
sensors

Article

Deep Sparse Learning for Automatic Modulation Classification
Using Recurrent Neural Networks

Ke Zang 1, Wenqi Wu 1 and Wei Luo 2,*,†

����������
�������

Citation: Zang, K.; Wu, W.; Luo, W.

Deep Sparse Learning for Automatic

Modulation Classification Using

Recurrent Neural Networks. Sensors

2021, 21, 6410. https://doi.org/

10.3390/s21196410

Academic Editors: Alan Michaels and

William Chris Headley

Received: 15 August 2021

Accepted: 23 September 2021

Published: 25 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Biomedical Engineering and Instrument Science, Yuquan Campus, Zhejiang University,
38 Zheda Road, Hangzhou 310027, China; martinzang@zju.edu.cn (K.Z.); winkywow@zju.edu.cn (W.W.)

2 Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong, China

* Correspondence: williamluo@cuhk.edu.hk
† Most of this work was done when he was at Zhejiang University, Hangzhou 310027, China.

Abstract: Deep learning models, especially recurrent neural networks (RNNs), have been successfully
applied to automatic modulation classification (AMC) problems recently. However, deep neural
networks are usually overparameterized, i.e., most of the connections between neurons are redundant.
The large model size hinders the deployment of deep neural networks in applications such as Internet-
of-Things (IoT) networks. Therefore, reducing parameters without compromising the network
performance via sparse learning is often desirable since it can alleviates the computational and
storage burdens of deep learning models. In this paper, we propose a sparse learning algorithm that
can directly train a sparsely connected neural network based on the statistics of weight magnitude and
gradient momentum. We first used the MNIST and CIFAR10 datasets to demonstrate the effectiveness
of this method. Subsequently, we applied it to RNNs with different pruning strategies on recurrent
and non-recurrent connections for AMC problems. Experimental results demonstrated that the
proposed method can effectively reduce the parameters of the neural networks while maintaining
model performance. Moreover, we show that appropriate sparsity can further improve network
generalization ability.

Keywords: automatic modulation classification; deep sparse learning; recurrent neural networks

1. Introduction

Automatic modulation classification (AMC) refers to the automatic recognition of the
modulation category of the received signal. This technology is widely used in spectrum
management and interference recognition, etc. [1,2]. With the rapid development of wireless
communication in recent years, the modulation types of signals has become more complex
and diverse, which makes AMC a crucial technique in crowded radio environments.

Initially, the likelihood-based method was used to solve the modulation classification
problem [3,4]. Although the methods based on likelihood can reduce the probability of
mismatch, they usually suffer from high computational complexity, and their self-based
theoretical system models are difficult to match with practical scenarios. To alleviate the
computation overhead in practice, feature-based method [5–7] for AMC arose in response to
the proper time and conditions. Traditional feature-based methods mainly consist of manu-
ally extracted features and appropriate classifiers. The feature-based approach became the
mainstream because it is robust relative to different signals and has better generalization
ability. With the development of Big Data and the improvement of computing power,
deep neural networks has shown its powerful potential in many fields, such as computer
vision [8] and natural language processing [9]. Among these models, recurrent neural
networks (RNNs) [10] have been playing an essential role in tasks involving sequential
data due to their ability to find the dependencies between data located in different parts of
a sequence. For AMC problems, the manually designed features in traditional methods

Sensors 2021, 21, 6410. https://doi.org/10.3390/s21196410 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6942-3042
https://orcid.org/0000-0001-5768-0586
https://doi.org/10.3390/s21196410
https://doi.org/10.3390/s21196410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196410
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196410?type=check_update&version=2

Sensors 2021, 21, 6410 2 of 14

are usually extracted both locally and globally from the observed signal, which is exactly
what RNNs are good at. Moreover, it is often observed that manually designing features
may result in loss of information that is essential for accurate classification [11]. Therefore,
researchers have attempted to use RNNs such as long short-term memory (LSTM) [12] for
higher accuracy in AMC problems [13–15]. However, being overparameterized is a widely
recognized property of deep neural networks [16,17]. It is difficult to apply deep neural
networks into the edge devices [18,19], such as Internet-of-Thing(IoT) devices, which are
usually equipped with limited device memories [20]. Therefore, removing the redundant
connections of deep learning models while maintaining their performance is often desirable
since it can alleviate computational and storage burdens.

Sparse learning is an efficient technique for training a sparsely connected neural net-
work. Neural network pruning, the task of reducing the size of a network by removing
parameters, has been the subject of numerous studies in recent years. Pruning a neural
network amounts to removing its superfluous connections while maintaining model perfor-
mance as much as possible [18,21]. The sparsity of a deep learning network is determined
by the proportion of zeros in its trainable parameters θ. A sparse structure is usually
obtained by multiplying the θ element wisely by a binary mask m of the same size.

