic. Adipocytic infiltration and 
lymphocytic thyroiditis can also 
be seen (f). The loss of PTEN 
protein expression in thyroid 
nodules, whether in all nodules 
or in a subset of nodules with 
expression in endothelial cells 
(internal positive control), is 
both sensitive and specific for 
PHTS (e)
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oncocytic or clear cells or a hyalinizing trabecular tumor-
like pattern [123, 187, 192, 193]. The most common types 
of malignant tumors are PTC (60%), including the follicular 
variant of PTC, FTC (14–45%), poorly differentiated and 
anaplastic thyroid carcinoma (ATC) (6%) [123, 185, 187, 
192]. Although reactive (secondary) C-cell hyperplasia has 
been reported in about 55% of cases [194], MTC is not a 
component of PHTS; scattered foci of adipose tissue dis-
tributed throughout the thyroid parenchyma as well as thy-
roiditis (75%) are also characteristic [116, 125, 175, 187, 
192, 195] (Fig. 3f).

It is very important for pathologists to know that immu-
nohistochemical staining of thyroidectomy specimens for 
PTEN protein can aid in the identification of patients with 
PHTS. By immunohistochemistry, the loss of PTEN pro-
tein expression in all follicular-epithelial derived thyroid 
nodules (including microadenomas), whether in all nod-
ules or in a subset of nodules, is both sensitive (100%) 
and specific (92.3%) for CS [188]. In fact, in PHTS cases 
there is a loss of PTEN expression in neoplastic follicular 
cells, while the normal follicular cells and endothelial cells 
(positive control) are positive [9, 114, 125, 147, 188, 196] 
(Fig. 3e).

Genetic Features

PHTS is caused by pathogenic germline PTEN variants 
(10q23.31). The PTEN protein encoded by this tumor 
suppresor gene is a phosphatidylinositol-3,4,5-trisphosphate 
3-phosphatase that canonically counteracts the PI3K/AKT/
mTOR signaling pathway [173]. Mutation or inactivation 
of the PTEN gene increases PIP3 levels causing constitutive 
activation of AKT with subsequent upregulation of mTOR 
signaling; this implies more cell proliferation, migration, 
angiogenesis, survival and decreased apoptosis [175, 197]. 
PTEN also exerts protein phosphatase-dependent and pan-
phosphatase-independent actions within both the cytoplasm 
and the nucleus [175]. PTEN mutations could affect the 
amount of protein, causing haploinsufficiency, acting as 
dominant-negative, reducing or losing phosphatase activity, 
and/or producing abnormal localization and function [198]. 
In PHTS, germline mutations can affect all nine exons of 
the PTEN gene, with approximately two thirds of mutations 
occurring in exons 5, 7, and 8 [116, 192]. Up to 40% of all 
these mutations appear in exon 5, encoding the core catalytic 
motif [116, 175]. In addition to intragenic mutations, 
germline PTEN promoter mutations have been described 
in about 10% of PHTS patients [199, 200]. Furthermore, 
large PTEN deletions in about 3–10% of these patients have 
also been found [116, 175, 199]. Germline PTEN frameshift 
mutations have been reported to be overrepresented in TC 
[180], but no correlation has been found between specific 
germline mutations and thyroid pathological features [192].

Interestingly, in about 6% of PHTS patients, some germline 
variants in genes that encode subunits of mitochondrial com-
plex II such as SDHB, SDHC, and SDHD (SDHx) can act as 
modifiers of PTEN-associated cancer risk and tumor histol-
ogy [201]. In fact, individuals carrying the SDHx variants 
showed an increased risk of PTC, breast cancer, and renal cell 
cancer that exceeds the risk mediated by mutant PTEN alone 
[201]. In patients with only PTEN mutation, the risk of breast 
cancer was 32.4% and TC 25.7%, mainly FTC. With only 
SDHx variants, there was an increase in breast cancer (57.4%) 
and TC (51.1%) but with a predominance of PTC (including 
the follicular variant of PTC). But with the mutation of both 
PTEN and SDHx genes, the risk of breast cancer was greater 
(77.2%), the risk of TC decreased (27.3%), and the risk of 
renal cancer disappeared [201, 202].

