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Skin is an important ecosystem that links the human body and the

external environment. Previous studies have shown that the skin microbial

community could remain stable, even after long-term exposure to the external

environment. In this study, we explore two questions: Do there exist strains or

genetic variants in skin microorganisms that are individual-specific, temporally

stable, and body site-independent? And if so, whether such microorganismal

genetic variants could be used as markers, called “fingerprints” in our study,

to identify donors? We proposed a framework to capture individual-specific

DNA microbial fingerprints from skin metagenomic sequencing data. The

fingerprints are identified on the frequency of 31-mers free from reference

genomes and sequence alignments. The 616 metagenomic samples from

17 skin sites at 3-time points from 12 healthy individuals from Integrative

Human Microbiome Project were adopted. Ultimately, one contig for each

individual is assembled as a fingerprint. And results showed that 89.78% of

the skin samples despite body sites could identify their donors correctly. It

is observed that 10 out of 12 individual-specific fingerprints could be aligned

to Cutibacterium acnes. Our study proves that the identified fingerprints are

temporally stable, body site-independent, and individual-specific, and can

identify their donors with enough accuracy. The source code of the genetic

identification framework is freely available at https://github.com/Ying-Lab/

skin_fingerprint.

KEYWORDS

skin microbiome, metagenomics, human identification, microbial DNA fingerprint,

individual-specific k-mer

Introduction

The skin is the largest organ of the human body. It is a critical ecosystem between the

human body and the external environment, harboring microbial communities in various

physiologically and topographically distinct niches (Grice et al., 2009). Metagenomic

shotgun sequencing provides high resolution to characterize the microbial community

at the nucleotide level. Systematic metagenomic investigations of the human skin
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microbiome were initiated and further expanded in the Human

Microbiome Project (HMP) and integrative HMP (iHMP),

respectively, by large-scale multi-site (Oh et al., 2014) and

temporal (Oh et al., 2016) sequencing data. The metagenomic

samples produced across 17 skin sites at 3-time points for nearly

3 years from 12 healthy individuals made it possible to study

the full-scale effects of biogeographic, individual, and temporal

factors. Based on reference sequences, the rational analysis of

the composition and function of the healthy skin microbiome

was conducted on bacterial, fungal, and viral communities.

Furthermore, studies have demonstrated that biogeography

and individuality significantly shape a community’s functional

and taxonomic characteristics (Oh et al., 2014) and that

skin microbiomes were largely stable over time, despite their

exposure to the external environment (Oh et al., 2016).

Previous studies have shown that the similarity of

microbiota within an individual is more significant than that

between individuals (Oh et al., 2014, 2016; Schmedes et al.,

2017; Woerner et al., 2019). Microbial abundance profiles in

feces, skin, saliva, soil, and plant materials can potentially link

individuals to criminal activities, offering another complement

to existing forensic identification technologies (Neckovic et al.,

2020). Previous studies showed that microorganisms on human

skin and gut are very similar at the phylum level, while the

diversity of each individual is very specific at the level of genera,

species, and strains of specific populations (Krishna, 2018).

Therefore, it is worthwhile to study the differences in skin

microbiomes among individuals and whether such differences

are significant enough to identify a specific individual, especially

in a forensic context. Studies performed by Ol et al. showed

that even highly variable individual skin data from long-term

exposure to the external environment remained in a relatively

stable state, making it possible to use microbial communities

within the skin microbiome to identify individuals (Oh et al.,

2014, 2016). Also, a specific person could even be identified

through microbes deposited on the surface of cell phones or

computer mice (Tozzo et al., 2020).

Furthermore, the systematic studies of Budowle’s group

demonstrate the existence of microbial fingerprints in skin

microbiomes (Schmedes et al., 2017, 2018), especially focusing

on identifying a particular individual from several candidates

based on the samples from the skin at the identical body site.

Their experiments confirmed that core skin microbial species

are stable over time and shared by all individuals as microbial

signatures of a fixed body site for each individual (Schmedes

et al., 2017). They found that the individual identifying accuracy

of clade-specific markers ranged from 56.67 to 100% with a

mean accuracy of 82.20%. Furthermore, the Budowle group

developed a targeted sequencing method called hidSkinPlex

(Schmedes et al., 2018), including 286 bacterial (and phage) for

individual identification. Throughout their studies, the Budowle

group focused on identifying individual skinmicroorganisms on

the same body site from different individuals.

However, previous explorations (Fierer et al., 2010; Oh

et al., 2014, 2016; Schmedes et al., 2017, 2018; Woerner et al.,

2019; Tozzo et al., 2020) verified that microorganisms in each

individual’s skin microbiome have specific genetic variants.