θsparse = θ�m. (1)

Here, � stands for element-wise multiplication. For many years, people have gener-
ally believed that training a dense, overparameterized network in advance is the key to
effective subsequent sparseness [22]. Accordingly, certain methods are needed to remove
redundant parameters without significantly affecting the model performance. Most of the
currently used algorithms for generating sparse masks begin with a dense model, and then
they increase the sparsity of the model through the network pruning. Pruning methods can
be divided into two categories: iterative pruning [23–26] and one-shot pruning [22,27,28].
As shown in Figure 1, an iterative pruning method first trains a model until it converges.
Then, the sparse mask m will be updated based on specific criteria that vary across dif-
ferent methods. This process is repeated until the model sparsity meets the requirements.
Han et al. introduced a method to reduce the storage and computation of neural networks
by an order of magnitude via removing the unimportant connections [23]. Frankle et al.
proposed the Lottery Ticket Hypothesis, that is, a dense, randomly initialized feedforward
network with separate training containing subnetworks (winning tickets) that can achieve
similar test accuracy as the original network under a similar number of iterations [26]. In
addition, they presented an iterative pruning algorithm to identify winning tickets on the
MNIST and CIFAR10 datasets. On the other hand, the model training process in one-shot
pruning algorithms is interleaved with pruning steps. Thus, a sparsely connected model
can be obtained within one training process. In [27], the authors prune the network through
the L0 norm regularization that allows for straightforward and efficient learning of model
structures with stochastic gradient descent. The single-shot network pruning method [22]
prunes a given network once at initialization prior to training. After pruning, a network is
trained in the standard manner.

In existing methods, pruning is usually performed by using an iterative finetuning
process, or with a pruning scheme designed heuristically, or with the addition of hyper-
parameters, thereby undermining their utility. In this work, we present a new approach
that prunes a given network based on the statistics of the weight magnitude and gradient
momentum without iterative training. Unlike other pruning algorithms that were applied
only to feedforward neural networks (FNNs), such as multilayer perceptrons (MLPs) and
convolutional neural networks (CNNs) on non-sequential data, the proposed method in
this paper is validated on both feedforward and recurrent neural architectures. The main
contributions of this paper are as follows:

(1) A novel one-shot neural network pruning algorithm based on weight magnitude and
gradient momentum is proposed to produce sparse RNNs for solving AMC problems

Sensors 2021, 21, 6410 3 of 14

without compromising model performance. Specifically, we demonstrate that it is
crucial to retain non-recurrent connections while pruning RNNs.

(2) In addition to the sequential AMC problem, the efficiency of the proposed method is
also validated on non-sequential dataset, including MNIST and CIFAR10, with feed-
forward neural networks.

(3) The experimental results reveal that the proposed pruning method can serve as a
regularization technique as the resulting sparse models can outperform their dense
counterparts even with high-level sparsity.

Initialize the
network

Converge?

Update weights

Update mask

Fine-tune weights

Sparse network

No

Yes

Initialize the
network

Converge?

Update weights

Update mask

Sparse network

Yes

No

Training
process

Figure 1. Iterative pruning (left) and one-shot pruning (right).

2. Methods
2.1. Notation

Bold numbers such as 1 and 0 denote vectors consist of the corresponding numbers.
The element-wise multiplication is denoted by�, and the convolution operation is denoted
by ∗. The sigmoid activation function σ used extensively in deep learning models is defined
as σ(x) = 1

1+e−x , and the hyperbolic function tanh is defined as tanh(x) = 2σ(2x)− 1.

2.2. Recurrent Neural Networks

Recurrent neural networks [29–31], particularly with gated cells such as LSTMs [12]
and gated recurrent units (GRUs) [32], are perhaps the most popular architectures for
modeling temporal sequences. The LSTM reads from and writes to its internal states by
using a gating mechanism, which allows information to pass selectively. There are three
different kinds of gating units inside an LSTM cell, namely the write, read, and forget gates.
The write and read gates are used to filter out useless information flowing in and out of the
recurrent cells, respectively, while the forget gates can selectively erase old memories.

These three gates are realized by the gating mechanism, as shown in Figure 2, and are
formulated as follows.

it = σ(Wiht−1 + Uixt + bi), (2a)

ot = σ(Woht−1 + Uoxt + bo), (2b)

ft = σ(W f ht−1 + U f xt + b f). (2c)

Sensors 2021, 21, 6410 4 of 14

⊙

\𝑊𝑊𝑓𝑓 , U𝑓𝑓

\𝜎𝜎

⊙

\

𝑊𝑊𝑖𝑖 , U𝑖𝑖

\𝜎𝜎

\

𝑊𝑊𝐶𝐶 , U𝐶𝐶

\𝑡𝑡𝑡𝑡𝑡𝑡𝑡

\

𝑊𝑊𝑜𝑜, U𝑜𝑜

\𝜎𝜎

+

⊙

tanh

𝑥𝑥𝑡𝑡

𝑡𝑡𝑡−1

𝑐𝑐𝑡𝑡−1 𝑐𝑐𝑡𝑡

𝑡𝑡𝑡

𝑓𝑓𝑡𝑡 �̃�𝑐𝑡𝑡𝑖𝑖𝑡𝑡

h𝑡𝑡

o𝑡𝑡

Figure 2. Long short-term memory [14].

