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Namibia’s Etosha National Park (ENP) is home to many different animals such as lions,
jackals, hyenas, zebras, elephants, etc. Each year, grazing animals are infected and die from
anthrax caused by the bacteria Bacillus anthracis. This increases the number of carcasses in
the park, which serve as food for scavengers such as jackals. This study investigates the
interplay between anthrax transmission in zebras and the scavenging of zebra carcasses in
ENP, using a deterministic mathematical model to describe the population dynamics. We
strive to answer the following research questions: Under what conditions can the presence
of scavengers control anthrax outbreaks in zebra populations? Does carcass production by
anthrax help or hurt scavengers in the long term? Standard qualitative analysis techniques
distinguished outcomes (stable equilibria) using reproduction numbers as threshold
quantities. We found that, when scavengers feed on anthrax-laden carcasses, the scav-
engers help the zebras, by eliminating potential infection zones for the zebras. In this way
they reduce anthrax’s spread by orders of magnitude. We also identify conditions under
which the presence of anthrax benefits the scavengers, in terms of death-to-birth ratios for
zebras, scavengers and anthrax.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the 1960s, data collection regarding anthrax outbreaks in ungulates and other mammals began in Etosha National Park
(ENP), Namibia. The national park is about 23,000 km2 and has a single wet and dry season each year, with rain from
November to April (Bellan et al., 2012). From 1964 to 1992, about 3000 carcasses were confirmed or suspected cases of
anthrax in ENP among 11 different herbivorous species, two of which are zebras, which account for themost deaths (Lindeque
& Turnbull, 1994). Carnivores are less likely than herbivores to contract anthrax. From 1975 to 2012, one jackal, three lions and
nine cheetahs died from anthrax (Bellan et al., 2012). The seasonal peak of anthrax cases for elephants occurs in November at
the end of the dry season, whereas the seasonal peak for plains ungulates occurs at the end of the rainy season in March
(Lindeque& Turnbull, 1994). Today, ENP remains one of themost-documented continuous sources of anthrax dynamics in any
natural system (Carlson et al., 2018). The carrion that is provided by the anthrax deaths of zebras feed many different
scavenger species in ENP, such as black-backed jackals (Canis mesomelas), spotted hyenas, white-backed vultures, lappet-
faced vultures and others (Bellan et al., 2013).
. Mackey).
unications Co., Ltd.
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Anthrax is a zoonosis caused by Bacillus anthracis (BA) and mainly infects ungulates such as zebras, springbok and
wildebeest (Carlson et al., 2018). BA exists in two forms. One is a vegetative form, which is not resistant in harsh conditions,
such as an acidic environment. BA can also be found in the form of infectious spores, which are resistant to harsh conditions
and can survive for long periods of time, waiting to infect a host (Hugh-Jones & De Vos, 2002). The bacteria can enter an
animal through a skin abrasion, inhalation or digestion and leads to death in wildlife (Zidon et al., Saltz).

A study by Turner et al. (Turner et al., 2016) gives insight to the different pathogen sources and transmission pathways of
infectious agents such as BA in grazing animals. After tracking pathogen concentrations at carcass sites andwaterholes for five
years, they found that carcass sites are more likely to be important sources of hostepathogen contacts than water sources
(Turner et al., 2016). Furthermore, although BA concentration at carcass sites in soil and on grasses decays exponentially, the
bacteria can still be detected in the soil four years after death at high enough concentrations for a grazing animal to receive a
lethal dose (Turner et al., 2016). Previous studies (Bellan et al., 2013; Carrasco-Garcia et al., 2018) suggest scavengers could
help eliminate these pathogens from the environment that affect ungulates and could be a major factor in limiting the speed
at which the disease can spread.

Houston et al. (Houston& Cooper, 1975) studied the digestive tract of the whiteback griffon vulture and the role it plays in
disease transmission inwild ungulates. In the study, pH values were measured in different organs, and the digestive tract and
stomach were found to be highly acidic. The authors found that, while the vegetative form of BA was killed in the digestive
tract, the highly resistant spores survived (Houston & Cooper, 1975). Other studies also support the survival of BA spores in
the digestive tract of scavengers (Hugh-Jones & De Vos, 2002; Lindeque & Turnbull, 1994). This suggests that if the anthrax-
laden carcasses are detected by scavengers before sporulation takes place, scavengers could help eliminate the spread of
anthrax in wildlife. In this way, the scavengers generally only benefit zebras, since, of the scavenger species in ENP, only the
spotted hyena has been observed to hunt (in packs) a living zebra, and research has found that spotted hyenas avoid hunting
zebras in central ENP, and hunt them in eastern ENP only when the zebras are numerous (Trinkel, 2010).

Saad-Roy et al. (Saad-Roy et al., 2017) developed a deterministic mathematical model using a system of differential
equations to describe anthrax transmission in animal populations. Their general model contained susceptible animals,
infected animals, infected carcasses and BA spores in the environment as the state variables. They considered two special
cases of their model. In one case, the animals were herbivorous livestock; in the other case, the animals were carnivores. A
result from their herbivore model showed that a vaccination policy or an animal-carcass-removal policy can be used to
eradicate anthrax. However, this would largely depend on the associated costs of vaccination programs and carcass removal. It
is nearly impossible to vaccinatewildlife animals, sowe are interested in determining whether scavengers can be a significant
natural means of anthrax removal. In particular, we shall study the extent to which scavengers can interrupt anthrax
transmission by removing carcasses (leaving aside for simplicity other sources of BA spores in the zebra habitat).

We develop a deterministic model using ordinary differential equations describing how anthrax affects the population
dynamics of zebras, zebra carcasses and scavengers. While scavengers benefit from the presence of anthrax (because it
provides themwith a food source), anthrax is disadvantaged by the presence of scavengers that help to eliminate the presence
of BA by feeding on zebra carcasses. The two scavengers we consider are jackals and vultures. We will compare the basic
reproduction number of anthrax in the presence of jackals and in the presence of vultures to see if one scavenger is better at
eliminating anthrax.