Moreover, the fact that various body sites can come into frequent

contact leads to the exchange of microorganisms (Lloyd-Price

et al., 2017). This suggests, in turn, that an individual’s whole-

body skin microbiome might consist of a common set of

genetic variants, or skin microbial DNA markers, thus making

it possible to use any body site, instead of just specific sites,

to identify a particular person. Therefore, in this study, we

asked the following two questions: Do there exist strains or

genetic variants in skin microorganisms that are individual-

specific, temporally stable, and body site-independent? And

if so, whether such microorganismal genetic variants could

be used as fingerprints to identify donors. Accordingly, we

proposed a framework to capture individual-specific DNA

microbial fingerprints. Free from reference genomic sequences

and sequence alignments, the long k-mer (k = 31) spectrum-

based model from our previous studies (Wang et al., 2018, 2020)

is adopted to identify genetic variants present in the whole-body

skin of one individual, but absent from all body sites of other

individuals based on metagenomic sequencing data. We termed

this individual-specific fingerprinting. The individual-specific

genetic variants are identified and represented by individual-

specific k-mers, filtered, and assembled into individual-specific

contigs as individual-specific DNA microbial fingerprints. We

adopted skin data of 12 healthy individuals produced by iHMP,

including metagenomic sequencing samples from 17 skin sites

at 3-time points for nearly 3 years. In total, we identified

18,0321 individual-specific 31-mers and assembled them into

65,648 individual-specific contigs for the 12 individuals, with the

length from 34 to 29,996 bp. Filtered by abundance-difference

significance testing, overlapping, and length of contigs, we

kept one contig as skin DNA microbial fingerprints for

each individual.

To obtain more biological information about genetic

variants, the identified individual-specific contigs were aligned

to the genomic reference sequences of microorganisms in NCBI

(Coordinators, 2016) by BLAST (Altschul et al., 1990).We found

that 10 out of 12 individual-specific fingerprints could be aligned

to Cutibacterium acnes (previous name Propionibacterium

acnes), which is consistent with the observation that C. acnes

from the skin is the greatest temporal stable (up to almost 3

years) in single-nucleotide variant (SNV) profiles as individual-

specific microbiome features (Oh et al., 2016). Furthermore,

instead of designing complicated classification models, we only

used the abundance (RPKM, Reads Per Kilobase per Million

mapped reads) threshold of fingerprints as a decision rule to

separate individuals. By only using fingerprint abundance as

decision variable, a decision tree was designed with the ability

to identify 7 out of 12 individuals with almost 100% accuracy

and total accuracy of 89.78%.
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Materials and methods

The framework for detecting
individual-specific microbial DNA
fingerprints

The framework to detect individual-specific microbial DNA

fingerprints is shown in Figure 1. The process is composed of

four modules. (1) Data preparations: Metagenomic sequencing

data from different body sites and different individuals are pre-

processed to filter out the data with extremely low sequencing

depth, to avoid incomplete coverage of the metagenome, and

to remove samples from body sites strongly related to living

habits and affected by the living environment. The remained

data are divided into balanced training and testing sets. (2)

Detecting individual-specific k-mers: All samples from a certain

individual are labeled as positive, and the others are negative.

The individual-specific k-mers detected in cross-validation of

the training process are evaluated one by one on the testing

data. The k-mers passing the test are listed as individual-

specific k-mers. The procedure is repeated to detect each

individual’s specific k-mers. (3) Producing individual-specific

markers: For each individual, his/her specific k-mers are aligned

to the original sequencing reads, and reads perfectly matched

by more than two specific k-mers are collected. These reads

are then assembled into contigs, and the contigs which have

a significant difference in abundance by RPKM between the

current individual and others are specified as individual-

specific contigs. It is the individual-specific contig that is

adopted as the individual’s microbial marker. The procedure is

repeated until all individuals obtain their specific markers. (4)

Designing individual identification with a decision tree: For each

individual, the RPKM threshold of the individual-specific contig

is used as the DNAmicrobial fingerprint to separate individuals.

The markers for all individuals are finally combined to build a

compound logic individual discriminant by a decision tree, and

each individual can be identified as a leaf of the decision tree.

Our framework processes skin metagenomic sequencing

data, which were collected from multiple body sites of different

individuals. Therefore, for each individual, there are multiple

metagenomic samples.

Module 1: Data preparation

Data preparation is performed to achieve two goals: (1)

select and preprocess metagenomic sequencing data with as

much information reserved as possible and (2) introduce

undersampling for correctly handling a highly unbalanced

dataset to avoid bias.

The sequencing data with extremely low sequencing depth

were removed to avoid highly-incomplete coverage of the

metagenome. In our study, the samples whose read number

is smaller than 1/10 of the median number of all samples are

considered as extremely low sequencing depth and removed.

And the samples from body sites strongly related to living habits

and affected by the living environment were also removed from

the dataset.

The remained data are divided into balanced training and

testing sets. Samples from one specific individual are labeled

as positive, and the others are negative, followed by randomly

dividing into a ratio of 70% training dataset and 30% testing

dataset. Since the number of negative samples is more than

ten times the number of positive samples, it is essential to

take measures to avoid the impact of data imbalance on

subsequent work. A more appropriate approach to deal with

large unbalanced datasets is undersampling. For the training

set in our study, positive data were randomly sampled from all

positive data, and negative data were randomly undersampling

selected from the data of the other individuals.

