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Additive manufacturing of 
micrometric crystallization  
vessels and single crystals
Oded Halevi1,2, Hui Jiang2, Christian Kloc2 & Shlomo Magdassi1

We present an all-additive manufacturing method that is performed at mild conditions, for the 
formation of organic single crystals at specific locations, without any photolithography prefabrication 
process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a 
water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to 
form a nucleus at a specific location, followed by additional printing, which led to the growth of a single 
crystal. The specific geometry of the confinement enables control of the specific locations of the single 
crystals, while separating the nucleation and crystal growth processes. By this method, we printed 
single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method 
is based on a simple and controllable wet deposition process, it enables formation of arrays of single 
crystals at specific locations, which is a prerequisite for mass production of active organic elements on 
flexible substrates.

Additive manufacturing processes such as inkjet and 3D printing are rapidly entering into new fields, bringing 
new approaches to what many relate to as the third industrial revolution. Among the benefits and advantages of 
these technologies is the production of tailor-made tools and even reaction vessels1,2. These items and devices 
can be designed for specific functions and purposes such as pressure durable reactors, incorporation of catalysts 
within reactor walls3, and formation of electronically active devices4,5.

Additive manufacturing can be highly efficient when combined with the technology of organic semiconduc-
tors. These materials have become a major area of research due to the maturity of devices based on them; such as 
organic light-emitting diodes (OLEDs), which are used for active-matrix OLED TV, or polymer LEDs for light-
ing. Therefore, intense efforts have led to the optimization of organic semiconductors technologies and discov-
eries of new materials6,7. These compounds demonstrate significant differences compared with inorganic-based 
electronic materials and devices; low manufacturing costs, solubility, flexibility, and simple processing methods 
are some of the qualities that make these materials so promising for utilization in various technologies8. Due to 
these differences, organic semiconductors seem to be preferred for low-energy manufacturing technologies like 
printing, and for instruments in which the space or element dimensions are crucial, such as printed electronics on 
the back of an active-matrix OLED TV screen. However, printing elements in the micrometers scale requires dif-
ferent materials properties than those designated for photolithographic based technologies and for the fabrication 
of electronic circuits in the nanometers scale. The most important issues are the physical properties of materials 
that would enable current conduction in long paths and efficient switching of such large devices. Therefore, due 
to the requirement of a well-controlled structure and quality of the electronic active parts of circuits, organic 
semiconductors would be preferred if made from small, high quality organic single crystals.

Polycyclic aromatic hydrocarbons (PAHs) such as perylene, rubrene, anthracene and their derivatives demon-
strate semiconducting behavior due to their conjugated π​-electrons system, and are used in many electronic 
devices such as organic field-effect transistors (OFETs)9. The highest electronic performances, are mostly obtained 
in devices that are based on single crystals, which demonstrate high purity, short and long-term structural order, 
and lack of grain boundaries10,11. However, until recently, the fabrication of such devices required the growth of 
crystals from solution or by physical vapor deposition (PVD)12. These two methods limit the applicability of sin-
gle crystal based devices due to time consuming and crystal transferring difficulties; thus, the controlled and fast 
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deposition of single crystals of these materials has become a challenging research area. In order to gain significant 
control over the growth of a large number of identical single crystals, forming active elements of electronic cir-
cuits, it is required to create a single nucleus at a specific location. Once a nucleus is formed, additional building 
blocks should be supplied to the nucleus for its growth. Some efforts have been made to gain control over the 
deposition of both organic and inorganic single crystals13–16. A highly effective approach to control the assembly 
and organization of functional materials in general, and specifically their formation of single crystals, is by spatial 
confinement. The importance of spatial confinement is due to the ability to control various features such as crystal 
orientation, location, the mean size of crystalline domains, and the ease of fabrication17. This was demonstrated 
for example by Moto et al., where individual single crystals were grown by the deposition of solution into a 
defined confinement frame that enabled geometrical separation between nucleation control region (NCR) and 
growth control region (GCR)18. Another case in which spatial confinement enabled the formation of defined 
structures as presented by Valle et al., who deposited laminin on highly hydrophobic, anti-adhesive substrates 
such as Teflon-AF by lithographically controlled wetting, in order to control cell adhesion and growth19. This 
deposition method has been also utilized by Gentili et al. to grow micrometric single crystals at specific locations 
by confining the solution of an organic semiconductor20.

