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Abstract

Background: Research grade Fresh Frozen (FF) DNA material is not yet routinely collected in clinical practice. Many
hospitals, however, collect and store Formalin Fixed Paraffin Embedded (FFPE) tumor samples. Consequently, the
sample size of whole genome cancer cohort studies could be increased tremendously by including FFPE samples,
although the presence of artefacts might obfuscate the variant calling. To assess whether FFPE material can be
used for cohort studies, we performed an in-depth comparison of somatic SNVs called on matching FF and FFPE
Whole Genome Sequence (WGS) samples extracted from the same tumor.

Methods: Four variant callers (i.e. Strelka2, Mutect2, VarScan2 and Shimmer) were used to call somatic variants on
matching FF and FFPE WGS samples from a metastatic prostate tumor. Using the variants identified by these callers,
we developed a heuristic to maximize the overlap between the FF and its FFPE counterpart in terms of sensitivity
and precision. The proposed variant calling approach was then validated on nine matched primary samples. Finally,
we assessed what fraction of the discrepancy could be attributed to intra-tumor heterogeneity (ITH), by comparing the
overlap in clonal and subclonal somatic variants.

Results: We first compared variants between an FF and an FFPE sample from a metastatic prostate tumor, showing
that on average 50% of the calls in the FF are recovered in the FFPE sample, with notable differences between
callers. Combining the variants of the different callers using a simple heuristic, increases both the precision and the
sensitivity of the variant calling. Validating the heuristic on nine additional matched FF-FFPE samples, resulted in an
average F1-score of 0.58 and an outperformance of any of the individual callers. In addition, we could show that
part of the discrepancy between the FF and the FFPE samples can be attributed to ITH.

Conclusion: This study illustrates that when using the correct variant calling strategy, the majority of clonal SNVs
can be recovered in an FFPE sample with high precision and sensitivity. These results suggest that somatic variants
derived from WGS of FFPE material can be used in cohort studies.
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Background

Cohort analysis in which comprehensive genomic data of
large patients’ cohorts are being coupled with clinical in-
formation offers a vast potential for precision oncology.
So far, most large cohort studies relied on whole exome
sequencing (WES) or WGS of FF tumor material. How-
ever, the preservation of and access to FF tissues can be
limited. Indeed, in routine clinical practice, FF samples are
rarely available due to logistic reasons: they are difficult to
collect, prepare and are expensive to store. Optimally
exploiting available patients’ cohorts would therefore re-
quire collecting sequence information from FFPE samples
that are collected in routine standard of care for histo-
pathological diagnosis. This poses a problem as DNA ex-
tracted from FFPE specimens presents degradation such
as nucleic acid fragmentation, DNA crosslinks, abasic sites
leading to localized DNA denaturation, strand breaks, and
deamination leading to C > T mutations [1-3].

Several studies have established that sufficiently high-
quality DNA can be derived from FFPE material. Al-
though the processing and storage affect the quality of
the DNA and subsequent next generation sequencing
(NGS) data [4-7], for most samples, enough qualitative
DNA can be collected to perform NGS assays in order to
identify copy number variations (CNVs) and single nu-
cleotide variations (SNVs) [8—10]. Most studies that com-
pared somatic variants, obtained from sequencing
matched FF and FFPE samples, are based on whole exome
sequencing (WES). Depending on the study [11-13], an
overlap between 54 and 90% was found in somatic vari-
ants obtained from matched FF and FFPE samples. Differ-
ences in results can be attributed to differences in studied
cancer types (which might differ in ITH) and the fact that
different variant callers and quality thresholds were used.