In some studies [181], pathogenic germline PTEN vari-
ants have only been detected in about 25% of CS/CS-like 
individuals meeting the International Cowden Consortium 
criteria [116], and pathogenic germline PTEN variants have 
also been found in up to 11% of BRRS patients [199]. Thus, 
it has been postulated that in these individuals with no ger-
mline PTEN variants, germline mutations in other genes 
with a similar functional effect to those of PTEN malfunc-
tion, would explain the equivalent phenotype [202]; in fact, 
pathogenic germline variants in PIK3CA and AKT1 [181] 
as well as in EGFR [203] genes have been reported in CS 
and CS-like individuals. Mutations in non-PTEN pathway 
genes associated with CS and BRRS that could explain the 
remaining patients are SDHB, SDHC, SDHD, KLLN (epi-
mutation), SEC23B, USF3, TTN, PTK2, and RASAL1 [179, 
180, 202, 204].

A large deletion in the mitochondrial-DNA-encoded MT-
ND1 and a somatic BRAFV600E mutation have been reported 
in a HCC and in a PTC respectively in the thyroid gland of 
a CS patient [205]. No BRAFV600E, NRAS or KRAS somatic 
mutations were detected in one PTC (follicular variant), one 
FA, two adenolipomas and two adenomas of another patient 
with CS [125].

DICER1 Syndrome

DICER1 syndrome is an autosomal dominant disorder with 
decreased penetrance, caused by heterozygous inactivating 
germline DICER1 gene mutations. DICER1 syndrome, also 
designated as Pleuropulmonary blastoma familial tumor and 
Dysplasia syndrome, is characterized by an increased risk for 
pleuropulmonary blastoma, pulmonary cysts, cystic nephroma, 
benign and malignant thyroid tumors, Sertoli-Leydig cell 
tumor, gynandroblastoma, juvenile granulosa cell tumor, 
ciliary body medulloepithelioma, nasal chondromesenchymal 
hamartoma, embryonal rhabdomyosarcoma, pituitary 
blastoma, pineoblastoma, central nervous system sarcoma, 
and presacral malignant teratoid tumor [206–209] (see 
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Table 2). Additional lesions include macrocephaly, ocular 
and dental abnormalities, and structural alterations of the 
kidney and collecting system [209]. Due to its rarity, the 
diagnosis of pleuropulmonary blastoma, cystic nephroma or 
nasal chondromesenchymal hamartoma, is highly suggestive 
of germline DICER1 mutation [206, 207]. Pituitary blastoma, 
appears to be pathognomonic of biallelic DICER1 mutations 
[210, 211]. All these lesions usually occur in childhood, 
adolescence, or early adulthood [206–209].

An epidemiological study of individuals with one or more 
DICER1-associated lesions showed that by 20 years of age, 
the cumulative incidence of multinodular goiter or history 
of thyroidectomy is 13% in men and 32% in women, with a 
16- to 24-fold increased risk of TC over a patient’s lifetime 
[117]. Early-onset, familial, or male MNG should also alert 
to the possibility of DICER1 syndrome, especially in the 
case of a family history of other DICER1-associated cancers 
[117, 212]. In early onset of MNG, the head circumference 
should also be measured, because it is also associated with 
DICER1 syndrome [117], but in the absence of germline 
DICER1 mutation, PHTS should also be considered (see 
above). For individuals with a DICER1 pathogenic variant, 
thyroid ultrasound is recommended beginning at age 8 with 
subsequent ultrasounds every 3 to 5 years [206]. Although 
cases of TC reported in children had been attributed to 
the chemotherapy and/or radiation they had received for 
DICER1-associated tumors [213–215], germline DICER1 
mutations are associated with an increased risk of develop-
ing familial differentiated TC, even in the absence of prior 
treatment with chemotherapy [216]. Familial MNG and 
ovarian Sertoli-Leydig cell tumors [216–222] as well as co-
occurrence of Sertoli-Leydig cell tumor with TC are highly 
suggestive of DICER1 syndrome [223]. The diagnosis of 
poorly differentiated thyroid carcinoma (PDTC) in child-
hood or adolescence is a rare event that should also suggest 
the possibility of a DICER1 syndrome [224].