Module 2: Detecting individual-specific k-mers

The “k-mer” means k-bp nucleotide string in this study,

and the total number of all possible k-mers is 4k. The

“individual-specific k-mer” means k-mer is present in most

of one individual’s body skin sites, but absent from all body

sites of other individuals. Hence, those k-mers are unique to

that one individual. Individual-specific k-mers are the smallest

element used to identify individuals. By using k-mers as the basic

element, the framework is free from reference sequence and

sequence alignment. The detection of individual-specific k-mers

on sequencing data involves three steps.

k-mer counting and feature logicalization

For training data, KMC3 (Kokot et al., 2017) is adopted

to calculate the occurrence of k-mers in each sequencing

datum, and only k-mers that appear more than twice are

kept. The reverse complements of reads were taken into

consideration. A vector of k-mer counting is generated for each

sequencing sample.

For the selection of k-mer length, the previous study showed

that sufficiently long k-mers are usually specific to a genome

(Fofanov et al., 2004).When k≥ 30, the average ratio of common

k-mers between the genomes is less than 1.02% on 100 pairs of

bacterial genomes (Vinh et al., 2015). However, a longer k-mer

requires a large sample size to guarantee high specificity, the

huge computing memory and storage. According to a previous

study, the k-mer with a length 30–40 is a reasonable trade-off

among sensitivity, specificity, and computational cost (Wang

et al., 2018). Therefore, in our study, we chose k= 31.

The k-mer frequency vector is represented as a logicalized

feature vector with 1/0 to represent k-mers as present or absent

in one sample, as shown in Equation (1),

f
(l)
i

(

j
)

=

{

1 if fi
(

j
)

>0

0 if fi
(

j
)

=0
(1)
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FIGURE 1

The framework to detect individual-specific microbial DNA fingerprints includes four modules: Module 1-data preparation removes outliner

samples, and divides the dataset into balanced training and testing sets. Module 2- individual-specific k-mers detection identifies k-mers with

significantly present/absent or abundant di�erence. Module 3- individual-specific markers production assembles the individual-specific k-mers

to contigs as individual-specific microbial DNA marks. Module 4- an individual-identifying decision tree identifies individuals with

individual-specific markers.

FIGURE 2

Preprocessing of metagenomic sequencing data. The scatterplot in (A) shows the distribution of read counts of samples from 12 healthy

volunteers (HV). The data with the log of reads number fewer than 100,000 are removed. The bar chart in (B) shows the improvement of ASS

values by data processing on the test dataset identifying HV08. The overall distribution of ASS values for 31-mers obtained after data processing

can be seen as having shifted to the right in the figure, which means data processing improved the quality of k-mers we want to find. Dotted

lines in the figure denote the mean value.

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2022.960043
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zheng et al. 10.3389/fmicb.2022.960043

FIGURE 3

The flow chart shows the framework of our whole experiment. After data preprocessing, the samples of each individual are divided into the

training set and the test set according to the 7:3 ratio. After a series of operations on the training data, we obtained fingerprints for 12 individuals

and examined the testing data by a decision tree.

FIGURE 4

Boxplot of ASS value of HV08-specific 31-mers in 6-fold LOOCV. In each fold, even fold one, the k-mers obtained from training data maintain a

high level (the average ASS is higher than 0.7, with most 0.85) of ASS in validation data, which means that these k-mers could e�ectively identify

HV08.

where fi
(

j
)

is the counting of occurrence of k-mer i in the

sequences data of sample j. f
(l)
i

(

j
)

is the logical value of k-mer i

in sample j, and the superscript l indicates the logical feature.

k-mer matrix over training samples

The vectors of k-mer counts in each sequencing sample are

normalized by the sum of the number of k-mers that occur

in the sample, denoted as ni
(

j
)

. The k-mer vectors of two

groups of training samples are merged into a k-mer frequency

union matrix, where each row represents a k-mer, and each

column represents a sequencing sample, as shown in Equation

(2), where fm(n) indicates the frequency of k−merm in

the samplen.
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(2)

The “highly-sparse” feature means that a k-mer does not

exist in most training samples, i.e., the frequencies of a k-mer

are 0 in most training cases and most training controls. Then

those features have very limited contributions to classification.

Therefore, if a k-mer is absent in more than 80% of negative

samples and 80% of positive samples, the k-mer is removed
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FIGURE 5

Evaluation of temporal stability of identified individual-specific k-mers, showing specific k-mers identified by ASS value of HV08

individual-specific 31-mers at three sampling times. Red bars represent individual-specific 31-mers on training, while yellow and green bars

represent individual-specific 31-mers on two test datasets, respectively. The number above the bar chart represents the number of

individual-specific 31-mers included in that ASS value.

FIGURE 6

Evaluation of body site stability of identified individual-specific k-mers, showing specific k-mers identified by ASS value of HV08

individual-specific 31-mers on two groups samples. Yellow bars and green bars represent individual-specific 31-mers on training and testing,

respectively. The number above the bar chart represents the number of individual-specific 31-mers included in that ASS value.

from the feature set. The stringent threshold of 80% offers high

confidence in filtering out less useful features.