This paper is organized as follows: In Section 2 the model is developed. In Section 3 the model’s equilibria are identified,
along with conditions on their existence and stability (local and global). In addition, the basic reproductive numbers for
anthrax are derived, and Section 4 derives the demographic numbers for the scavengers. We end with a discussion of results
and conclusion.
2. Model development

The populations considered in this model are living zebras, zebra carcasses due to natural death, zebra carcasses due to
anthrax, and scavengers (z, u, c, j, respectively). The zebra population grows logistically and is removed by natural death (mz)
or by disease-induced death (acz) from grazing near an anthrax-infected carcass site (Turner et al., 2016). The mass-action
term used to describe zebras’ anthrax deaths (implicitly, their encounters with anthrax-laden carcasses) draws on an
assumption of homogeneous mixing, since the zebras in ENP travel in nomadic family groups, and grazing areas include
carcass sites. The carcasses are either naturally decomposing at a rate r or are being eaten by scavengers at a rate of a.
Scavengers do not attack living zebras; they only scavenge on the zebra carcasses. In this model, scavenger survival depends
on the number of carcasses available, bjðuþ cÞ, and scavengers die naturally at a rate of d.

z0 ¼ rz
�
1� z

K

�
� mz� acz (1)

u0 ¼ mz� ru� aju (2)
c0 ¼ acz� rc� ajc (3)
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j0 ¼ bjðuþ cÞ � dj (4)
Scavengers eating anthrax-laden carcasses are less likely than herbivores to contract the disease (Bellan et al., 2012).
Therefore, we assume that scavengers will not die from anthrax. Moreover, as previously noted, we consider that scavengers
do not attack living zebras. To simplify the foodweb for analysis, we take zebra carcasses as representative of scavengers’ food
source and thus model the scavengers as obligate. We assume that scavengers cannot distinguish between a healthy or
infected carcass. We also assume that infected zebra carcasses c are representative of (proxies for) all BA spores in the study
region. Model parameters are summarized in Table 1.

3. Equilibrium analysis

3.1. Existence of equilibria

In this section, we identify the equilibria in our model (it turns out there are four) and provide the existence condition for
each one. The detailed calculations for this section are in Appendix A.

We can see that E0 ¼ (0, 0, 0, 0) is an equilibrium because equations (1)e(4) are satisfied when (z* ¼ 0, u* ¼ 0, c* ¼ 0,
j* ¼ 0), which represents the extinction equilibrium. We also have the equilibrium

E1ðz*;u*; c*; j*Þ ¼
�
K
h
1� m

r

i
;
m

r
K
h
1� m

r

i
;0;0

�
; (5)

which exists when m < r. E1 is the disease-free equilibrium in the absence of scavengers. The equilibrium
E2ðz*;u*; c*; j*Þ ¼
�
K
h
1� m

r

i
;
d
b
;0;

1
a

�
bm
d
z*þ � r

��
; (6)
which exists when m < r and bmz*þ > rd, is the disease-free equilibrium in the presence of scavengers.
The equilibrium

E3ðz*;u*; c*; j*Þ ¼
�r
a
;
m

a
;
r
aK

h
K
�
1� m

r

�
� r

a

i
;0

�
; (7)

which exists when m < r and K
�
1� m

r

�
> r

a, is endemic for anthrax in the absence of scavengers. Finally, the equilibrium E4 is

E4ðz*;u*; c*; j*Þ ¼
�
K
�
1� ad

br

�
;
m

a
;
d
b
� m

a
;
a
a
K
�
1� ad

br

�
� r

a

�
(8)

and exists if and only if r
a<K

�
1� ad

br

�
and ad

bm>1. (These conditions mean that scavengers reproduce well in the presence of
anthrax and anthrax spreads well in the presence of scavengers, respectively, as will be seen in later sections through the lens
of reproductive numbers.) This equilibrium is endemic for anthrax in the presence of scavengers.

3.2. Basic reproductive numbers

The basic reproductive number (BRN) is defined as the average number of secondary infections generated by one infected
individual in a population of susceptible individuals, which can be calculated using the next-generation-operator method as
in (Brauer & Castillo-Chavez, 2011). When the BRN is less than one, the disease-free equilibrium is stable; when the BRN is
greater than one, the endemic equilibrium is stable. In our model, we have two disease-free equilibria: one without scav-
engers (E1) and one with scavengers (E2). The BRN of anthrax in the absence of scavengers is RZ ¼ aKð1�mÞ

r , where the average
infection rate is aKð1�mÞ, m ¼ m/r, and the average duration of infection is 1

r. The BRN of anthrax in the presence of
Table 1
Parameter definitions. Estimates use time units of weeks (see Table 4).

Symbol Definition Units

K carrying capacity ðzebrasÞ
R intrinsic growth rate of zebras 1/time
М natural zebra death rate 1/time
A rate zebras come into contact with infected carcasses ðtime,zebrasÞ�1

Р natural decomposition rate of carcasses 1/time
А rate scavengers come into contact carcasses to eat ðtime,scavengersÞ�1

B birth rate of scavengers ðtime,zebrasÞ�1

D death rate of scavengers 1/time
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scavengers is RJ ¼ ad
bm . Here

ad
b is the average infection rate and the average length of infection is 1

m. How these two component
BRNs fit into an overall measure of anthrax persistence will be deferred until the equilibrium stability analysis is complete.

3.3. Local stability analysis

To determine the local stability conditions for each equilibrium, we calculate the Jacobian matrix of our model and
evaluate the Jacobian at each equilibrium point. The equilibrium is stable if and only if the real part of the eigenvalues of the
Jacobian matrix are negative. Therefore, we find the conditions that are required to have negative eigenvalues. The Jacobian
matrix of our model is

J ¼

2
66666664

r � 2r
K

z� m� ac 0 �az 0

m �r� aj 0 �au

ac 0 az� r� aj �ac

0 bj bj buþ bc� d

3
77777775
The Jacobian evaluated at the extinction equilibrium is

JðE0Þ ¼

2
664
r � m 0 0 0
m �r 0 0
0 0 �r 0
0 0 0 �d

3
775
If the death rate is greater than the birth rate, i.e., m > r, then the extinction equilibrium is locally asymptotically stable.
The Jacobian evaluated at E1 is

JðE1Þ ¼

2
666666666666664

m� r 0 �aK
�
1� m

r

�
0

m �r 0
�am

r
K
�
1� m

r

�

0 0 aK
�
1� m

r

�
� r 0

0 0 0
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r
K
�
1� m

r

�
� d
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777777777777775

/

2
666666664

m� r �aK
�
1� m

r

�
0

0 aK
�
1� m

r

�
� r 0

0 0
bm
r
K
�
1� m

r

�
� d

3
777777775
¼ ĴðE1Þ
The arrow above represents the property of determinants that, for purposes of determining eigenvalues, the 4� 4 Jacobian
matrix can be decomposed to the diagonal element (and eigenvalue) � r and a 3 � 3 matrix since the second column in the
4 � 4 has zeros except on the diagonal.