The candidate memory c̃t to be written is defined as the following.

c̃t = tanh(Wcht−1 + Ucxt + bc). (3)

The new memory ct and the information flowing out the cell ht are then given by
the following.

ct = ct−1 � ft + c̃t � it, (4)

ht = ot � tanh(ct). (5)

GRU is another popular recurrent architecture based on gate units, which was first
introduced by Chung et al. in 2014 [32]. It can be seen as a variation of LSTM that explicitly
couples write and forget gates.

Another RNN we used in this paper is a hierarchical RNN with grouped auxiliary
memory named GAM-HRNN [14]. As shown in Figure 3, the main framework of the
network is a hierarchical structure with other RNNs as the kernel. At each time step,
due to the group distributed mechanism, the corresponding part of the unit of state is
overwritten, while the other parts change slightly or remain unchanged. In this manner,
useful information can be saved without overwriting the long-term memory. After the
auxiliary memory has been updated, the state of each layer in the hierarchical structure is
updated sequentially by using the information selectively read from the auxiliary memory
and the state passed from the previous time step. In this manner, the network provides a
shortcut in time and space, which is good for confronting conflicts between short and long
periods of information and preserving long-term information. Formulation details can be
found in [14].

Note that the learnable weights in recurrent units are denoted by W and U, represent-
ing the recurrent and non-recurrent connections, respectively. We used different pruning
strategies for these two kinds of weights in the experiments of this paper.

Sensors 2021, 21, 6410 5 of 14

𝑠𝑠𝑡𝑡−11

𝐺𝐺𝐺𝐺𝐺𝐺

𝑥𝑥𝑡𝑡

𝑚𝑚𝑡𝑡−1

⋯

⋯𝐾𝐾1 𝐾𝐾2 𝐾𝐾𝐿𝐿
𝑂𝑂1

ℎ𝑡𝑡𝑤𝑤
𝑅𝑅1 𝑅𝑅2 𝑅𝑅𝐿𝐿

�𝑥𝑥𝑡𝑡1 �𝑥𝑥𝑡𝑡2 �𝑥𝑥𝑡𝑡𝐿𝐿

𝑚𝑚𝑡𝑡

𝑠𝑠𝑡𝑡−12
⋯

𝑠𝑠𝑡𝑡1
𝑠𝑠𝑡𝑡2

𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡−1𝐿𝐿

𝑂𝑂2 𝑂𝑂𝐿𝐿−1 𝑂𝑂𝐿𝐿

Figure 3. Diagram of the hierarchical recurrent neural network with grouped auxiliary memory
architecture. Inputs conveyed by arrows with ◦ will be concatenated together [14].

2.3. Pruning Method

Given a dataset Dtrain = (xi, yi)
N
i=1, the objective function can be formulated as follows.

E(F(·, θ);Dtrain) =
1
N

N

∑
i=1
L(yi, F(xi, θ))). (6)

Here, L is the loss function such as cross-entropy, and θ denotes the parameters of
network F(·, θ).

The main hypothesis behind the neural network sparsity literature is that neural
networks are usually overparameterized, implying that most elements in the weight vector
θ∗ of a converged model F(·, θ∗) are redundant. Thus, comparable performance can be
achieved by using a smaller network [33], e.g., the sparse version of this model F(·, m� θ∗).
Here, m is a sparse mask. To this end, the objective is to learn a sparse network while
maintaining the accuracy of its dense counterpart as much as possible. The sparse mask
can be generated via network pruning. A part of the pruning algorithms quantifies the
importance of network connections based on their magnitude [23,26]. However, these
methods will also remove connections that can greatly reduce the loss after being updated,
yet they are not significant in magnitude. This can be circumvented by considering the
weight gradient Gt = ∇θE as another factor to measure the connection sensitivity [22,28,34].
In practice, deep learning models are always trained using the stochastic gradient descend
algorithm; thus, the gradient momentum is always used to estimate the global gradient
calculated on the entire dataset.

vt = γvt−1 + (1− γ)∇θE(θ). (7)

Here, γ is usually set to a value that is less than but close to 1, e.g., 0.9.
In this paper, we propose a novel one-shot neural network pruning algorithm based

on both magnitude and gradient momentum of learnable parameters. The algorithm is
described in Algorithm 1. Previous investigation has already shown that removing the con-
nections with small magnitude can yield sparse network without sacrificing performance.
Thus, in the proposed method, we directly preserve the weights of large magnitudes
(Algorithm 1 line 11). In order to preserve the weak connections that may potentially

Sensors 2021, 21, 6410 6 of 14

contribute to reducing training loss, we also used the gradient momentum to estimate the
importance of each weight. Assume that N connections should be pruned in each iteration,
we first select δ· N connections with the smallest magnitude as candidates. Here, δ(> 1) is
a hyper-parameter. We then select N connections with the lowest score of importance and
remove them from the network by updating the sparse mask. The score of importance for
each parameter θi is defined as follows:

si = α · |θi|+(1− α) · |vi|, (8)

where vi is the gradient momentum of the i-th parameter θi, and α is another hyper-
parameter.