Detecting individual-specific k-mers

For the remained k-mers, we use each k-mer to design

a logical predictor to evaluate the discriminant ability of the

current k-mer. The logical predictor is designed as Equation (3),

which predicts negative or positive based on whether a k-mer I

is present in the sequencing data of sample j or not.

y
(

j
)

=

{

1 if f
(l)
i

(

j
)

=1

0 if f
(l)
i

(

j
)

=0

or (3)
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FIGURE 7

Coverage heatmap of the 5 HV08-specific contigs aligned by the 499 human skin samples from 12 healthy individuals. The coverage is the

read-alignment depth in each nucleotide normalized by the number of million reads. To avoid the e�ect of a large span, we used the logarithm

of (coverage+1) as the numerical value of the heatmaps. The horizontal axis is composed of each nucleotide of the 5 sequences, and the

vertical axis is composed of each sample from each individual. The upper part of the heatmap is individual HV08, and the lower part is

comprised of the other individuals.

y
(

j
)

=

{

1 if f
(l)
i

(

j
)

=0

0 if f
(l)
i

(

j
)

=1

where y
(

j
)

= 1/0 is the logical predictor that sample j

belongs to Group+/Group-, The prediction performance of the

current k-mer is evaluated by ASS, an average of sensitivity and

specificity, defined as Equation (4).

ASS=

(

Sensitivity+Specificity
)

2
(4)

If a k-mer achieves ASS ≥ θ1, the corresponding k-mer

is identified to be individual-specific. The individual-specific k-

mers are present in one individual but absent in others. In our

study, θ1 is set as 0.80, which means that the current k-mer alone

can separate the positive individual from the other negative

individuals on the training samples with ASS ≥ 0.8.

The identification of individual-specific k-mers is

implemented by KmerGO, a user-friendly tool to identify

the group-specific sequences on two groups of high-throughput

sequencing datasets, see Wang et al. (2018, 2020) for details.

Module 3: Producing individual-specific
markers

Individual-specific k-mers were aligned to the individual’s

sequencing reads by Bowtie (Langmead, 2010) with mismatch

= 0. Reads perfectly matched by more than two k-mers

were collected and assembled into individual-specific contigs

by MEGAHIT (Li et al., 2015) with default running mode

and parameters. The assembled contigs within an individual

have many overlaps owing to the assembly strategy. The

reason for using assembled contigs instead of 31-mers are: (1)

For the 12 candidates, there are 103-105 individual-specific

31-mers identified, which means that the fingerprints might

be much longer than 31bp. And the longer the fingerprint

is, the more unique the fingerprint would be in a larger

population. (2) For each individual, there are lots of 31

mers with the highest ASS, it is hard to decide which one

to select. And as a biomarker, there should be a sequence

with enough length. Moreover, the k-mer with the highest

ASS does not necessarily have enough generalization. (3)

From the observation of the identified k-mers, one 31 mer

might only contain 1 genetic variant. And in the assembled

sequences, there exist two genetic variants. One example is

shown in HV12 in Figure 8, which means that the longer

the fingerprint is, the more genetic variant information

is contained.
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FIGURE 8

Individual-specific 31-mers (A) and contigs (B) alignments in Cutibacterium acnes, respectively. Each individual has his/her unique genetic

variants, even though multiple individuals match the same region. For example, in the left of (A), HV11 and HV12 both match the middle

318,681bp-319,906bp region, but HV11 has an individual-specific genetic variant of T, and HV12 has an individual-specific genetic variant of A.

The same is found in the left of (B) where individual-specific contigs of HV06 and HV11 both align at position 318,983bp-319,104bp, but only

HV06 has specific genetic variants at fixed position 318,989 with a base mutation of C.
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FIGURE 9

The ROC curve and AUC values were obtained from 6-fold cross-validation using the RPKM threshold of HV08’s fingerprint. The classifier

achieved a mean AUC value of 0.9947 on the validation data.

First, we only kept the contigs with sufficient abundance, in

our study, of greater than 0.01 RPKM.

Second, among the remained contigs, we use the

classification performance of each contig on the training set

to evaluate its ability to separate the corresponding individual

from others and determine one contig as the fingerprint marker

of the current individual. In detail, for each contig of each

individual, we attempted to find an abundance RPKM threshold

of the fingerprint to discriminate one particular individual

from others. The training set is randomly divided for 6-fold

LOOCV (Leave One Out Cross-Validation). Using abundance

in RPKM of each contig as the only feature, AUC (Area Under

Curve) on testing data is calculated. The contig with the

largest AUC value is selected as the fingerprint marker of the

current individual.

Thirdly, for the selected fingerprint, we set a step

size of 0.001 to plot a ROC curve during one iteration

of 6-fold LOOCV. The optimal threshold for each ROC

curve is determined as the closest point to the perfect

performance point ([Sensitivity, 1 − Specificity] = [1, 0]).

The optimal thresholds among 6-fold LOOCV are averaged

as the optimal abundance threshold for the fingerprint of the

current individual.

Module 4: An individual-identifying decision
tree

The contig with optimal abundance threshold can separate

its host from the other individuals as a fingerprint. However, it

only works for separating one corresponding individual from

other candidates. Therefore, a decision tree is designed to

identify each individual combined with the fingerprints of all of

the candidates.

A decision tree is a tree-like structure with branches that

represent decision-making steps to implement classification and

regression. Each branching node of a decision tree has a clear

decision rule which is easy to read and interpret. Therefore,

in this study, using the abundance of individual-specific

fingerprints as decision rules in each node, a decision tree is

designed to determine “the host of unknown samples in the

candidate population” to implement individual identification.