The eigenvalues are l1 ¼ �r, l2 ¼ m � r, l3 ¼ aK
�
1� m

r

�
� r, and l4 ¼ bm

r K
�
1� m

r

�
� d. Notice that l1 is always less than

zero, l2< 0 if and only if m< r, l3< 0 if and only if z* < r
a, and l4 < 0 if and only if bmz*< dr. Therefore, E1 is locally asymptotically

stable if and only if z* < r
a and bmz* < dr. We rewrite the local stability conditions in terms of RZ and RJ: RZ < 1 and RZ < RJ.

The Jacobian evaluated at E2 is
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JðE2Þ ¼

2
66666666666666664

m� r 0 �aK
�
1� m

r

�
0

m
�bm
d

z* 0
�ad
b

0 0 z*
�
a� bm

d

�
0

0
b
a

�
bm
d
z* � r

�
b
a

�
bm
d
z* � r

�
0

3
77777777777777775

/

2
66666664

m� r 0 0

m
�bm
d

z*
�ad
b

0
b
a

�
bm
d
z* � r

�
0

3
77777775

/

2
66664

�bm
d

z*
�ad
b

b
a

�
bm
d
z* � r

�
0

3
77775 ¼ ĴðE2Þ
Thus, two of the eigenvalues of JðE2Þ are l1 ¼ z*
�
a� bm

d

�
and l2 ¼ m � r. Notice that

l1 ¼ z*
�
a� bm

d

�
<0 ⇔ a<

bm
d

⇔
ad
bm

<1
and l2 ¼ m � r < 0 if and only if m < r. The two-dimensional RoutheHurwitz criterion determines if the other two ei-
genvalues of the Jacobian matrix of E2 have negative real parts without having to find the eigenvalues. Considering thematrix
ĴðE2Þ, the eigenvalues have negative real parts if trð̂JðE2ÞÞ<0 and detð̂JðE2ÞÞ>0 (Brauer& Castillo-Chavez, 2011). The trace and
determinant of ĴðE2Þ are

trð̂JðE2ÞÞ ¼
�bm
d

z* and detð̂JðE2ÞÞ ¼
bm
d
z* � r:

Notice that the trace is always negative, and the determinant is negative if and only if bmz* > rd. Recall bmz* > rd is an ex-
istence condition for E2. Therefore, E2 is locally asymptotically stable if and only if ad

bm<1. Recall that RJ ¼ ad
bm. When RJ < 1,

anthrax will diminish in the presence of scavengers, since E2 is locally asymptotically stable.
The Jacobian evaluated at E3 is
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JðE3Þ ¼

2
666666666666664
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Two of the eigenvalues are

l1 ¼ �r and l2 ¼ bm
a

þ br
aK

h
K
�
1� m

r

�
� r

a

i
� d:

Notice l1 is always negative, and l2 is negative if and only if d> bm
a þ br

aK

h
K
�
1� m

r

�
� r

a

i
. We find the trace and determinant and
use the second-order RoutheHurwitz criterion to determine the sign of the remaining eigenvalues of ĴðE3Þ. The trace and
determinant are

trðJðE3ÞÞ ¼ �rr
aK

and detðJðE3ÞÞ ¼ r
h
r
�
1� r

aK

�
� m

i
The trace is always less than zero, and the determinant is
detðJðE3ÞÞ ¼ r
h
r
�
1� r

aK

�
� m

i
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a
<K

h
1� m

r

i (9)
Recall (9) is the existence condition for E3. Hence E3 is locally asymptotically stable (LAS) if and only if
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>K

�
1� ad

br

�

We rewrite the local stability conditions in terms of RZ and RJ: mRJ þ 1�m
RJ

>1, where m ¼ m
r .

The Jacobian evaluated at E4 is

JðE4Þ ¼

2
666666666664
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Let A ¼ r
�
1� ad

br � 2
Kz

*

�
. The characteristic equation is

pðlÞ ¼ l4 þ ðaz* � AÞl3 þ
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a
ad
bm

� az*
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Aþ m
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1� ad

bm

���
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þ
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bm

Aþ m

�
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bm

� 1
�
z*
�
abj* þ a2z*

��
l

þ
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� Abj*amz*

�
ad
bm

� 1
��

¼ 0:

(10)
Now,

A ¼ r
�
1� ad

br
� 2
K
z*
�

¼ r
�
ad
br

� 1
�

< 0 since
ad
br

<1:
We use the fourth-order RoutheHurwitz criterion to determine whether the roots of the polynomial have negative real
part. The RoutheHurwitz criterion holds without any additional conditions (as shown in Appendix B); therefore, E4 is locally
asymptotically stable whenever it exists.

A visual representation of the stability analysis is shown in Figs. 1 and 2. The existence and stability conditions for each
equilibrium are summarized in Table 2 and can be rewritten in terms of RZ, RJ andm as in Table 3. As can be seen most clearly
in Fig. 2, in order for anthrax to persist, both RZ and RJ must exceed 1. In that sense, wemay say R0 ¼max(RZ, RJ), although the
actual mean number of secondary anthrax infections per infected carcass at the edge of an outbreak is given by whichever of
the two is indicated by the presence or absence of scavengers.

3.4. Global stability analysis

A partial global stability analysis is completed for the full four-dimensional system.We first consider the reduced systems.
It is easiest to build up to the global behavior of the full model from the subsystems involving anthrax but no scavengers. We
look at global stability in the ZC and ZUC systems, respectively.We show that the equilibria in both systems are globally stable,
that is, the solutions of the system are tending towards an equilibrium regardless of the initial conditions.

3.4.1. ZC system global stability analysis
The ZC system is the following:

z0 ¼ rz
�
1� z

K

�
� mz� acz (11)
Fig. 1. Stability Regions. The regions of stability are given by the threshold conditions RZ ¼ 1, RJ ¼ 1, RZ ¼ RJ and mRJ þ 1�m
RZ

¼ 1, where m ¼ 0.5 in this plot. If Ei
(i ¼ 1, 2, 3, 4) is present, then it means that equilibrium Ei exists in that region. The � after the Ei means that it is not LAS in that region, whereas þmeans that
equilibrium Ei is LAS.
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Fig. 2. Stability Regions with descriptions. Only the regions where there is a change in which equilibrium is stable are distinguished. In addition, a short
description of the equilibrium is given.