Pathological Features

MNG associated with DICER1 syndrome includes multiple 
and bilateral conventional follicular nodular proliferations, 
well-circumscribed adenomas, and/or nodules displaying 
intrafollicular centripedal papillary growth (so-called 
papillary hyperplasia or papillary adenoma) without nuclear 
features of papillary thyroid carcinoma [225] (Fig. 4). Most 
TCs are well-differentiated forms, mainly the follicular variant 
of PTC and minimally invasive FTC. [117]. In some cases, 
PTC has been described appearing within a follicular nodule 
[216] suggesting a stepwise progression of malignancy. 
Follicular cells of benign and malignant nodules (including 
papillary hyperplasias) sometimes show some nuclear features 
of PTC (intermediate-type nuclei), fitting with a carcinogenic 
process different from the classical pathway towards PTC or 

FTC [9]; for this reason, the criteria for the diagnosis of PTC 
must be particularly strict in this setting. Rare cases of solid/
trabecular variant of PTC [226] and PDTC (defined by the 
Turin consensus), have also been described in this syndrome 
[224]. One of the characteristics of DICER1-related thyroid 
disease is the high frequency of involutional change in the 
non-tumorous thyroid parenchyma in the absence of clinical 
or subclinial hyperthyroidism [225].

A rare malignant teratoid tumor of the thyroid recently 
designated as “thyroblastoma” [227] has been described as 
having somatic pathogenic DICER1 variants but not associ-
ated with pathogenic germline DICER1 variants [227–230] 
(Fig. 5). This neoplasm is characterized by a triphasic pat-
tern combining TTF1+/PAX8+ primitive teratoid follicle-
like glands admixed with neuroepithelial-like and fetal 
tubule-like components, with a second primitive small cell 
component, as well as a third cellular stroma with frequent 
rabdomyoblastic differentiation [227].

Genetic Features

DICER1 (14q32.13) encodes a protein possessing an 
RNA helicase motif containing a DEXH box in its amino 
terminus and an RNA motif in the carboxy terminus. The 
encoded protein functions as a ribonuclease and is required 
by the RNA interference and small temporal RNA (stRNA) 
pathways to produce the active small RNA component that 
represses gene expression. Dicer is a type III cytoplasmic 
endoribonuclease that is involved in the maturation of several 
classes of small non-coding RNAs, such as microRNAs 
[210, 231]. Most individuals with DICER1 syndrome have 
a germline loss-of-function DICER1 mutation with a second 
tumor-specific missense mutation in the RNase IIIb domain; 
these tumor-specific RNase IIIb missense mutations usually 
involve one of five hot spot codons (E1705, S1709, G1809, 
D1810, and E1813) [208, 210, 232]. Individuals with 
14q32 deletions that encompass the DICER1 locus are also 
associated with an increased risk for DICER1-related tumor 
development [233].

DICER1 mutations are rare in sporadic PTC [234]. 
Somatic mutations in the DICER1 gene have been detected 
in two of four cases of macrofollicular variant of FTC 
[235]. Additional somatic RNase IIIb mutations have been 
detected in each of two benign follicular nodules from two 
patients carrying a germline DICER1 (hot spot) mutation 
[225]. Another study has also found somatic DICER1 hot 
spot mutations in both benign and malignant nodules from 
DICER1 carriers, including different somatic DICER1 
mutations from different nodules from the same thyroid 
gland [117]. In a series of 40 adolescent-onset PTC cases, 
two somatic DICER1 alterations were exclusively detected 
in each of the two PTC cases that lacked the molecular 
alterations typical of this tumor type (BRAF, HRAS, KRAS, 
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NRAS, RET, and PAX8) [225]. In a similar way, no charac-
teristic mutations of FTC or PTC (including TERT) have 
been reported in a well-differentiated thyroid carcinoma, 
not otherwise specified (NOS) presenting in a young girl 
with MNG, botryoid rhabdomyosarcoma, and pathogenic 
DICER1 mutation [236]. Childhood- and adolescent-onset 
PDTCs are genetically distinct from adult-onset PDTCs; 
they are associated with somatic DICER1 mutations 
and less frequently with a germline pathogenic DICER1 
variant, but not with the classic molecular alterations 

of TC [224]. All these findings support the assump-
tion that DICER1 syndrome-related TC may develop in 
a background of MNG, via a stepwise process, involv-
ing DICER1 somatic mutations and additional molecular 
events, distinct from the classic pathways of TC [9, 117].