That is, a series of sub-decisions are usually made: “Does

the sample to be identified belong to individual 1 with the

individual1-specific fingerprint?”, if yes, the tree ends the

decision, if not, the next decision is made, “Does the sample

to be identified belong to individual 2 with the individual2-

specific fingerprint?” ...... until the leaf node in the decision tree

is reached. Each node inside the decision tree is required to select
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FIGURE 10

The graph shows the result of using microbial fingerprints as features to classify individuals with a decision tree. The dark gray node in the center

of the decision tree is the root node, representing all unlabeled samples. The other colored leaf nodes represent all individuals.

an attribute, the abundance (RPKM) of a certain individual’s

fingerprint, to identify the individual as the corresponding host

of the input skin microorganism sample.

The attribute order to be selected in the decision tree to

identify the host in the candidate individuals is determined by

Equation (5),

a∗= argmin
a ǫ A

Giniindex (D,a) (5)

and the attribute a∗ means the individual that currently should

be identified, where A is the candidate individuals (attributes)

set. And Giniindex (D, a) is defined in Equation (6),

Giniindex (D,a)=
V
∑

v=1

|Dv|
|D| Gini

(

Dv
)

(6)

where V is the number of all decision nodes, and v is the vth

decision node. Dv is the subset of D whose RPKM values are

more than a threshold,D is the current sample set, andGini
(

Dv
)

is defined in Equation (7).

Gini
(

Dv
)

=
|Y|
∑

k=1

∑

k
′
6=k

pkpk′=1−
|Y|
∑

k=1

p2k (7)

And pk(k = 1, 2, . . . , |Y|) is the percentage of all samples of

individual k, |Y| is the number of individuals in the dataset Dv.

The smaller the Gini (D), the higher the purity. The

individual that minimizes the Gini index is the optimal one for

the following division.

After determining the individual to be decided, the decision

tree uses an individual-specific fingerprint to perform a simple

decision rule: “If the RPKM value of someone’s fingerprint in

the sample to be classified exceeds its threshold, the sample is

assigned to that individual, otherwise it does not” to determine

whether the unknown sample is from that individual.

Each branching point of the tree corresponds to each

fingerprint, and the two branches represent whether the input

sample has the abundance higher or lower than the threshold for

the current fingerprint. The root node contains all individuals

and each leaf node represents each individual. The construction
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FIGURE 11

The confusion matrix shows the result of using microbial fingerprints as features to classify individuals with a decision tree. The row and column

in the confusion matrix represent the label identified by the decision tree and the authentic label of samples, respectively. The sum of each

column is the actual number of samples of this individual. The purple blocks on the diagonal represent the samples that have been correctly

classified. The last row and the last column in the matrix are the recall and precision, respectively. Darker color correlates with higher accuracy

of the classification.

of the decision tree was implemented in the Python sklearn

package (Pedregosa et al., 2011). Metagenomic data from an

unknown individual was aligned to the fingerprint contigs of

all the candidates, and the corresponding contig abundances in

PRKM were input into the decision tree. Using these individual-

specific DNA microbial fingerprints and their corresponding

thresholds as decision rules in branches of the tree, the unknown

microbial skin sample is assigned to its host.

Results

Data description and preprocessing

In our experiment, we use the dataset from iHMP (Oh

et al., 2014, 2016), composed of 616 metagenomic sequencing

samples from skin microbial communities collected at 3 time

points from 17 skin sites of 12 healthy individuals (hereinafter

termed HV01-HV12). The 3 time points start at (T1). The

second time point starts about 2 or 3 years later (T2) and

a third about 5 weeks later after T2 (T3). Seventeen skin

sites characterized physiologically as dry, moist, or sebaceous,

include the following: antecubital fossa (Ac), alar crease (Al),

back (Ba), cheek (Ch), external auditory canal (Ea), forehead

(Fh), hypothenar palm (Hp), inguinal crease (Ic), interdigital

web (Id), manubrium (Mb), occiput (Oc), popliteal fossa (Pc),

plantar heel (Ph), retroauricular crease (Ra), toenail (Tn), toe

web space (Tw), and volar forearm (Vf). Most symmetric sites

were collected on the right side; only 52 were collected on the

left. The metagenomic data were sequenced with 2 × 101bp

pair-end reads by Illumina HiSeq. A detailed description can be

found in Oh’s studies (Oh et al., 2014, 2016).

The scatter plot of the read number distribution for each

sample is given in Figure 2A. Ten samples with extremely

low sequencing depth, fewer than 100,000 reads in our case,

were removed. Then 107 samples from three sites, plantar

heel, toenail, and toe web space, were removed because their

microbiomes are strongly related to living habits and affected

by living environment and only shared a few markers with

other body sites, according to a previous study (Schmedes et al.,
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2017). In total, 499 samples remained with which to perform the

following analysis, and they are listed in Supplementary Table 1.

Removing data of low sequencing depth helps us to identify

high-quality individual-specific k-mers. Figure 2B shows the

difference in ASS values of the detected individual-specific k-

mers before and after data filtering for HV08. Average Sensitivity

and Specificity (ASS) measures the discriminatory ability of

each k-mer to separate the positive from the negative (see

Methods). After filtering, the ASS value of individual-specific

k-mers improved from 0.85 to 0.91 and is thus more convincing.