Table 2
Summary of equilibria and local stability in terms of the parameters.

Equilibrium Interpretation Existence Locally
Asymptotically
Stable

E0(0, 0, 0, 0) extinction Always m > r
E1
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Table 3
Summary of equilibria and local stability in terms m ¼ m

r
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r
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Table 4
Parameter table with values. Units in

1
week

except as noted. The three parameters for scavengers are b, d, and a. A subscript of j is the parameter value for
jackals and a subscript of v is for vultures.

Symbol Description Value Source

K zebra carrying capacity ðzebrasÞ 13000e15000 (Zidon et al., Saltz)
R intrinsic growth rate of zebras 3.06849 � 10�3 This study
М natural zebra death rate 7.67123 � 10�4 This study
A rate zebras come into contact with infected carcasses ðweek,zebrasÞ�1 1.1433 � 10�5 This study
Р natural decomposition rate of zebra carcasses 0.12727 Jennelle et al. (2009)
aj rate jackals come into contact with carcasses to eat ðweek,jackalsÞ�1 0.03608 This study
bj birth rate of jackals ðweek,zebrasÞ�1 0.051811 This study
dj death rate of jackals 4.808 � 10�3 Rhodes et al. (1998)
av rate vultures come into contact with carcasses to eat ðweek,vulturesÞ�1 0.01927 Houston and Cooper, (1975)
bv birth rate of vultures ðtime,zebrasÞ�1 0.00959 This study
dv death rate of vultures 9.615 � 10�4 Cardona et al. (2008)
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c0 ¼ acz� rc (12)
This system has three equilibria

E0ð0;0Þ; E1
�
K
h
1� m

r

i
; 0

�
; and E2

�r
a
;
r
aK

h
K
h
1� m

r

i
� r

a

i �
To determine global asymptotic stability (GAS) of the equilibria we use the Poincar�eeBendixson Theorem. First we show
that there are no limit cycles by Dulac’s Criterion.

Let bðz; cÞ ¼ 1
zc2C1 in D ¼ fðz;cÞ2R2 : z;c >0g. Then

v

vz

�
1
zc
,z
h
r
�
1� z

K

�
� m� ac

i�
þ v

vc

�
1
zc
,c½az� r�

�
¼ �r

cK
<0

in D. Therefore, by Dulac’s Criterion there are no limit cycles in D.
To show that the solutions are bounded, a bounding box is found. The solutions are bounded between the c-axis, z-axis and

the line

zþ c ¼ K
�
1� m

r

�h
1þ r

4r

�
1� m

r

� i
(13)

when E2
�
r
a;

r
aK

h
K
�
1� m

r

�
� r

a

i �
exists.

To obtain the line in (13), notice that

ðzþ cÞ0 ¼ rz
�
1� m

r

�
� mz� rc<0

when
1
r

h
rz
�
1� z

K

�
� mz

i
< c:

Let gðzÞ ¼ 1
r

h
rz
�
1� z

K

�
� mz

i
. Therefore, if c > g(z) then (zþ c)0 < 0. Hence everything above g(z) will decrease. Note that g(z) is� h i �
a parabola, where E0(0, 0) and E1 K 1� m
r ;0 are the z-intercepts and the vertex is�

K
2

�
1� m

r

�
;
rK
4r

�
1� m

r

�2 �
We add the z-component of E1 and the c-component of the vertex to get the line (13). Hence solutions are bounded; by the
Poincar�eeBendixson Theorem, all solutions tend toward an equilibrium point, so, for m < r.

∙ E0(0, 0) is unstable
∙ E1

�
K
h
1� m

r

i
;0

�
is GAS iff K

�
1� m

r

�
< r

a
∙ E2

�
r
a;

r
aK

h
K
�
1� m

r

�
� r

a

i �
is GAS iff K

�
1� m

r

�
> r

a.
3.4.2. ZUC system global stability analysis
The ZUC system is

z0 ¼ rz
�
1� z

K

�
� mz� acz (14)

u0 ¼ mz� ru (15)
c0 ¼ acz� rc: (16)
This system has three equilibria

E0ð0;0;0Þ; E1
�
K
h
1� m

r

i
;
m

r
K
h
1� m

r

i
;0

�
; and E2

�r
a
;
m

a
;
r
aK

h
K
h
1� m

r

i
� r

a

i �
Notice that (14) and (16) decouple from (15), so we study those first. We already studied the ZC system in section 3.4.1, and
we know all solutions at any initial conditions tend toward some equilibrium, regardless of the parameter values. We use a
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result by Thieme (Thiemea; Thiemeb), to say that the solutions of the ZUC system are asymptotic to the solutions of (15),
where z ¼ z* and c ¼ c*:

uðtÞ ¼ mz*

r
þ ke�rt ; (17)

where k is a constant. As t / ∞ we get the u* values in E1 and E2 with the respective z* plugged in. Therefore, because ZC
decouple from U, the solutions to the ZUC system are tending towards an equilibrium and hence are globally stable.

3.4.3. ZUCJ system global stability analysis
The disease-free equilibrium in the absence of scavengers is globally asymptotically stable if RZ < 1 and D(E1) < 1 holds.

Notice that, from (1), z0 � rz
�
1� z

K

�
� mz. Note that, for m < r, z0 ¼ rz

�
1� z

K

�
� mz has a globally stable equilibriumvalue of z* ¼

K
�
1� m

r

�
. Then lim sup z � K

�
1� m

r

�
. Consider (2) without jackals; then u0 � mz � ru, and substituting in z*,

lim sup u � m
r Kð1�mÞ. Thus lim sup u � m

r Kð1 � mÞ.
Consider (3) without jackals. We have c0 � (az � r)c. Substituting in z* we have lim sup c0 �

�
a m
r K

�
1� m

r

�
� r

�
c. If

a m
r K

�
1� m

r

�
� r<0, which is equivalent to RZ < 1, then c approaches zero. In the casewhere c¼ 0, (4) is j0 � (bu� d)j. Since u is

bounded above, we have lim sup j0 � j
�
b m
r K

�
1� m

r

�
� d

�
. If b m

r K
�
1� m

r

�
� d<0, which is equivalent to D(E1) < 1 (see next

section), then j goes to zero. If RZ < 1 and D(E1) < 1, then j approaches zero and we reduce to the ZU system, which tends
towards a unique equilibrium.