However, in the field of crystallization, there are no reports in which only additive manufacturing technolo-
gies, such as inkjet printing, are utilized for the process of crystal growth. Inkjet printing is a powerful additive 
tool, which enables the deposition of many forms of liquid inks on a variety of substrates. It is a fast, cost-effective, 
highly precise and controllable method with a micrometric resolution21,22. Hasegawa et al. used a substrate with 
a pre-fabricated hydrophilic pattern, which was prepared by photolithography23, and utilized inkjet printing for 
the formation of single crystals at specific location. In their work, they inkjet printed an anti-solvent, followed by 
printing a semiconductor solution, thus resulting in crystal formation. Later, Park et al. used source and drain 
electrodes, which were made by PVD as nucleation sites, while depositing an organic solution into a confined 
hydrophilic area by inkjet printing24. The hydrophilic areas were also made by a photolithographic process, which 
was performed prior to printing. These methods enabled the formation of pure, micrometric single crystals, 
which were suitable for fabrication of high-performance devices such as OFETs. However, these and other meth-
ods require the combination of various fabrication and deposition processes, which mostly include photolithog-
raphy, lift-off techniques, and solution deposition methods14,16,25. So far, no one has presented an all-additive 
manufacturing approach for the fabrication of the crystallization areas, followed by formation of single crystals 
also by deposition of the organic solution. This approach for the controlled growth of single crystals has many 
implications concerning the time and cost of the process and also its applicability to a variety of materials, sub-
strates including plastics, at large production scale. Lately, inkjet printing has been used to etch microwells and to 
deposit a solution of an organic semiconductor26. However, this method enabled forming polycrystalline film in 
each microwell and not a single crystal.

Herein, we propose an additive manufacturing process, which is based on inkjet-printing for the controlled 
growth of single crystals at specific locations on the substrate. The proposed method utilizes the printer both as 
a high-resolution lithographic tool for the pre-fabrication of a complex confinement frame, in which the crys-
tallization process takes place; and for the deposition of the semiconductor solution in a controlled and grad-
ual manner, which enables separation of nucleation from growth. By this method, we printed single crystals of 
perylene, which are suitable for the formation of OFETs. Moreover, since this method is in essence a one-step wet 
deposition process it enables formation of arrays of single crystals at specific locations, which is a prerequisite for 
mass production processes of active organic elements on flexible substrates.

Results
Inkjet-printing of confinement frames.  The printing of confined frames was the first step towards 
obtaining a large number of individual micrometric crystals at specific location on surfaces that are as large as 
A4 sheet. In this method (Fig. 1), each frame would act as a micrometric crystallization vessel for the growth of 
a single crystal of perylene. Confinement of solutions can be achieved by inducing mechanical barrier due to a 
presence of solid walls, or by causing hydrophilic/lipophilic interactions.

In our approach we use both; printing of a hydrophilic frame that also acts as a mechanical barrier, while 
having a unique design, with pre-determined wall height and thickness. The building block of the wall is AlCl3, 
which easily dissolves in water at relatively high concentrations, thus enables a sufficient load of the wall forming 
material. In addition, it does not precipitate too rapidly and adsorbs water from the air, thus minimizing typi-
cal print-head clogging problems during printing. Moreover, upon drying, the precipitated building block is a 
hydrated salt, therefore presenting hydrophilic characteristics that will enable confinement of organic solutions 
without the dissolution of the wall material. An AlCl3 solution in a 1:1 mixture of diethylene glycol butyl ether 
(DB) and deionized water was inkjet-printed onto a silicon wafer, to fabricate defined micrometric geometrical 
frames, as shown in Fig. 2a. The figure demonstrates a typical printed single micrometric crystallization frame 
with a specific design that will be explained later, and arrays of many such frames, which can be utilized for mak-
ing arrays of single crystals as will be presented in the following sections. Each frame was fabricated by printing 
five layers of the electrolyte. The height of each wall of the frame is about 300 nanometers, and its width is about 
60 micrometers. Obviously, these dimensions can be modified by changing the printing parameters and the phys-
icochemical properties of the printing solution.