The experiment design and processing steps are shown in

Figure 3. The 499 samples from 17 body sites of 12 individuals

are divided into the training set and the testing set randomly

with a 7:3 ratio. Based on the identified individual-specific k-

mers by KmerGO (Wang et al., 2020), the individual-specific

contigs are assembled based on reads containing the individual-

specific k-mers. The contig with a determined abundance

threshold is set as a fingerprint for each individual, and a

decision tree is constructed for donor identification on the

testing data.

The remaining 499 samples are randomly divided into a

training set and a testing set with a ratio of 7:3 for each

individual. Because of the imbalance between the size of negative

and positive groups, the negative group is randomly under-

sampled to the size of positive groups. The training set is further

randomly divided for 6-fold LOOCV (Leave One Out Cross-

Validation) for optimal parameter determination during the

following experiments.

Detection of individual-specific k-mers

The files passing data filtering were input to detect

individual-specific k-mers. We set k = 31 in this study.

Because the discriminatory ability varies for each individual,

the ASS threshold is set between 0.8 and 0.9, as shown

in Supplementary Table 2. Notably, there are 26,472 31-mers

presents on all body sites for all individuals except for HV06,

which might be called HV06-specifically absent 31-mers.

As an example, HV08 has a total of 42 samples from 14

body sites collected at 3 time points, which were randomly

divided into 30 training samples and 12 testing samples before

the training process. The samples from HV08 are considered

the positive group and the samples of other individuals are

the negative group. Meanwhile, 64 negative samples were

randomly selected from 320 training samples from the other

11 individuals. KmerGO (Wang et al., 2020), our previously

developed group-specific k-mer detection tool, was adopted to

identify the HV08-specific 31-mers. Taking the ASS threshold

as 0.9, during the six round experiments of 6-fold LOOCV

in the training set, there are 70,120, 31,084, 28,599, 23,823,

42,218, and 22,087 HV08-specific 31-mers detected respectively.

This means that any one of these specific 31-mers could

separate HV08 skin samples from the other individuals with

averaged sensitivity and specificity higher than 0.9. When these

specific 31-mers were evaluated in the validation sets, 33,721

(48.09%), 20,356 (65.49%), 25,585 (89.46%), 21,568 (90.53%),

24,340 (57.65%), and 21,422 (96.99%) 31-mers achieved ASS

higher than 0.8, as shown in Figure 4. Among the 6 rounds of

LOOCV, 5 out of 6 achieved an ASS median higher than 0.9,

which means that the specific k-mers identified by KmerGO

had sufficient discriminatory power to identify HV08 from the

other individuals. Next, using ASS ≥ 0.9 as the threshold in

the whole training set, we identified 29115 HV08-specific 31-

mers. Among them, 26,911 (92.43%) 31-mers achieved ASS

≥ 0.8, and 10035 (34.47%) 31-mers achieved ASS ≥ 0.9 in

the testing set, thereby illustrating the significant generalized

performance of the identified individual-specific k-mers. The

identification of specific k-mers for other individuals is given

in Supplementary Table S2. The skin microbiomes of different

individuals have different distinctiveness. HV08,09,10,11 found

the most specific 31 mers with ASS ≥ 0.9. The number of

individual-specific 31-mers varies among different individuals

from 103-104. And 85% of specific 31-mers keep ASS ≥ 0.8 on

the testing set for 9 out of 12 individuals.

Notably, each of the specific 31-mers has enough

discriminatory power to separate the current individual

from the whole candidate group with ASS higher than the set

threshold instead of the combination of the identified 31-mers.

Temporal stability of individual-specific
k-mers

Next, we assessed the temporal stability of individual-

specific k-mers. Still using HV08 as our example, we detected

HV08-specific 31-mers on the sample collected at T1 and tested

it on samples collected at T2 and T3. As shown in Figure 5,

the specific 31-mers detected on T1 exhibit ASS intensively

distributed between 0.88 and 0.96. Specifically, among all 17,505

HV08-specific k-mers on T1, 16,952 (96.7%) achieved ASS

≥ 0.8 at T2, and 16282 (93.0%) achieved ASS ≥ 0.8 at T3,

indicating that the individual-specific 31-mers have significant

temporal stability.

For temporal stability, the other individuals exhibit very

similar ASS tendencies in T2 and T3 with the testing set

in Section Detection of individual-specific k-mers. As shown

in Supplementary Table S2, the HV08, 09, 10, 11, and 12

keep high ASS around 0.9. And HV05 still shows the lowest

temporal stability.

Body site stability of individual-specific
k-mers

Next, we assessed the body site stability of individual-specific

k-mers. As we mentioned in the data description, there are three
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types of skin: dry, moist, or sebaceous, so we divided the data

into two groups for training and testing by stratified sampling

on the three different skin types, therefore, both the training set

and testing set contain three skin types.

Still take HV08 as our example, we detected HV08-specific

31-mers on the sample from group one and tested it on samples

from group two. As shown in Figure 6, there were 22,784 HV08-

specific 31-mers detected on the training dataset with ASS

higher than 0.9. On the testing dataset, 14,650 (43.2%) of them

achieved ASS ≥ 0.9 and 22,509 (98.8%) achieved ASS ≥ 0.8,

indicating that the individual-specific 31-mers have significant

body site independence.