4. Scavenger demographic reproductive numbers

We find the scavenger persistence threshold by calculating the scavenger demographic reproduction numbers.Wewant to
determine if the scavengers help or hurt the anthrax and if the anthrax helps or hurts the scavengers. To answer these
questions we look at the scavenger demographic reproductive number (DRN) evaluated through a next-generation-operator-
type method. The DRN is the birth rate divided by death rate of the scavengers or the birth rate multiplied by how long the
scavengers reproduce (they reproduce for their entire lives, so it is the death rate). We have two scavenger-free equili-
briadone without anthrax (E1) and one with anthrax (E3)dso we have two different thresholds for when scavengers persist
in the absence of anthrax D(E1) and in the presence of anthrax D(E3).

Using the next-generation-operator method (Brauer & Castillo-Chavez, 2011), the demographic reproduction number for
scavengers in the absence of anthrax is calculated. That is,

DðE1Þ ¼
bðu* þ c*Þ

d E1 ¼
bm
rd

K
�
1� m

r

�

Notice that

DðE1Þ>1 ⇔
bm
rd

K
�
1� m

r

�
>1 ⇔ bmK

�
1� m

r

�
> rd ⇔ bmz* > rd;
which is a condition for E1 to be unstable and for E2 to exist. In addition,

RZ >RJ ⇔
aK

�
1� m

r

�
r

>
ad
bm

⇔ bmK
�
1� m

r

�
> rd

⇔ bmz* > rd

⇔ DðE1Þ>1:
Therefore, D(E1) > 1 is equivalent to RJ < RZ. The presence of scavengers hurts anthrax if and only if scavengers can persist
without anthrax present.

The DRN of scavengers in the presence of anthrax is given below:
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DðE3Þ ¼ bðu* þ c*Þ
d E3

¼ b
d

�m
a
þ r
aK

h
K
�
1� m

r

�
� r

a

i �

¼ br
ad

�
1� r

aK

�

Notice that

DðE3Þ>1 ⇔
br
ad

�
1� r

aK

�
>1 ⇔ 1� r

aK
>
ad
br

⇔
r

a
<K

�
1� ad

br

�

Thus D(E3) > 1 is a condition for E4 to exist and E3 to be unstable. In addition,

mRJ þ
1�m
RZ

<1 ⇔
m

r
ad
bm

þ
�
1� m

r

� r

aK
�
1� m

r

�<1

⇔ 1<
br
ad

�
1� r

aK

�
⇔ DðE3Þ>1

Thus D(E ) > 1 is equivalent to mR þ 1�m<1, which implies R < R .
3 J RZ
J Z

To see whether anthrax helps the scavengers, we show that anthrax increases the scavenger population precisely when ad
br

is less extreme (closer to 1/2) than m.

Theorem 1. Let m ¼ m
r . Then j*4 > j*2 if and only if 4 ¼ ad

br is between m and 1 � m.

Proof. Let 4 ¼ ad
br. Then

j*4 > j*2 ⇔
aK
a

�
1� ad

br

�
� r

a
>
bm
ad

Kð1�mÞ

⇔
ad
br

�
1� ad

br

�
>
m

r
ð1�mÞ

⇔ 4ð1� 4Þ>mð1�mÞ
⇔ ð4�mÞð4þm� 1Þ<0:

If m> 1 then 1� m< ad<m, and if m< 1 then m< ad<1� m. Hence ad is between m and 1 � m.
2 br 2 br br

Next, we look at when the scavenger DRN with anthrax is higher than the scavenger DRN without anthrax.

Theorem 2. D(E3) > D(E1) if and only if pð1� pÞ>mð1�mÞ, where p ¼ r
aK and m ¼ m

r .

Proof. We have

DðE3Þ>DðE1Þ ⇔
br
ad

�
1� r

aK

�
>
bm
rd

K
�
1� m

r

�
⇔ pð1� pÞ>mð1�mÞ
Therefore, D(E3) > D(E1) if and only if pð1� pÞ>mð1�mÞ. Furthermore,

pð1� pÞ>mð1�mÞ ⇔ ðp�mÞðpþm�1Þ<0:

1 1
If m> 2 then 1 � m < p < m, and if m< 2 then m < p < 1 � m. Hence p is between m and 1 � m.

The valuesm, 4 and p are death-rate-to-birth-rate ratios for zebras, scavengers, and anthrax. The ratio p ¼ r
aK describes the

natural spore-source decay to spore creation, m ¼ m
r is the ratio of natural zebra death to reproduction, and 4 ¼ ad

br is some
measure of natural scavenger death rate to birth rate. The values for D(E1) and D(E3) tell us whether the scavengers will
persist, whereas j*4 and j*2 give the number of scavengers that persist. From Theorems 1 and 2, anthrax helps scavengers persist
if and only if p is less extreme (closer to 1/2) than m, and increases the scavenger population if and only if 4 is less extreme
than m.
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If the reproductive number with scavengers (RJ) is less than the reproductive number without scavengers (RZ) then that
means scavengers are hurting the reproductive number RZ (reducing anthrax). Therefore, scavenger presence reduces anthrax
exactly when scavengers persist without the anthrax present (at E1 and E3 there is no anthrax), and if the scavengers do not
need the anthrax to persist, then their presence reduces anthrax.

5. Numerical analysis

We find parameter values either from previous literature or by estimation. The basic reproductive numbers for anthrax
without scavengers, with jackals, and with vultures are denoted RZ, RJ, and RV, respectively. We consider two different sce-
narios of parameter values and interpret the values for RZ, RJ, and RV.

5.1. Parameter estimation

Some of the parameter values were obtained from previously published papers, while the others were estimated in this
study.