Algorithm 1 The proposed method

Require: Training set Dtrain = (xi, yi)
Require: Network F with parameters θ
Require: Pruning interval K, hyper-parameter for calculating momentum γ, hyper-

parameter for pruning δ and α, pruning rate p.
1: Initialize the parameters θ← θ0;
2: Initialize the momentum v← 0;
3: Initialize the parameter mask: m← 1;
4: repeat
5: for n=1 to K do
6: Generate data batch: Dbatch ∼ Dtrain;
7: Update θ:θ← update(θ�m, Dbatch);
8: Update momentum using Equation (7);
9: end for

10: Get number of connections to be pruned N = p · sum(m);
11: Get the candidate mask based on magnitude: mc ← getCandidateMask(δ · N, θ);
12: Calculate score of importance s using Equation (8);
13: Select connections to be pruned among candidates based on score ms ←

getConnectionsToPrune(s, mc) ;
14: Update sparse mask m← update(ms);
15: until meeting training termination condition

Note that in the early stage of the proposed algorithm, the network can be trained
without pruning for several iterations for warming up, which may improve the final
performance in some cases. In this paper, the training process is always terminated when a
certain degree of sparsity has been met.

3. Experimental Results and Discussions

In this section, we evaluate the performance of the proposed method on the standard
MNIST and CIFAR10 datasets that are always used as benchmark datasets for pruning
tasks by comparing with other pruning methods. Then, we used the proposed method
for AMC problems on the standard RadioML 2016.10a dataset via RNNs comparing with
other classification methods.

3.1. Experimental Configuration

We used Xavier uniform initalizer [35] for all weights and Adam optimizer [36] for the
training processes. The models were implemented using Tensorflow [37]. All experiments
were repeated 10 times.

3.1.1. MNIST and CIFAR10 Datasets

The proposed method in this paper is first compared with other sparse learning tech-
niques including a magnitude-based pruning algorithm proposed in [23] and a rewinding-
after-pruning training scheme used to find the ‘lottery ticket’ presented in [26]. All pruning

Sensors 2021, 21, 6410 7 of 14

methods to be compared are performed on the Lenet-300-100 [38] model for the MNIST
dataset and a two-layer CNN for the CIFAR10 dataset. The Lenet-300-100 model is a fully
connected network with two hidden layers consisting of 300 and 100 neurons, respectively.
The two-layer CNN includes two convolutional layers and a pooling layer followed by
two fully connected layers and an output layer. We denote this model as Conv2 in this
paper. Other details of these two feedforward neural networks can be found in [26]. We
adopted the original setups described in the corresponding paper to configure the pruning
algorithms to be compared. The hyperparameters used in the proposed method are listed
in Table 1.

Table 1. Pruning hyper-parameters for Lenet-300-100, Conv2, and RNNs.

Lenet-300-100 (MNIST) Conv2 (CIFAR10) RNNs (RadioML)

Batch size 100 64 400

Warm up epochs 1 5 10

Prune frequency Once per epoch Once per epoch Once per epoch

Prune rate p 0.005 0.002 0.002

α 0.2 0.3 0.3

γ 0.4 0.3 0.3

δ 2 2 2

3.1.2. RadioML 2016.10a Dataset

For AMC problems, we verified the effectiveness of our method by mainly using an
open modulated classification dataset named RadioML2016.10a [39]. There are 220,000 RF
signals modulated by three analog and eight digital modulation types. Specifically, analog
modulation methods include wide band FM (AM-FM), single-sideband AM (AM-SSB),
and wideband FM (WB-FM) and digital modulation methods include quadrature phase-
shift keying (QPSK), eight phase-shift keying (8PSK), quadrature amplitude modulation
16 (QAM16), quadrature amplitude modulation 64 (QAM64), cover binary phase-shift
keying (BPSK), continuous phase frequency-shift keying (CPFSK), Gauss frequency-shift
keying (GFSK), and pulse-amplitude modulation four (PAM4). Each signal is 128 in length
and samples per symbol is eight. The signal-to-noise ratio (SNR) is evenly distributed
from −20 dB to 18 dB at intervals of 2 dB. Radio channel including time varying multi-
path fading, random walk drifting, and non-ideal effects covering carrier frequency offset
oscillator drift, etc., are well-characterized. More details can be found in [39].