For body site stability, the other individuals exhibit very

similar ASS tendencies on the testing set with the results on

Section Detection of individual-specific k-mers, as shown in

Supplementary Table S2. And HV08,09, 10, 11, and 12 keep high

ASS and HV05 still shows the lowest ASS on the testing set.

Individual-specific contigs as an
individual’s DNA microbial fingerprints

In Module 3, the identified individual-specific 31-mers

were aligned back to the metagenomic sequencing reads,

and reads that were perfectly aligned by more than two k-

mers were kept for assembly. MEGAHIT (Li et al., 2015), a

read assembly tool, was adopted to assemble these reads into

individual-specific contigs. The number of individual-specific

contigs ranged from 14 (HV06) to 22,299 (HV11), as shown in

Supplementary Table 2. We found a significant variation in the

number of individual-specific contigs among the 12 individuals.

For example, HV08 had 29,115 individual-specific 31-mers

assembled into 8,611 contigs with lengths from 203 to 33,760 bp,

whereas HV05 had only 3,549 31-mers assembled into 51 contigs

with lengths from 206 to 596 bp.

The contigs were aligned to reference genomes of

the Bacteria database. Among all the genomes being

aligned, we plotted a proportion-bar figure, as shown in

Supplementary Figure S1. For 5 out of 12 hosts, all of the

individual-specific contigs are only from C. acnes. And for the

other 7 hosts, 50 to 90% of individual-specific contigs are from

C. acnes, and the others are from Lactobacillus crispatus and

Siphoviridae, etc.

Again, taking HV08 as our example, 8,611 HV08-specific

contigs were assembled. The top 5 contigs with the highest

RPKM in HV08 were aligned by all 499 metagenomic skin

samples from the total 12 individuals, and the heatmap is

shown in Figure 7. Each row is a metagenomic skin sample,

which is composed of the coverage of each base in the contig.

The logarithmetics coverage is represented by color. The blue

indicates zero coverage and the yellow indicates high coverage.

The lengths of these 5 contigs are 1,839, 659, 608, 414, and

470 bp, respectively. The coverage of the 5 contigs has the

obvious difference between HV08 and the other 11 individuals,

irrespective of time points and body sites. In a small 87 bp

fragment in contig 1, the coverages of 11 out of 40 samples

from HV07 show non-blue color, which is resulted in the ASS

= 0.9 threshold. However, the length of contig 1 is 1839 bp,

which is much longer than the 87 bp small fragment. Therefore,

if contig 1 is taken as an HV08 fingerprint, the host still can be

identified accurately.

Biological characteristics of
individual-specific k-mers and contigs

Free from reference sequences and sequence alignment, the

individual-specific k-mers are detected only on themetagenomic

sequencing dataset. However, we were curious about the

biological characteristics of the detected individual-specific

k-mers and assembled contigs. Therefore, we aligned the

individual-specific contigs to NCBI genomes (Coordinators,

2016) by BLAST (Altschul et al., 1990). Interestingly, we found

that 55,343 (83.68%) of individual-specific contigs from the

12 individuals could be aligned to different regions of the

C. acnes genome. This finding is consistent with the fact

that the anaerobic type of C. acnes is most abundant on the

skin in the whole body with distinct microbiota. Meanwhile,

C. acnes manifests in individual-specific genetic variants in

different people, and, as noted previously here, it has already

been used as a feature in published work (Schmedes et al.,

2017; Woerner et al., 2019). Moreover, we made a micromesh

observation of contigs and k-mers alignments to C. acnes

genomic reference sequence NC006285_1 with IGV (Robinson

et al., 2011). We found highly consistent genetic variants

over the whole body within individuals and distinct genetic

variants between individuals. In Figure 8A, individual-specific

31-mers obtained from Module 2 are aligned to C. acnes

with highly consistent genetic variants specific to HV04, 09,

11, and 12. Even when multiple individuals match the same

sequence, it is possible to distinguish between them using

their individual-specific genetic variants. Individuals HV09

and HV12 both match to 1,390,177bp−139,022bp, but HV12

has specific genetic variants at fixed positions 1,390,207 and

1,390,208 with a base mutation from T to G and from G to C,

respectively, and a base deletion at position 1,390,205. HV09

has specific genetic variants at fixed position 1,390,196 with

a base mutation from A to C. Figure 8B shows two genomic

regions from the alignments of individual-specific contigs. The

right subplot clearly shows that genetic variants of HV02

contigs are significantly different from those of HV09 contigs

at 1,818,304–1,818,672bp. In the left subplot, some individual-

specific contigs from both HV06 and HV11 are aligned to

318,681– 319,906bp, but HV06 has a specific genetic variant at
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position 318,989 with a base mutation from T to C, while HV11

does not.

An identifier for the twelve individuals
based on DNA microbial fingerprints

A fingerprint has greater utility if it works according to

a simple rule, instead of a complex classifier combined with

many features. Therefore, we used RPKM of an individual-

specific contig as a fingerprint to identify individuals. For

each individual, we selected an identified specific contig that

could be aligned to a certain genomic region of C. acnes

with proper length and abundance. The contig for each

individual is given in Supplementary material. For fingerprint

contig(s) for each individual, a proper threshold of contig

abundance (RPKM) is determined by 6-fold LOOCV. Using

HV12 as an example, a contig from C. acnes 1,373,635–

1,373,596bp with one nucleotide insertion at position 1,373,624

is selected using abundance RPKM = 173 as the threshold.