The life expectancy of zebras is 15 years according to (Bartlam-Brooks et al., 2011) or 30 years according to (He et al., 2014).
We picked 25 years as the life expectancy. After converting years to weeks we get m ¼ 1

1300weeks�1. The intrinsic growth rate
was determined by figuring out howmany babies a female zebrawill have in her lifetime. Zebras are reproductivelymature at
the age of 4 (Millar & Zammuto, 1983) and have one baby every two years, because they will spend up to a year nursing (He
et al., 2014). We will say a zebra aged 21e25 years is too old to reproduce and therefore a female zebra will have 16 years to
bear a foal. Therefore, an average female zebrawill have eight babies in her lifetime. Finally, we account for only female zebras
giving birth by considering only half of the population. Thus we get

r ¼ 1
2
,

8 zebra
zebra,25 years

,
1 year

52 weeks
¼ 3:06849� 10�3 week�1:
To calculate the parameter a, we find the area within which zebras travel (Zidon et al., Saltz) and figure out the exposure
area that one zebra covers in a single day, which is distance multiplied by 6 m (the spore dispersal radius around an infected
carcass is 3 m in the environment (Bellan et al., 2013)). Thenwe divide those two areas and the quotient estimates howmany
days it takes a zebra to be exposed to the entire zebra habitat. Next, we divide that number by two because on average the
zebra has to cover half of the habitat before running into a single carcass. Moreover, this is because any one carcass can be in
any one of the days with equal probability, so the average is halfway.

The natural decomposition rate of zebra carcasses was taken from (Jennelle et al., 2009), which gave the decomposition
rate of deer carcasses in winter months in Wisconsin. The warmest month in the study was used as a proxy for the natural
decomposition rate of zebra carcasses.

Jackals have a life expectancy of 4 years in the wild (Rhodes et al., 1998). Converting 4 years to weeks, we get the natural
death rate of jackals as

dj ¼
1

4 years
,

1 year
52 weeks

¼ 4:80769� 10�3 week�1:
Now, we calculate bj. Coyotes eat 2.5 pounds per day (Bolton, 2017). The average weight of an adult male coyote is
10.3e16 kg (22.71e35.27 pounds), whereas it is 8e14.2 kg (17.64e31.31 pounds) for an adult female coyote (Bekoff & Gese,
2003, p. 224). A black-backed jackal weighs 5e15 kg (11e33 pounds) (James et al., 2017). We suppose that coyotes weigh 30
pounds and jackals weigh 17 pounds for the remaining calculations. Using the previous information, we calculate the amount
of food a black-backed jackal needs to eat, that is,

2:5 pounds
day

,
17 pounds
30 pounds

¼ 1:42 pounds per day:
One zebra contains 120e130 kg of useable meat (Nel, 2017). We will choose the average and work with 125 kg (275
pounds). We can find how many days it would take for a jackal to eat a zebra carcass (only considering useable meat):

275 lbs
zebra

,
day

1:42 lbs
z
194 days
zebra

z
27 weeks
zebra

:

Hence aj ¼ 1/27 jackal ,week. On average, 5.4 pups are born per year per jackal pair (Rhodes et al., 1998), so a single jackal
produces 2.7 pups/year. Thus during the 194 days one jackal is eating one zebra carcass, it produces
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1 year
365 days

,
194:117 lbs

zebra
,
2:7 baby jackals

year
¼ 1:4359 baby jackals

zebra
:

Now,

bj ¼
1:4359 baby jackals

zebra
,

1
27:714 week

¼ 0:0051811
1

zebra,week
:

Vultures have a life expectancy of 20 years (Cardona et al., 2008). Converting 20 years to weeks, we get the natural death
rate of scavengers to be

dv ¼ 1
20 years

,
1 year

52 weeks
¼ 9:615� 10�4 week�1:
Vultures eat every 3e4 days, and their crop holds 1200 g (2.65 pounds) of food (Houston& Cooper, 1975). For calculations,
we suppose vultures eat 2.65 pounds of food every 3.5 days.

Therefore, a vulture needs 0.757 pounds of food per day. We calculate how long it would take a vulture to eat a zebra. It
would take 363.28 vulture days to eat a zebra carcass:

275 lbs
zebra

,
day

0:757 lbs
z
363:28 days

zebra
z
51:90 weeks

zebra
:

Hence av ¼ 1/51.90 vulture ,week. Since a pair of vultures produces one offspring every year per every two vultures (Johnson,

2018), a single vulture produces 0.5 baby vultures/year. Thus during the 363.28 days one vulture is eating one zebra carcass, it
produces

1 year
365 days

,
363:28 days

zebra
,
0:5 baby vultures

year
¼ 0:4976 baby vultures

zebra
:

Now,

bv ¼ 0:4976 baby vultures
zebra

,
1

51:90 vulture,week
¼ 0:00959

1
zebra,week

:

5.2. Threshold quantities

We let all the parameter values be those that are set in Table 4 with K ¼ 13000 zebras. We found that

RZ ¼ 0:876; RJ ¼ 0:00138; and RV ¼ 0:00149:

Notice that RJ < RV < RZ < 1. This means that any small outbreak of anthrax will die out in the presence of scavengers since
RZ < RJ (RZ < RV) and RJ < 1 (RV < 1). Furthermore, jackals eradicate anthrax better than vultures when there is a small outbreak
since RJ < RV.

If environmental conditions shift to increase zebras’ exposure ratedfor example, by reducing their grazing territorydthen
scavengers may become necessary to eliminate the spread of anthrax. With just a 15% increase in the parameter a, RZ is just
greater than one, and when a increases by 50%dthat is, a ¼ 1.71495 � 10�5 (zebras ,week)�1dwe get

RZ ¼ 1:3138; RJ ¼ 0:0020744; and RV ¼ 0:0022414:

2
When a takes on this value, it means that we are looking at a smaller area that the zebras are roaming, which is 1600 km
vs 2400 km2. Moreover, we could also view an increase in the parameter a as representing a greater distance that the spores
diffuse around an anthrax-laden carcass, which could be spread by thewind or by some other natural means. Since RZ > 1 and
RJ, RV < 1, the zebras need the scavengers present in order to control the anthrax. Therefore, the zebras benefit from the
presence of scavengers.

6. Results and discussion

Previous modeling studies (Furniss & Hahn, 1981; Saad-Roy et al., 2017) of anthrax transmission in animal populations
have focused on control strategies such as vaccination or carcass removal (in (Saad-Roy et al., 2017)) to help eradicate anthrax.
68



C. Mackey, C. Kribs Infectious Disease Modelling 6 (2021) 56e74
These policies are possible for livestock but not for wild animals. Our model looks at how scavengers affect the dynamics of
anthrax in ungulates (zebras) in the wild.