The proposed method was used to prune recurrent neural architectures including
LSTM, GRU, and GAM-HRNN. Three pruning methods were also tested on GAM-HRNN
model. All of these recurrent models have two hidden layers. The normalized amplitude
and phase of the signal are obtained from the original IQ data. We set the forget gate
bias to 1.0 for LSTM. Details regarding the model hyperparameters can be found in [14].
Performances of densely connected neural networks including sequential convolutional
recurrent neural network (SCRNN) and GAM-HRNN are also reported. All models
have roughly the same number of parameters. For RNNs, we only prune the recurrent
connections mentioned in 2.1. Details regarding the prune hyperparameters are listed in
Table 1.

3.2. Results on Standard MNIST and CIFAR10 Datasets

For the MNIST dataset, it can be observed from Figure 4 that for all the methods,
as the percentage of weights remaining decreased, the accuracy first increased and then
decreased. At a high percentage of weights remaining, the proposed method performed
better than other methods. However, as the percentage of weights remaining decreased,
the accuracy of the proposed method was observed to be lower than that of the lottery

Sensors 2021, 21, 6410 8 of 14

hypothesis. When the percentage of remaining weights further decreased, the proposed
method was found to exhibit better performance than others again. As shown in Figure 5,
the results of CIFAR10 are similar to those of MNIST. However, on the CIFAR10 dataset,
the proposed method performed consistently better than other methods considering the
percentage of remaining weights.

100 51.3 21.1 7.0 3.6 1.9

Percentage of weights remaining(%)

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8
A

cc
u
ra

cy
(%

)
Magnitude Method

Lottery

Proposed Method

Figure 4. Classification accuracy for different percentages of weights remaining from Lenet-300-100
on MNIST.

100 51.4 26.5 13.7 7.1 3.7 1.9

Percentage of weights remaining(%)

65

66

67

68

69

70

71

72

A
cc

u
ra

cy
(%

)

Magnitude Method

Lottery

Proposed Method

Figure 5. Classification accuracy for different percentages of weights remaining from Conv2 on CIFAR10.

The highest accuracy of each model achieved by each pruning method is listed in
Table 2. The results demonstrate that a neural network with a certain degree of sparsity
may outperform its dense counterpart, and the proposed method in this paper always
yields a higher performance boost for each model on each task.

Sensors 2021, 21, 6410 9 of 14

Table 2. Best accuracy of each model on MNIST and CIFAR10 (%).

Lenet-300-100 on MNIST Accuracy (%) Conv2 on CIFAR10 Accuracy (%)

Unpruned baseline 98.16 ± 0.06 65.09 ± 0.045

Magnitude-based [23] 98.40 68.31

Lottery [26] 98.52 69.33

Proposed method 98.62 ± 0.067 71.29 ± 0.059

3.3. Results on RadioML 2016.10a Dataset

In this section, we discuss the performance of the proposed method for recurrent
neural architectures for AMC problems.

We first apply the proposed pruning method to remove the recurrent connections of
RNNs used in [14], including LSTM, GRU, and GAM-HRNN. The classification accuracies
with different percentages of remaining weights are presented in Figure 6. It can be
observed that as the model parameters decreased, the accuracy of the model first increased
and then decreased, which is similar to the feedforward cases. With a certain degree
of sparsity, each model can outperform its dense counterpart. Note that the percentage
of weights remaining corresponding to the best accuracy for each model is different.
Moreover, all recurrent models are still able to beat their dense counterparts with most of
their connections being pruned, especially for GAM-HRNN. Classification accuracy for
different pruning methods on GAM-HRNN model is presented in Figure 7. We can find
that the proposed method also achieve better performance on AMC problems compared
to other pruning methods. The performances of other methods on AMC problems are
also compared. Table 3 reports the corresponding average accuracy for all SNRs, and the
SNR ranges from 0 to 20 dB. The dash symbol in Table 3 indicates that the metric was not
reported in the corresponding paper. It can be observed that the sparse GAM-HRNN model
produced by the proposed method outperforms the previous state-of-the-art model on
both two metrics. Meanwhile, Figure 8 shows the classification accuracy for the proposed
method on three RNN models at different SNRs. We can observe that all three models
perform poorly at low SNR. However, the advantage of GAM-HRNN over the other two
models becomes more obvious as SNR increases.

100 90 80 70 60 50 40 30

Percentage of weights remaining(%)

61.0

61.5

62.0

62.5

63.0

A
cc

u
ra

cy
(%

)

2-layer GAM-HRNN

2-layer LSTM

2-layer GRU

Figure 6. Classification accuracy for the proposed pruning method on three RNN models.

Sensors 2021, 21, 6410 10 of 14

100 90 80 70 60 50 40 30

Percentage of weights remaining(%)

62.3

62.4

62.5

62.6

62.7

62.8

62.9

A
cc

u
ra

cy
(%

)

Proposed Method

Lottery

Magnitude Method

Figure 7. Classification accuracy for different pruning methods on GAM-HRNN model.

Figure 8. Classification accuracy for the proposed method on three RNN models at different SNRs.

Table 3. Average accuracy for all SNRs (AccAS) and for SNR ranges from 0 dB to 20 dB (AccASH) (%).