In this work, we performed an in-depth comparison of
the degree to which the same somatic SNVs can be
called using WGS of FF and FFPE samples extracted
from the same tumor. This has been done on samples
from a metastatic prostate tumor from the Ghent Univer-
sity Hospital (UZ). Based on these findings, we developed
a variant calling strategy that uses an ensemble of different
variant callers. The proposed variant calling approach is
then validated on nine primary samples from Robbe et al.
[14] and although these samples were collected with a
slightly different aim and using different protocols, our ap-
proach robustly identified true positive variants in the
FFPE samples. Finally, we demonstrated that variants that
are not common to both the FF and the FFPE samples are
mainly subclonal, such that the discrepancy in variant calls
observed between the FF and the FFPE samples might be
attributed to ITH. Our results complement the findings of
Robbe et al. [14] and demonstrate the feasibility of accur-
ately detecting clonal variants in FFPE samples. However,
in contrast to previous studies, that focused mainly on
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maximizing the specificity, our variant calling strategy re-
sults in both a high precision and sensitivity. This suggests
that FFPE samples can be used for cohort analyses in can-
cer research e.g. for driver mutation identification.

Methods

Patient and samples

For this study, a patient from Ghent University Hospital
(UZ001) with isolated pulmonary recurrence of prostate
cancer after initial definitive local therapy was selected
for who we had both an FF and an FFPE sample from
the solitary pulmonary metastasis. The prostatic origin
of the lung metastatic adenocarcinoma was confirmed
by pathological review (J.V.D., S.V. and K.V.D.E.). Micro-
scopically, the pulmonary metastasis was composed of
eosinophilic tumor cells with very large pleomorphic
hyperchromatic nuclei and prominent nucleoli, which
exhibited a cribriform pattern (see Suppl. Fig. 1 A, Add-
itional File 2) with negative staining for CK7 and TTF-1
and positive PSA staining (see Suppl. Fig. 1 B, C and D,
Additional File 2); these findings were compatible with
metastatic prostate cancer. Two samples from this pul-
monary metastasis had been obtained, one had been
stored as FFPE and one as FF. Whole blood was col-
lected and informed consent was obtained at time of
clinical follow-up.

Pathologic quality control (QC) of UZ001 samples

For both the FF and the FFPE samples of patient UZ001,
5 um-thick haematoxylin and eosin-stained slides were
prepared and independently evaluated by two genitouri-
nary pathologists (J.V.D. and S.V.) to determine the tumor
cellularity. For the FFPE tissue, 11 adjacent 5 pm-tick sec-
tions were prepared. The first 10 sections were used for
DNA extraction, whilst the last section served as reference
to indicate a tumor-rich area suitable for macro-dissection
(more than 70% tumor cellularity). Manual macro-
dissection was performed using sterile scalpel blades. In-
formation about input materials is displayed in Table 1.

Preparation steps and sequencing of UZ001 samples

The genomic DNA (gDNA) was extracted from the
FFPE tissue using the proprietary method of Wuxi
(NextCODE SeqPlus extraction protocol) and from the
FF tissue with QIAamp DNA Mini Kit (Qiagen) accord-
ing to the manufacturer’s instructions. gDNA was ex-
tracted from a 200 uL. EDTA-whole blood sample using
the QIAamp® Blood Mini Kit (Qiagen) with QIAcube

Table 1 Input material (in ng) per sample analyzed of patient

Uz001
Sample type FFPE Blood FF
Input (ng) 300 300 500
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according to the manufacturer’s instructions. The DNA
samples were quantified with a Qubit 3.0 fluorescence
spectrometer (Life Technologies, Waltham, MA USA)
using a Qubit dsDNA BR assay kit. Covaris has been
used for DNA shearing. TruSeq® Nano DNA Library
Prep (Illumina) has been used for library construction.
The Illumina sequencing platform HiSeqX PE150 has
been used for WGS. The mean coverage was of 30X for
the blood sample and 100X for the tumor samples.

Samples used for validation

Access to tumor and matched control samples from a
pilot study of the 100,000 Genomes Project England has
been obtained. For nine patients, an FF and an FFPE sam-
ple from the same tumor (four prostate and five renal tu-
mors) and a matched blood sample (control) were
available. All the FFPE samples from prostate tumors were
prepared with the same protocol (temperature, time and
preparation kit). The protocol was the same for renal tu-
mors except that another preparation kit was used for
some FFPE samples (see Table 2). More details about the
preparation steps and sequencing are available in the
paper of Robbe et al. (2018).