We looked at the persistence of anthrax as measured by threshold quantities with and without scavengers. Anthrax
persists whenever the basic reproductive numbers of anthrax with and without scavengers are greater than one. In Fig. 2, we
can easily see that if either RZ < 1 or RJ < 1, then there is no anthrax present and any small outbreaks will die out. In addition,
when RJ < RZ (existence condition for E2), this shows that the presence of scavengers is reducing the anthrax. Therefore, when
the scavengers feed from the anthrax-laden carcasses (thus eating anthrax), this helps the zebras because the vegetative cells
of BA will not sporulate and reside in the grass or on the ground to infect more zebras.

By definition, when the scavenger DRN without anthrax, D(E1), exceeds 1, then scavengers persist: E1 is unstable and E2
exists. When D(E3) > 1, then scavengers persist in the presence of anthrax: E3 is unstable and E4 exists and is stable. The
scavenger DRNs allow us to determine that the presence of scavengers hurts anthrax if and only if scavengers can persist in
the absence of anthrax (RZ > RJ ⇔ D(E1) > 1). In addition, we show that the number of scavengers in the presence of anthrax
(j*4) is higher than the number of scavengers in the absence of anthrax (j*2) precisely when the death rate to birth rate ratio of
scavengers, 4 ¼ ad

br , is less extreme (closer to 1/2) than m. Furthermore, the scavenger DRN with anthrax is larger than the
scavenger DRN without anthrax (D(E3) > D(E1)), so that the scavengers persist better in the presence of anthrax, precisely
when the death to birth rate ratio for anthrax p ¼ r

aK is less extreme (closer to 1/2) than the ratio for zebrasm. The DRNs allow
us to answer the question: does anthrax help scavengers, in terms of the three death to birth rate ratios, for zebras (m),
anthrax (p), and scavengers (4)? Anthrax fosters scavenger survival if p is less extreme thanm, and it increases the scavenger
population size if 4 is less extreme than m.

Notice that all the threshold quantities are independent of the parameter a, which describes the rate the scavengers feed
from the zebra carcasses. Anthrax persistence (with and without scavengers) and the scavengers’ ability to survive do not
depend on the rate at which scavengers eat from zebra carcasses, but on how well they convert that consumption into
reproduction.

Whenwe consider the various calculations of BRNs in Section 5.2, we see that neither jackals nor vultures outperform the
others substantially in eradicating anthrax. Note that the BRNs of the scavengers were both of a similar magnitude, but the
BRN of anthrax without scavengers was about 650 times larger than the BRNs of the scavengers. Hence scavengers are
effective at reducing anthrax risk.

One limitation to our model is the assumption that zebra carcasses are representative of the only food source for scav-
engers. In fact, scavengers play a more complex role in the food web. In addition, jackals have been observed attacking and
killing a young adult springbok (Krofel, 2008). However, given scavengers’ estimated efficiency in reducing anthrax risk, they
are still helpful even if they are less dependent on zebras. Another limitation of the model is that scavengers will not
necessarily eat from a fresh carcass and, therefore, the vegetative cells of the BA may have transformed into resistant spores.
In this case, the scavengers can potentially play a role in helping to spread the anthrax rather than eradicating it, since spores
have been found to pass through the digestive tract of vultures (Houston & Cooper, 1975). More broadly, there may be other
sources of BA spores than [recent] carcasses, so this study addresses only the interplay between scavengers and anthrax
transmission from an ongoing outbreak. In addition, the parameter estimates are rough, and some are not based on any direct
measure of infection. It would be helpful for future field studies to gathermore data on themechanics of anthrax infection like
the rate at which ungulates (zebras) come into contact with BA spores.
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Appendix A. Equilibrium Calculations

We calculate the equilibria and existence conditions. To get z* for E1 and E2 we consider z*s0, and we have

z*
�
r
�
1� z*

K

�
� ðmþ ac*Þ

�
¼ 0;

from which z* ¼ K
�
1� 1

r
ðmþ ac*Þ

�

Plugging this into (3) and setting (3) equal to zero we have
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c*
�
aK

�
1� 1

r
ðmþ ac*Þ

�
� r� aj*

�
¼ 0:
Then either

c*þ ¼ 0 or c*� ¼ r
a

�
1� m

r
� r� aj*

aK

�
¼ r

aK

�
K
�
1� m

r

�
� rþ aj*

a

�

*
Replacing c* with cþ in z* we have

z*þ ¼ K
h
1� m

r

i

*
Likewise, replacing c* with c� in z* gives

z*� ¼ K
�
1� 1

r

�
mþ ar

a

�
1� m

r
� rþ aj*

aK

���

¼ K
�
rþ aj*

aK

�

¼ rþ aj*

a
:

Setting (2) equal to zero gives u*:

mz* � ru* � aj*u* ¼ 0

u* ¼ mz*

rþ aj*
;

with (4) equal to zero, we have either j* ¼ 0 or else

bj*ðu* þ c*Þ � dj* ¼ 0

u* þ c* ¼ d
b
:

*
Substituting cþ into this last equation gives

u*þ ¼ d
b
:

Finally, plugging z*þ and u*þ into u* ¼ mz*
rþaj* we find
d
b

�
rþ aj*þ

	 ¼ mz*þ;

from which j*þ ¼ 1
a

�
bm
d
z*þ � r

�

Therefore, we have the equilibrium

E2
�
z*þ;u

*
þ; c

*
þ; j

*
þ
	 ¼ E2

�
K
h
1� m

r

i
;
d
b
; 0;

1
a

�
bm
d
z*þ � r

��
;

*
which exists when m < r and bmzþ > rd. The equilibrium E2 is the disease-free equilibrium in the presence of scavengers.
Consider when c*þ ¼ 0, so that z*þ ¼ K

h
1� m

r

i
. Letting j* ¼ 0,

u* ¼ m

r
K
h
1� m

r

i

Therefore, we have the equilibrium
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E1ðz*;u*; c*; j*Þ ¼ E1
�
K
h
1� m

r

i
;
m

r
K
h
1� m

r

i
;0;0

�
;

which exists when m < r. The equilibrium E1 is the disease-free equilibrium in the absence of scavengers.
Now, working with the negative subscript equilibria, we consider z* ¼ rþaj*

a and get

c*� ¼ r
a

�
1� m

r
� rþ aj*

aK

�
¼ r

aK

�
K
�
1� m

r

�
� rþ aj*

a

�
(A.1)

to find u*� and j*�. First, we let j*� ¼ 0. Then z* ¼ (r þ aj*)/a becomes z*� ¼ r=a, (A.1) becomes

c*� ¼ r
aK

h
K
�
1� m

r

�
� r

a

i
;

and u* becomes

u*� ¼ mr

ra
¼ m

a
:

Thus we have the equilibrium

E3ðz*;u*; c*; j*Þ ¼ E3
�r
a
;
m

a
;
r
aK

h
K
�
1� m

r

�
� r

a

i
;0

�
;

which exists when m < r and K
�
1� m

r

�
> r

a. The equilibrium E3 is endemic for anthrax in the absence of scavengers.
When j*�s0, then using z* ¼ (r þ aj*)/a and (A.1), u* þ c* ¼ d/b becomes

u*� ¼ d
b
� r
a

�
1� m

r
� rþ aj*

aK

�
(A.2)
Substituting z* ¼ (r þ aj*)/a and (A.2) into (2) and setting it equal to zero gives:

0 ¼ mðrþ aj*Þ
a

� r

�
d
b
� r
a

�
1� m

r
� rþ aj*

aK

��
� aj*

�
d
b
� r
a

�
1� m

r
� rþ aj*

aK

��

0 ¼ a2r

a2K
j2

* þ a

�
d
b
� r
a

�
1� 2r

aK

��
j* þ rr

a

�
ad
br

þ r

aK
� 1

�

2
Consider the quadratic formula, where the quadratic is represented as Aj þ Bjþ C¼ 0. If AC< 0, then a unique positive root
exists. In this problem, that means C < 0 since A > 0. The condition can be further rewritten:

C <0 ⇔
r

aK
þ ad

br
<1

⇔
r

a
<K

�
1� RJ

m

r

�
;

(A.3)

ad
where RJ ¼ bm and is discussed in Section 3.2.
The quadratic equation has two positive roots if C > 0, B < 0 and B2 > 4AC. For our problem, we have

C >0 ⇔
r

aK
þ ad

br
>1 (A.4)
and

B<0 ⇔
ad
ba

� rb
ba

�
1� 2r

aK

�
<0

⇔
2r
aK

þ ad
br

<1:

(A.5)
However, conditions (A.4) and (A.5) contradict each other; therefore, our quadratic equation must have only one positive
root, which occurs with condition (A.3).

From the quadratic equation for j*, we get
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j* ¼
�a

�
d
b
� r
a

�
1� 2r

aK

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a

�
d
b
� r
a

�
1� 2r

aK

���2
� 4a2r

a2K

rr
a

�
ad
br

þ r

aK
� 1

�s

2a2r

a2K

¼
abKraþ a2K

0
@� daþ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðad� brÞ2a2

a2b2

s 1
A� 2brar

2bra2
¼ a

a

�
K
�
1� ad

br

��
� r

a
:

(A.6)
Substituting (A.6) into z* ¼ (r þ aj*)/a we get the expression for z* in E4 which is

z* ¼ r

a
þ a

a
j*

¼ r

a
þ a

a

�
a
a

�
K
�
1� ad

br

��
� r

a

�

¼ K
�
1� ad

br

�

The equilibrium E4 is represented as

E4ðz*;u*; c*; j*Þ ¼ E4

�
K
�
1� ad

br

�
;
m

a
;
d
b
� m

a
;
a
a
K
�
1� ad

br

�
� r

a

�

and exists if and only if r
a<K

�
1� ad

br

�
and ad

bm>1. This equilibrium is endemic for anthrax in the presence of scavengers.

Appendix B. Stability of E4

We use the fourth-order RoutheHurwitz Criterion to find the stability of E4. Consider the characteristic equation
p(l) ¼ l4 þ B1l

3 þ B2l
2 þ B3l þ B4 ¼ 0. For the fourth-order RoutheHurwitz criterion, the conditions are B1 > 0, B4 > 0,

B1B2 > B3, and B3ðB1B2 � B3Þ>B21B4 for the roots of p(l) to have negative real part.
Let

B1 ¼ ðaz* � AÞ

B2 ¼ bj*a
m

a
ad
bm

� az*
�
Aþ m

�
1� ad

bm

��

B3 ¼ �bj*a
m

a
ad
bm

Aþ m

�
ad
bm

� 1
�
z*
�
abj* þ a2z*

�

B4 ¼ �Abj*amz*
�
ad
bm

� 1
�

Now we will show that the conditions needed above hold.

B1 ¼ ðaz* � AÞ>0 since A<0:

* *
�
ad

�
ad
B4 ¼ �Abj amz
bm

� 1 >0 ðrecall
bm

> 1 for E4 to existÞ
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B1B2 � B3 ¼ ðaz* � AÞbj*am
a
ad
bm

� az*
�
Aþ m

�
1� ad

bm

��

�
�
� bj*a

m

a
ad
bm
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�
ad
bm

� 1
�
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�
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��

¼ �Aðaz*Þ2 þ A2ðaz*Þ � Aðaz*Þm
�
ad
bm

� 1
�
þ maz*

a

a
bj*

> 0 since
ad
bm

>1 and A<0:

2
�

* m ad
�
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�
*
�

* 2 *
��
B3ðB1B2 � B3Þ � B1B4 ¼ � bj a
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bm

� 1 z abj þ a z

�
�
� Aðaz*Þ2 þ A2ðaz*Þ � Aðaz*Þm

�
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� 1
�
þ maz*

a

a
bj*

�

�
h
ðaz*Þ2 þ 2az*ð�AÞ þ A2

i��
�AÞbj*am

a
ðaz*Þ

�
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� 1
��

¼ A2bj*a
m

a
ðaz*Þ2 þ ð � AÞ3bj*am

a
ðaz*Þ þ A2bj*a

m

a
ðaz*Þm

�
ad
bm

� 1
�
ad
bm

þð�AÞðbj*Þ2
�
a
m

a

�2ðaz*Þ ad
bm

þ ð�AÞbj*am

a
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bm

� 1
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þðbj*Þ2
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�2ðaz*Þ2�ad
bm

� 1
�
þ ð�AÞðaz*Þ4m

�
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� 1
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þA2ðaz*Þ3m
�
ad
bm

� 1
�
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� 1
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þðbj*Þ
�
a
m

a

�
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� 1
�

>0 since
ad
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>1 and A<0:
We have shown that B1 > 0, B4 > 0, B1B2 > B3 and B3ðB1B2 � B3Þ>B21B4 without any additional conditions; therefore, E4 is
locally asymptotically stable whenever it exists.
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