AccAS AccASH

Original Pruned Original Pruned

2-layer GAM-HRNN 62.47 [14] 62.87 ± 0.077 92.2 [14] 92.45 ± 0.083

2-layer LSTM 60.8 ± 0.073 61.12 ± 0.11 90 [13] 90.81 ± 0.09

2-layer GRU 61.68 ± 0.087 62.06 ± 0.073 91.13 ± 0.069 91.59 ± 0.063

Cross model [40] 62.41 - - -

Multipath CNN [41] - - 90.7 -

Multitask CNN [42] 59.43 - - -

SCRNN [15] - - 92.1 -

Sensors 2021, 21, 6410 11 of 14

The confusion matrices at three SNRs (18 dB, 0 dB, and −8 dB) for pruned GAM-
HRNN with the best accuracy using the proposed method is shown in Figure 9. Even at
high SNR, the network cannot distinguish am-DSB and WBFM signals well. This can be
attributed to the small observation window (0.64 ms of modulated speech per example) and
low information rate with frequent silence between words [43]. Meanwhile, the network
also has a certain ambiguity to distinguish QAM16 and QAM64. However, this problem
has been alleviated compared to [14] since the proposed method improves the network
generalization ability.

8PSK
AM-DSB

AM-SSB
BPSK

CPFSK
GFSK

PAM4
QAM16

QAM64
QPSK

WBFM

Predicted label

8PSK

AM-DSB

AM-SSB

BPSK

CPFSK

GFSK

PAM4

QAM16

QAM64

QPSK

WBFM

T
ru

e
 l
a
b
e
l

0.99

0.68 0.32

0.01 0.95 0.02 0.01

0.99

1.00

1.00

0.99

0.97 0.01

0.02 0.05 0.93

0.01 0.99

0.27 0.73

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

8PSK
AM-DSB

AM-SSB
BPSK

CPFSK
GFSK

PAM4
QAM16

QAM64
QPSK

WBFM

Predicted label

8PSK

AM-DSB

AM-SSB

BPSK

CPFSK

GFSK

PAM4

QAM16

QAM64

QPSK

WBFM

T
ru

e
 l
a
b
e
l

0.83 0.02 0.03 0.01 0.10

0.96 0.04

0.02 0.94 0.01

0.99

1.00

0.98 0.01

0.01 0.99

0.01 0.93 0.05

0.01 0.04 0.95

0.02 0.01 0.95

0.61 0.01 0.37

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

8PSK
AM-DSB

AM-SSB
BPSK

CPFSK
GFSK

PAM4
QAM16

QAM64
QPSK

WBFM

Predicted label

8PSK

AM-DSB

AM-SSB

BPSK

CPFSK

GFSK

PAM4

QAM16

QAM64

QPSK

WBFM

T
ru

e
 l
a
b
e
l

0.08 0.03 0.56 0.06 0.08 0.06 0.03 0.01 0.03 0.04 0.01

0.67 0.03 0.06 0.23

0.02 0.90 0.02 0.01 0.01

0.05 0.02 0.45 0.19 0.03 0.03 0.12 0.02 0.03 0.05 0.02

0.08 0.04 0.48 0.05 0.15 0.11 0.02 0.01 0.02 0.03 0.03

0.03 0.09 0.24 0.02 0.09 0.40 0.02 0.01 0.10

0.01 0.01 0.18 0.75 0.02

0.13 0.05 0.26 0.37 0.16

0.05 0.36 0.58

0.08 0.02 0.50 0.07 0.07 0.07 0.03 0.03 0.04 0.07 0.01

0.59 0.04 0.08 0.26

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 9. Confusion matrices of 2-layer pruned GAM-HRNN model on RadioML 2016.10a dataset at (a) 18 dB SNR, (b) 0 dB
SNR, and (c) −8 dB SNR.

As mentioned in 2.1, recurrent models have recurrent connections and non-recurrent
connections. Figure 6 shows the results of the proposed pruning algorithm by removing
only the recurrent connections. The importance of performing this step is illustrated in
Figure 10, which shows the consequences of pruning both the recurrent and non-recurrent
connections. We can observe that LSTM suffers from an obvious performance decrease as
the connections being pruned. As for GRU and GAM-HRNN, the performances are not as
good as those shown in Figure 6. Therefore, we conjecture that removing non-recurrent
weights that connect input neurons to recurrent units at each time step may result in
inefficient feature extraction, resulting in worse model performance. On the other hand,
pruning recurrent weights appropriately can facilitate RNN memory transmission.

Sensors 2021, 21, 6410 12 of 14

100 90 80 70 60 50 40 30

Percentage of weights remaining(%)

59.5

60.0

60.5

61.0

61.5

62.0

62.5

A
cc

u
ra

cy
(%

)

2-layer GAM-HRNN

2-layer LSTM

2-layer GRU

Figure 10. Classification accuracy for the proposed pruning method on three RNN models (both
recurrent and non-recurrent connections are pruned).