Carney Complex (CNC)

Carney complex (CNC) is an autosomal dominant disease 
characterized by the following major criteria for diagnosis: 

Fig. 4  DICER1-related thyroid 
disease. DICER1-related 
thyroidectomy specimens are 
grossly indistinguishable from 
sporadic manifestations of 
multinodular goiter (a; Lt refers 
to left; Rt refers to right; Sup 
refers to superior; Inf refers to 
inferior). Careful assessment 
of thyroid nodules and the non-
lesional thyroid parenchyma 
provides additional clues to the 
possibility of DICER1-related 
thyroid disease. This composite 
photomicrograph illustrates 
features of thyroid pathology 
identified in a young adult 
patient with pathogenic germline 
DICER1 mutation. The thyroid 
gland shows multifocal follicular 
adenomas with intrafollicular 
centripetal papillary projections, 
which are also known as 
papillary adenomas (b–c). 
Although papillary adenomas 
tend to manifest with clinical 
or subclinical hyperthyroidism; 
DICER1-related papillary 
adenomas are seen in association 
with euthyroid states. In addition, 
follicular-patterned thyroid 
neoplasms including follicular 
adenomas and follicular variant 
papillary thyroid carcinomas 
are identified (c, f). The 
nontumorous thyroid gland 
shows variable involutional 
changes characterized by 
dilated macro-follicles (e). 
Papillary thyroid carcinomas 
account for the vast majority 
of malignant thyroid nodules 
in DICER1-related thyroid 
disease. Encapsulated follicular 
variant papillary microcarcinoma 
with tumor capsular invasion 
is illustrated (f) along with 
HBME1 immunoreactivity (g) 
and reduced membranous CD56 
expression (h)
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peculiar distribution of pigmentation in skin and mucosa (lips, 
conjunctiva and inner or outer canthi, penile, and vaginal 
mucosa), multiple myxomas (cutaneous, mucous, cardiac, and/
or in the breast), primary pigmented nodular adrenocortical 
disease (Cushing syndrome), large-cell calcifying Sertoli cell 
tumors, acromegaly from a growth hormone (GH)-producing 
pituitary tumor, blue nevus, epithelioid blue nevus, breast 
ductal adenoma, osteochondromyxoma, and multiple thyroid 
nodules [237–245]. CNC has also been designated by the 
acronyms NAME (nevi, atrial myxomas, ephelides) [246] 
and LAMB (lentigines, atrial myxoma, blue nevi) [247]. It 
is impportant to recognize that the Carney triad (pulmonary 
chondroma, extra-adrenal paraganglioma, and gastrointestinal 
stromal tumor) [248, 249] is a different entity. The percentage 
of thyroid nodules reaches 60% among patients with CNC and 
75% among children and adolescents [243, 250].

Pathological Features

The thyroid gland shows multiple and bilateral proliferative 
follicular lesions, including Hürthle cell nodules. There 
is multinodular hyperplasia, sometimes with peculiar 
microscopic “follicular adenomatosis” along with multiple 
follicular adenomas in up to 75% of CNC patients [241, 
245, 251]. Follicular adenomatosis [244] is characterized 
by the presence of multiple encapsulated and uncapsulated 
follicular thyroid nodules distributed throughout the gland 
in a manner equivalent to the so-called microadenomas that 
appear in PHTS (see above). Lymphocytic thyroiditis and 
hyperthyroidism due to diffuse hyperplasia (Graves’ disease) 
[252] and toxic adenoma(s) have also been reported [244]. 
CNC-related toxic adenomas are not different from sporadic 
toxic adenomas that are characterized by intrafollicular 
centripedal papillary growth. The term “papillary adenomas” 
is also applied to these functional benign neoplasms [253, 
254]. The papillae in toxic adenomas contain subfollicles 

and are lined by basally oriented nuclei with no features of 
papillary thyroid carcinomas. Although multifocal nature 
of these proliferations should alert the diagnostician to the 
possibility of a germline susceptibility, one should remember 
that similar findings can also occur in patients with McCune 
Albright syndrome, which is caused by postzygotic GNAS 
non-familial genetic mosaicism [255]. The incidence of 
TC is about 15% [245]. The patients usually develop well-
differentiated carcinomas, both FTC and PTC, sometimes 
after a long history of multiple adenomas [241, 244, 256, 
257]. Hürthle cell adenoma has been reported in a boy with 
CNC [258].