Controlled crystallization of single crystals.  Following the printing of the confinement frames, the 
organic solution of the semiconductor was printed within the frames, to form a single crystal upon evaporation of 
the solvent. The chosen “printing ink” in this work was a concentrated solution of perylene in a 1:1 mixture of iso-
phorone and propylene glycol phenylether (PPh). Although not considered a relatively high-performance organic 
semiconductor on its own, perylene was chosen due to its being a parent compound for many semiconducting 
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materials27. Since we aimed to initiate the crystallization process at a specific site, we printed and tested confine-
ment frames with a variety of geometrical shapes and sizes (see Supplementary Fig. S1). All frames were com-
posed of a nucleation controlled region (NCR) connected to a growth controlled region (GCR). Figure 2a shows 
the optimal geometry of the printed frame. This structure was selected for two reasons: Firstly, to obtain a better 
separation between growth and nucleation processes, and secondly, to direct the flow of the solution towards the 
formed nucleus. The latter should minimize the dependency on the diffusion rate of perylene molecules in the 
solution towards the forming crystal, and lower the chances of nucleation and growth at undesired locations in 
the growth region. In this funnel-like shape of the frame, the NCR is narrower compared to the GCR, causing a 
capillary flow of the solution from the GCR towards the NCR.

Initial experiments on SiO2/Si and polyethylene terephthalate (PET) substrates showed that the perylene solu-
tion, which was printed into the GCR, did not spread sufficiently fast into the NCR. Thus, upon solvent evapo-
ration, instead of forming a single nucleus, several small needle-like perylene crystals were observed (Fig. 3a). 
Therefore, an active approach of forming a single nucleus was necessary. This was achieved by gradual deposi-
tion of the organic solution at a specific location in the NCR by precise printing of single droplets, enabling the 

Figure 1.  The method of inkjet printing of a single crystal. First, AlCl3 confinement frame is printed in the 
desired funnel-like shape (steps a,b). Then, several drops are printed into the narrow part of the frame that acts 
as the NCR (step c). As the solution evaporates, microcrystals are formed (step d). Following this, the solution is 
printed into the GCR, until it reaches the microcrystal (step e). The growth of a single crystal commences at the 
dividing line of the two regions (step f).

Figure 2.  Inkjet-printed AlCl3 confinement frames on SiO2/Si. (a) A single frame, height of 325 ±​ 41 nm.  
(b) An array of AlCl3 frames.
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formation of a nucleus close to the GCR (Fig. 3b). In the majority of cases, a thick line of microcrystals were 
formed along the NCR, due to the spreading of the deposited solution along the walls of the sleeve-shaped region. 
In many cases, a single microcrystal reached the dividing line between the NCR and GCR, and could be used as a 
nucleus for the subsequent growth step which would take place within the GCR. After a nucleus has been formed, 
the perylene solution was further printed in the lower part of the GCR, to gradually fill the whole frame, thus 
initiating the growth of a single crystal at the desired location (Fig. 3c).

During the process we have encountered several challenges. Occasionally, the nucleus was formed more than 
30 μ​m above the NCR-GCR dividing line. In those cases, the deposited solution in the GCR did not reach the 
nucleus sufficiently fast, resulting in the formation of several microcrystals dispersed within the confinement. 
Moreover, in cases when the growth started farther up in the NCR, its strong directional influence resulted in 
formation of a long needle-like crystal connected to a rectangular crystal at its end (see Supplementary Fig. S2). 
Also, despite of the directional flow of the solution from the GCR to the NCR, in many cases a single crystal was 
detached from the NCR and drifted to other parts of the GCR (Fig. 4a and Supplementary Fig. S3). However, as 
long as no additional nuclei drifted away, a single crystal was indeed formed at the center of the frame (Fig. 4b,c). 
The high quality and uniformity of the single crystals were investigated by a polarized optical microscope; Fig. 5 
demonstrates the uniform darkening of the crystal due to the rotation of the polarizing lens.

Following the printing and crystallization process, the samples were washed with cold isopropyl alcohol to 
remove the excess solvent (see Supplementary Fig. S2). As can be seen in Fig. 4b,c the excess of nuclei remained 
in the nucleation region, or were washed away by the isopropyl alcohol. Preliminary experiments showed that 
the deposited aluminum salt dissolves when exposed to water, however, at this stage we could not completely 
remove the frames without physically damaging the organic crystals. To determine the yield of the process, three 
independent printing experiments were conducted. In each experiment, an array of about 40 frames was printed. 
Following that, the perylene ink was printed to form single crystals (Supplementary Fig. S4), according to the 
procedure described in the experimental section. A success was considered as follows: obtaining only one single 
crystal, which is located in the growth control region, with a minimal top-side surface area of 2,500 μ​m2. The 
calculated yield of the process was 32 ±​ 8%.