For an unlabeled sample, if the abundance RPKM of this

contig is higher than 173, then the sample originates from

HV12 with high probability. Still using HV08 as an example,

the fingerprint is 23,786–25,608bp in C. acnes with 39

nucleotide variants. The threshold of HV08’s fingerprint

is determined as RPKM = 37 on the training set and

validated with 6-fold LOOCV. The ROC curve and AUC

values are shown in Figure 9. The mean value of AUC on

validation data during the 6-fold LOOCV is 0.9947. The AUC,

fingerprints, and thresholds of each individual are given in

Supplementary Table 2.

Based on the RPKM threshold of each individual’s

fingerprint, we built a decision tree to identify each individual.

The decision tree implements a branch judgment based on

a simple decision rule, and each branch was decided by a

threshold of one individual’s fingerprint. For example, the

samples from HV08 are only identified by the abundance

of HV08’s fingerprint, the contig from 23,786–25,608 bp in

C. acnes with 39 nucleotide variants with RPKM greater

than 37.

The structure and the decision rule of the decision tree

are shown in Figure 10. From the upper half of the tree, we

observed that HV02, 03, 06, 07, 08, 09, 10, 11, and 12 are

identified with high precision and recalled with a single decision

rule, respectively. Other individuals are identified after two

decision nodes. For example, the samples from HV01, 05 are

identified with their fingerprint after HV02, 03, 04, 06, 07, 08,

09, 10, 11, and 12. The details of individual fingerprints are

shown in the tree nodes, including the fingerprint’s position

and the number of genetic variants in the genome of C. acnes,

the abundance threshold of the fingerprint, and the precision

and recall.

The 149 testing metagenomic sequencing data from the

whole-body skin of the 12 individuals were aligned to

the 12 fingerprint contigs, and the corresponding contig

abundances in PRKM were input into the decision tree.

Using these individual-specific DNA microbial fingerprints

and their corresponding thresholds as decision rules in

branches of the tree, most of the unknown microbial skin

samples are assigned to their host. Seven individuals achieved

100% precision with their fingerprints, and others achieved

more than 90% precision. And the recall rate is between

73 and 97%. And 35 samples cannot be labeled in the

decision tree.

Predicting precision and recall for each individual is shown

as a confusion matrix in Figure 11. The row and column in

the confusion matrix represent the identified label and the true

label of the samples, respectively. The number in each block

represents the number of samples, the true label of which

is the corresponding column identified as the label of the

corresponding row. The proportion of these samples out of all

samples is shown below. The purple blocks on the diagonal

are the samples that have been correctly classified to their

donors. The green blocks in the last row and the last column

are the corresponding recall and precision for each individual,

respectively. As the color becomes darker, the performance of

the classification increases. The precisions and recalls of HV07,

08, 10, and 12 are all higher than 90%. The precision of HV02,

03, 05, 08, 10, 11, and 12 is up to 100%.

To test how the model performs when the sample does

not belong to any individuals in the training data, we

downloaded 10 skin metagenomic sequencing data (listed in

Supplementary Table S3) outside of the 12 individuals. And for

9 out of 10 samples, there are no reads that can map to any of

the 12 fingerprints, so the samples are classified to the unlabelled

node by the decision tree. And for only one sample, the reads

map to the HV07’s fingerprint with RPKM = 2.2, which is far

smaller than the threshold of PRKM= 48, therefore, the sample

is also classified as the unlabelled node.

Discussion

Our study offers a novel skin microbial fingerprint

identification framework. We verified the assumption that an

individual’s whole-body skin shares some consistent genetic

variants. With the proposed framework, individual-specific,

temporally stable, and body site-independent genetic variants

in skin microorganisms were detected, which could be used as

“fingerprints” to identify their donors.

Free from any reference sequences, the proposed model

obtained temporally stable, body site-independent individual-

specific fingerprints based only on metagenomic sequencing

data. For the metagenomic sequencing samples from 17 skin

sites at 3 time points of 12 healthy individuals’ skin, we
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identified fingerprints for all 12 individuals. Furthermore, 10

out of 12 individual-specific fingerprints could be aligned

to C. acnes. Using the abundance (RPKM) threshold of

individual-specific contigs, 7 out of 12 individuals were

identified with almost 100% accuracy, and the total accuracy

was 89.78%.

Fingerprints with genetic variants offer a nucleotide-

level resolution to understand the skin microbial

community. Because the large-scale metagenomic

sequencing dataset from multiple body site of a large

population is not available, our study only made initial

exploration limited to 12 individuals. Therefore, the dataset

from a larger population is required to obtain a more

convinced conclusion.

Furthermore, the high consistency of most genetic variants

for each tested individual located in C. acnes, the large

between-individual variability, and the high within-individual

genetic consistency, even across different body sites, allow for

identifying individual-specific skin microbial fingerprints, thus

providing a valuable reference point for forensic scientists and

skin biologists with potential applications in both forensic and

biological contexts.
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