4. Conclusions

In this paper, we present a sparse learning algorithm for RNNs on AMC problems
based on the statistics of weight magnitude and gradient momentum. We demonstrate
experimentally that non-recurrent connections should be retained during pruning. The
proposed method can alleviate the computational and storage burden for recurrent models,
facilitating their hardware implementations on devices with limited resources. Further-
more, experimental results also show that the proposed method can produce a neural model
with a certain degree of sparsity that outperforms its dense counterpart. The efficiency of
the proposed method is verified on both feedforward and recurrent neural architectures.

Our future work includes many aspects. For example, as the surviving neural connec-
tions are updated during training, the gradient of training loss with respect to the removed
connections may become larger. Such connections can also contribute to reducing the
training loss efficiently. Thus, mechanisms to restore the pruned weights can be consid-
ered. On the other hand, the proposed method produces unstructured sparsity other than
structured sparsity [24]. Hence, the resulting sparse networks are currently not supported
in terms of being accelerated by hardware. For this reason, the proposed method can be
further extended to produce structured sparsity.

Author Contributions: Conceptualization, K.Z. and W.L.; methodology, K.Z. and W.L.; software,
K.Z. and W.L.; validation, K.Z., W.W. and W.L.; formal analysis, K.Z., W.W. and W.L.; investigation,
K.Z., W.W. and W.L.; data curation, K.Z.; writing—original draft preparation, K.Z.; writing—review
and editing, K.Z., W.W. and W.L.; project administration, W.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. Survey of automatic modulation classification techniques: Classical approaches and

new trends. IET Commun. 2007, 1, 137–156.:20050176. [CrossRef]
2. Huang, S.; Yao, Y.; Wei, Z.; Feng, Z.; Zhang, P. Automatic Modulation Classification of Overlapped Sources Using Multiple

Cumulants. IEEE Trans. Veh. Technol. 2017, 66, 6089–6101. [CrossRef]

http://doi.org/10.1049/iet-com:20050176
http://dx.doi.org/10.1109/TVT.2016.2636324

Sensors 2021, 21, 6410 13 of 14

3. Dobre, O.A.; Hameed, F. Likelihood-based algorithms for linear digital modulation classification in fading CHANNELS.
In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006;
pp. 1347–1350. [CrossRef]

4. Chavali, V.G.; Da Silva, C.R. Classification of digital amplitude-phase modulated signals in time-correlated non-Gaussian
channels. IEEE Trans. Commun. 2013, 61, 2408–2419. [CrossRef]

5. Swami, A.; Sadler, B.M. Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun. 2000, 48, 416–429.
[CrossRef]

6. Yuan, J.; Zhao-yang, Z.; Pei-liang, Q. Modulation classification of communication signals. In Proceedings of the MILCOM 2004
IEEE Military Communications Conference, Monterey, CA, USA, 31 October–3 November 2004. [CrossRef]

7. Lopatka, J.; Pedzisz, M. Automatic modulation classification using statistical moments and a fuzzy classifier. In Proceedings of
the WCC 2000—ICSP 2000, 2000 5th International Conference on Signal Processing Proceedings, 16th World Computer Congress
2000, Beijing, China, 21–25 August 2000; pp. 1500–1506. [CrossRef]

8. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252.

9. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies—Proceedings Conference, 2019; Minneapolis, MN, USA, 2 June–June 7 2019; Volume 1,
pp. 4171–4186.

10. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015,
arXiv:1506.00019.

11. Zhang, D.; Ding, W.; Zhang, B.; Xie, C.; Li, H.; Liu, C.; Han, J. Automatic modulation classification based on deep learning for
unmanned aerial vehicles. Sensors 2018, 18, 924. [CrossRef]

12. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
13. Rajendran, S.; Member, S.; Meert, W.; Giustiniano, D.; Member, S.; Lenders, V.; Pollin, S.; Member, S. Classification with

Distributed Low-Cost Spectrum Sensors. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 433–445. [CrossRef]
14. Zang, K.; Ma, Z. Automatic Modulation Classification Based on Hierarchical Recurrent Neural Networks with Grouped Auxiliary

Memory. IEEE Access 2020, 8, 213052–213061. [CrossRef]
15. Liao, K.; Zhao, Y.; Gu, J.; Zhang, Y.; Zhong, Y. Sequential Convolutional Recurrent Neural Networks for Fast Automatic

Modulation Classification. IEEE Access 2021, 9, 27182–27188.
16. Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for efficient

evaluation. Adv. Neural Inf. Process. Syst. 2014, 2, 1269–1277.
17. Ba, L.J.; Caruana, R. Do deep nets really need to be deep? Adv. Neural Inf. Process. Syst. 2014, 3, 2654–2662.
18. Luo, Y.; Hong, P.; Su, R.; Xue, K. Resource Allocation for Energy Harvesting-Powered D2D Communication Underlaying Cellular

Networks. IEEE Trans. Veh. Technol. 2017, 66, 10486–10498. [CrossRef]
19. Liu, M.; Song, T.; Gui, G. Deep cognitive perspective: Resource allocation for noma-based heterogeneous IoT with imperfect SIC.