Figure 3.  The growth process of a crystal. (a) Multi-crystalline needles of perylene, formed due to the absence 
of a single nucleus. (b) Formation of a nucleus in the NCR. Marked with a red circle is the microcrystal that 
reached the NCR-GCR dividing line and was later used as a nucleus for crystal growth. (c) Gradual growth of a 
crystal in the dividing line of the NCR and the GCR: Ink is deposited in the GCR and gradually spreads toward 
the microcrystal located in the NCR. Following is the growth of the single crystal in the GCR. (c2-c8) The 
directional flow of the solution from the GCR to the NCR is shown as the solution moves from the GCR to the 
edge of the NCR over time.
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Device fabrication and characterization.  The size of the printed perylene single crystal was typically 
~100 μ​m x 100 μ​m (Fig. 4), which was suitable to make a field-effect transistor. Individual single-crystal perylene 
transistors have been made as shown in Fig. 6, in a top-contact, bottom-gate configuration. Copper grid was 
used as the mask for making the symmetrical electrodes (Au thin film, ~100 nm) by thermal evaporation, per-
formed directly on the single crystals present within the frame. All transistors were fabricated and characterized 
in air, under ambient conditions. Typical p-type characteristic was observed in perylene single crystal field-effect 
transistor, having a mobility of ~4.0 ×​ 10–4 cm2 V−1 s−1. This value is in the same range reported previously for 
perylene single crystal devices made by solution growth methods28.

It should be emphasized that the focus of the paper is to show for the first time that by using inkjet printing, 
which is a digital wet deposition process, we could induce crystallization at specific locations, without using any 
photolithographic processes. The process was demonstrated for an organic semiconductor, and therefore we per-
formed a limited number of experiments on device fabrication. Making a high quality transistors was very chal-
lenging, due to factors such as residual solvents and the large thickness of the crystals (208 ±​ 80 nm) compared to 

Figure 4.  Three single crystals in AlCl3 confinement frames following their washing with isopropyl alcohol. 
(a) Two crystals grown, one at the NCR-GCR dividing line and one in the GCR. This was caused due to the 
drift of a nucleus from the NCR to the GCR during the growth step. (b) A Single crystal grown inside the AlCl3 
confinement frame. Here, the excess nuclei are gathered in the NCR following the washing with isopropyl 
alcohol. (c) A single crystal, located in the center of the confinement frame due to its drift from the NCR-GCR 
dividing line during its growth. The excess nuclei in this case were washed away by the isopropyl alcohol.

Figure 5.  Microscope imaging of the single crystal in the confined frame on PET with two polarizers. 
Darkening occurred at a 50°.
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those fabricated from vapor phase, which showed two or three orders of magnitude higher mobility27. Another 
possibility for the observed low transistor performance of the discussed device could be unintentional doping of 
the grown perylene crystal by hydrated AlCl3. Therefore, we performed energy dispersive X-ray analysis (EDXA) 
on four crystals to evaluate presence of Al or Cl (analysis performed on crystals close to and far from the frame). 
In all cases we could not find presence of Al and Cl, as shown in Supplementary Fig. S5. It is worth noticing that 
many polycrystalline perylene devices showed no field-effect activity at all.

Conclusions
We have developed an all-additive manufacturing method for the controlled formation of a large number of 
individual single crystals of organic functional materials, at pre-designed locations. For the first time, we utilized 
the printer not only for solution deposition but also for the fabrication of a confining frame that enables the 
controlled growth of a single crystal within a specific region. This is the first step towards an all-inkjet printing 
process for production of single crystal-based devices. Moreover, since all processes take place under mild condi-
tions, it will open a way for a variety of substrates and organic materials including semiconductors that could not 
be used until now. Currently, further work is being conducted to gain better control over the location of the single 
crystals, along with combining the controlled crystallization process with fabricating arrays of full devices includ-
ing printed metallic electrodes. In addition, since the mobility of the printed crystals is lower than PVD grown 
crystals, further work should be done regarding controlling the crystal thickness and the selection of organic 
semiconducting materials with which the interaction of solvent residues will not reduce the mobility. The process 
described here presents a proof of concept for a wet deposition organic circuit technology in which individual 
steps have been developed and the assembly of these steps into a full production process is still required. It should 
be mentioned that by using a similar procedure described for printing on silicon wafers, we were able to grow sin-
gle crystals also on PET, which is important for plastics electronics, although further optimization is required to 
increase the yield. We expect that by utilizing inkjet printing both for fabricating the crystallization vessel and for 
solution deposition, organic single crystal of various functional materials will become more accessible and their 
electronic and optical properties may be utilized in applications such as electronic papers or textiles.