Genetic Features

In more than half of cases, CNC is caused by a heterozygous 
germline pathogenic variant in PRKAR1A gene (17q24.2) 
[245]. PRKAR1A gene encodes the regulatory subunit type 
I alpha of the protein kinase A (PKA, cAMP-dependent 
protein kinase) enzyme [250]. In a series of 353 patients 
with CNC, pathogenic germline PRKAR1A variants were 
detected in 73% of patients, with a penetrance close to 100%, 
and most mutations (82%) led to lack of detectable mutant 
protein because of non-sense mRNA [243]. The percentage 
of mutations reaches 80% in those patients with primary 
pigmented nodular adrenocortical disease (the so-called 
PPNAD) [243]. In some patients with clinical criteria of 
CNC without PRKAR1A mutation, a second locus has been 
identified at 2p16 [259], but for the majority of PRKAR1A-
negative CNC cases the genetic cause is unknown [245].

Werner Syndrome (WS)

Werner Syndrome (WS) is an autosomal recessive disease 
with genetic instability and cancer predisposition caused by 
biallelic WRN pathogenic variants [260, 261]. WS (also called 

Fig. 5  Thyroblastoma. In this 
area, the tumor is composed of 
a small cell undifferentiated/
immature epithelial component, 
and a stromal chondroid com-
ponent (image courtesy of Dr. 
Catarina Eloy, Porto, Portugal)
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progeria of the adult) is associated with an acceleration of 
biological aging and elevated risk of cancer [260]. WS is 
characterized by premature graying and/or thinning of scalp 
hair, bilateral ocular cataracts, deep, chronic ulcers around the 
ankles, and short stature, with symptoms typically starting in 
the 20s. Additional signs and symptoms include thin limbs, 
osteoporosis, pinched facial features, voice change, hypog-
onadism, type 2 diabetes mellitus, soft tissue calcification, 
atherosclerosis, and cancer [260, 262, 263]. In a systemativc 
review, the ratio male/female has been higher among Japan-
resident WS patients than among patients residing outside 
Japan (79:58 vs. 23:26, respectively). [264]. The most com-
mon malignant neoplasms in patients with WS are thyroid 
tumors, melanoma, meningioma, soft-tissue sarcomas, leu-
kemia and preleukemic disorders, and osteosarcomas [264]. 
TC usually appears at a younger age (mean: 34 years), and 
in Japanese people with WS, the overall incidence of TC is 
18% [265, 266].

Pathological Features

Among the Japanese population with WS and TC, FTC 
(48%) was most common, followed by PTC (35%) and ana-
plastic thyroid carcinoma (ATC) (13%) [266]; in this setting, 
ATC appears in individuals at a younger age than it does in 
sporadic ATC, probably due to premature aging.

Genetic Features

WRN gene (8p12) encodes a multifunctional nuclear pro-
tein that is a member of the RecQ family of DNA helicases 
[267]. WRN protein seems to be involved in DNA repair, 
recombination, replication, and transcription [261]. Addi-
tionaly, WRN protein is implicated in the maintenance of 
telomeres [268]. In individuals of Japanese descent, PTC 
has been associated with the c.1105C>T, p.R369* mutation, 
whereas FTC was associated with the c.3139-1G>C muta-
tion (exon 26 skip), but the mutational spectrum is different 
between Japanese and Caucasian patients [266]

Conclusions

Cancer derived from thyroid follicular epithelial cells 
is common; it represents the most common endocrine 
malignancy. The molecular features of the sporadic 
tumors have been clarified in the past decade. However the 
incidence of familial disease has not been emphasized and 
is often overlooked in routine practice. In this review, we 
have summarized a large body of information about both 
syndromic and non-syndromic familial thyroid carcinomas. In 
syndromic cases, the morphology of the tumor(s), molecular 
immunohistochemistry (e.g., PTEN, beta-catenin, SDHB), 

the findings in the non-tumorous thyroid parenchyma, 
and other associated lesions may provide insight into the 
underlying disorder. However, the increasing evidence of 
familial predisposition to non-syndromic thyroid cancers 
is raising questions about the importance of genetics and 
epigenetics. What appears to be “sporadic” in becoming less 
often truly so and more often an opportunity to identify and 
understand novel genetic variants that underlie tumorigenesis. 
Pathologists must be aware of the unusual morphologic 
features that are harbingers of specific germline susceptibility 
syndromes and can assist in providing information to uncover 
biomarkers that will facilitate screening and early detection to 
prevent aggressive disease.
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