IEEE Internet Things J. 2019, 6, 2885–2894. [CrossRef]
20. Wang, Y.; Yang, J.; Liu, M.; Gui, G. LightAMC: Lightweight Automatic Modulation Classification via Deep Learning and

Compressive Sensing. IEEE Trans. Veh. Technol. 2020, 69, 3491–3495. [CrossRef]
21. Carreira-Perpiñán, M.A.; Idelbayev, Y. ’Learning-Compression’ Algorithms for Neural Net Pruning. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8532–8541. [CrossRef]

22. Lee, N.; Ajanthan, T.; Torr, P.H. SNIP: Single-shot network pruning based on connection sensitivity. arXiv 2018, arXiv:1810.02340.
23. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. In Proceedings of the

Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 1135–1143.
24. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1389–1397.
25. Li, H.; Samet, H.; Kadav, A.; Durdanovic, I.; Graf, H.P. Pruning filters for efficient convnets. In Proceedings of the 5th International

Conference on Learning Representations (ICLR 2017)—Conference Track Proceedings, Toulon, France, 24–26 April 2017; pp. 1–13.
26. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In Proceedings of the 7th

International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019; pp. 1–42 .
27. Louizos, C.; Welling, M.; Kingma, D.P. Learning sparse neural networks through L0 regularization. In Proceedings of the 6th

International Conference on Learning Representations (ICLR 2018)—Conference Track Proceedings, Vancouver, BC, Canada,
30 April–3 May 2018; pp. 1–13.

28. Dettmers, T.; Zettlemoyer, L. Sparse Networks from Scratch: Faster Training without Losing Performance. arXiv 2019,
arXiv:1907.04840.

29. Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
30. Werbos, P.J. Backpropagation Through Time: What It Does and How to Do It. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
31. Stanley, R.E.; Taraza, D. Bearing characteristic parameters to estimate the optimum counterweight mass of a 6-cylinder in-line

engine. Am. Soc. Mech. Eng. Intern. Combust. Engine Div. (Publ.) ICE 2001, 36, 123–135. [CrossRef]

http://dx.doi.org/10.1109/CCECE.2006.277525
http://dx.doi.org/10.1109/TCOMM.2013.041113.120548
http://dx.doi.org/10.1109/26.837045
http://dx.doi.org/10.1109/MILCOM.2004.1495157
http://dx.doi.org/10.1109/icosp.2000.893385
http://dx.doi.org/10.3390/s18030924
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TCCN.2018.2835460
http://dx.doi.org/10.1109/ACCESS.2020.3039543
http://dx.doi.org/10.1109/TVT.2017.2727144
http://dx.doi.org/10.1109/JIOT.2018.2876152
http://dx.doi.org/10.1109/TVT.2020.2971001
http://dx.doi.org/10.1109/CVPR.2018.00890
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1115/ices2001-140

Sensors 2021, 21, 6410 14 of 14

32. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

33. Reed, R.; Member, S. Pruning Algorithms-A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef] [PubMed]
34. Dai, X.; Yin, H.; Jha, N.K. NeST: A Neural Network Synthesis Tool Based on a Grow-and-Prune Paradigm. IEEE Trans. Comput.

2019, 68, 1487–1497.
35. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010,

9, 249–256.
36. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations (ICLR 2015)—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
37. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.
38. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2323. [CrossRef]
39. O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. Commun. Comput. Inf. Sci. 2016,

629, 213–226.
40. Ma, H.; Xu, G.; Meng, H.; Wang, M.; Yang, S.; Wu, R.; Wang, W. Cross model deep learning scheme for automatic modulation

classification. IEEE Access 2020, 8, 78923–78931. [CrossRef]
41. Tekbiyik, K.; Ekti, A.R.; Gorcin, A.; Kurt, G.K.; Kececi, C. Robust and Fast Automatic Modulation Classification with CNN under

Multipath Fading Channels. In Proceedings of the IEEE Vehicular Technology Conference, Antwerp, Belgium, 25–28 May 2020;
42. Mossad, O.S.; Elnainay, M.; Torki, M. Deep convolutional neural network with multi-task learning scheme for modulations

recognition. In Proceedings of the 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC
2019), Tangier, Morocco, 24–28 June 2019; pp. 1644–1649. [CrossRef]

43. O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017,
3, 563–575.

http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/ACCESS.2020.2988727
http://dx.doi.org/10.1109/IWCMC.2019.8766665

	Introduction
	Methods
	Notation
	Recurrent Neural Networks
	Pruning Method

	Experimental Results and Discussions
	Experimental Configuration
	MNIST and CIFAR10 Datasets
	RadioML 2016.10a Dataset

	Results on Standard MNIST and CIFAR10 Datasets
	Results on RadioML 2016.10a Dataset

	Conclusions
	References