Methods
Inkjet printing lithography of AlCl3 confinement frames.  The ink was a 5%wt solution of AlCl3·6H2O 
(≥​99%, Fluka) in a 1:1 mixture of dionized water and diethylene glycol butyl ether (≥​99%, Aldrich). The sub-
strates were polyethylene terephthalate, PET, (125 μ​m thickness, Jolybar Israel) and n-doped Silicon wafers with 
a 200 nm layer of SiO2 (Dashro Trade). The substrates were pre-cleaned by sonication, first in an ethanol (96%, 
Bio-lab) bath followed by an isopropyl alcohol (CP, Bio-Lab) bath and finally dried with a stream of N2. Inkjet 
printing of the confinement frames was carried out using an Omnijet100 printer (Unijet, Korea), with a Dimatix 
1 picoliter printing head. Printing on SiO2/Si: The substrates temperature during printing was 60 °C. Printing 
was conducted at 800 Hz, and 1000 dpi. The waveform consisted of a 2 μ​s rise time to 30 Volts, another rise time 
of 6 μ​s to 40 volts and a 3 μ​s fall time to 0 volts. Each confinement frame consisted of 5 layers. Printing on PET: 
Same as on SiO2/Si with the following changes: The substrates temperature during printing was 65 °C. Printing 
was conducted at 500 Hz. Each confinement frame consisted of 10 printed layers. The thickness measurements 
were conducted by a Dektak 150 profiler (Veeco, USA). Elemental analysis was performed by using SEM micro-
scope (XHR Magellan 400L) equipped with Energy-dispersive X-ray (EDX) probe (Oxford X-MAX, Oxford 
Instruments).

Perylene crystal growth.  The perylene ink was prepared by dissolving 5.6 mg of perylene (≥​99.5%, 
Aldrich) in a mixture of 1 g of isophorone (98%, Acros) and 1 g of propylene glycol phenyl ether (≥​93%, Aldrich). 
After 30 minutes of sonication, the saturated solution was left at room temperature overnight and then filtered. 
1 mL of the ink was loaded into the cartridge with a 10 pL Dimatix printing head. Printing on SiO2/Si: The 
substrates temperature during printing was 35 °C. The printing head temperature was 27 °C. Printing of single 
drops was conducted at 1000 Hz. First, three drops were printed into the middle of the NCR, and the printed 
solution was kept for several minutes, to enable formation of the nucleus. Once a nucleus was formed, 100 drops 

Figure 6.  Transfer curve of individual perylene single crystal field-effect transistor. The inset is the optical 
image of the corresponding device, the channel is bridged between A and B.
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were printed in the bottom third of the GCR, followed by two additional repetitions of 50 drops each at the same 
location. The solvent was allowed to evaporate at the same temperature and a single crystal was formed after a 
few minutes. Following the formation of the crystals, the substrate was gently washed with cold isopropyl alcohol 
and dried with N2. Printing on PET: Same as on SiO2/Si with the following changes: The substrates temperature 
during printing was 35 °C. First, nine drops were printed into the middle of the NCR. Once a sufficient nucleus 
formed, four repetitions of 50 drops were printed into the bottom third of the GCR.

Device fabrication and characterization.  Organic field-effect transistors based on the individual planar 
perylene single crystals were fabricated. A thin-bar copper grid was used as a mask for gold electrodes by thermal 
evaporation. The grid was directly put on the top surface of perylene single crystals and a scotch tape was used to 
stick the two surfaces together. Following that, the device was put into vacuum for thermal evaporation of gold 
thin films, which acted as the source and drain electrodes. The heavily-doped n-type silicon wafer was used as a 
gate electrode. I-V characteristics of perylene single-crystal FETs were measured using a Keithley 4200-SCS and a 
micromanipulator probe station in a shielded box at room temperature in air. To verify that the aluminum frame 
does not contribute to the charge transport property, blank measurements of the devices comprising solely the 
frame and the electrodes were conducted as well.

Image acquisition.  Photos of the printing and crystallization processes were taken with the built-in cam-
era of the Omnijet 100 printer. Photos of the grown crystals were taken with a MicroPublisher 5.0 RTV camera 
(QImaging, Canada) on top of a CX41 optical microscope (Olympus).
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