Somatic variant calling

Quality checking were obtained by running GATK Picard
tools (https://broadinstitute.github.io/picard/). For som-
atic variant calling, we used Strelka2 from Illumina [15],
Mutect2 from GATK (version 4.1.2) [16], and Shimmer
(version 0.2) [17] with default settings. VarScan2 (version
2.2.3) [18] was run without imposing a minimal Variant
Allele Frequency (VAF) threshold. To select the most
reliable somatic calls, FilterMutectCalls with default pa-
rameters was applied on Mutect2, somaticFilter to the
VarScan2 output without imposing the default threshold
of minimal VAF and no additional somatic filters were ap-
plied to Strelka2 and Shimmer output. Table 3 provides a
summary of the main parameters of the four variant cal-
lers used. The same variant calling settings were used to
call somatic variants on all samples analyzed in this study.
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The default settings used by VarScan2 impose a
threshold for the minimum VAF at 0.2 (see somaticFilter
in VarScan2’s Online Manual). This prevents VarScan2
from detecting the variants with low allele frequency in
the FFPE sample. To recover also these variants and
hence maximize the overlap with the other callers, we
ran VarScan2 without the constraint on the minimal
VAF threshold. Using this non-default setting resulted in
VarScan2 detecting more variants with VAF lower than
0.2 and on overall increased the overlap in somatic vari-
ants detected by Strelka2, Mutect2 and Shimmer on the
same sample while also decreasing significantly the num-
ber of variants uniquely called by VarScan2 (data not
shown). Although we expected intuitively that most calls
obtained by VarScan2 without the VAF constraints
would also be present in calls from VarScan2 with de-
fault parameters, this appeared not to be the case (and
we could not find any reasonable explanation for this).

Identifying the stringency of the calls

For Strelka2, the stringency of the calls was determined
by the Somatic EVS, for Mutect2 by the TLOD scores,
for VarScan2 by the somatic p-values and for Shimmer
by g-values. The higher the scores were for Strelka2 and
Mutect2, the more significant were the variants. For
VarScan2 and Shimmer, the smaller values were the
most significant.

Measure to evaluate the concordance between FF and FFPE
samples

The overlap between reported calls in matching FF
and FFPE samples is reported in terms of sensitivity
and precision using the variants obtained in the FF
sample as gold standard. A somatic variant was con-
sidered present in both samples if in both samples
the variant was located at an identical chromosomal
position, and if the reference and the alternative al-
leles were identical.

Table 2 Description of samples available from a pilot study of the 100,000 Genomes Project England

patient ID FF sample ID FFPE sample ID Blood sample 1D Cancer Type FFPE Prep Kit
GelL007 LP2000456-DNA_AO01 LP2000467-DNA_AO01 LP2000446-DNA_AO1 Prostate Covaris
GelL008 LP2000457-DNA_AO1 LP2000468-DNA_AOQ1 LP2000447-DNA_AO1 Prostate Covaris
Gel024 LP2000558-DNA_AO01 LP2000596-DNA_AO01 LP2000577-DNA_AO1 Prostate Covaris
Gel028 LP2000559-DNA_AO01 LP2000597-DNA_AO01 LP2000578-DNA_AO1 Prostate Covaris
Gel004 LP2000462-DNA_AO1 LP2000691-DNA_AO1 LP2000452-DNA_A01 Renal Qiagen
Gel032 LP2000460-DNA_AO1 LP2000621-DNA_AO1 LP2000450-DNA_AO1 Renal Covaris
GelL065 LP2000498-DNA_AO01 LP2000645-DNA_AO01 LP2000484-DNA_AO1 Renal Covaris
Gel300 LP2000696-DNA_AOQ1 LP2000683-DNA_A01 LP2000695-DNA_AOQ1 Renal Qiagen
Gel365 LP2100046-DNA_AO01 LP2000888-DNA_AO01 LP2000888-DNA_CO3 Renal Covaris
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Table 3 Summary of the main parameters used for Strelka2, Mutect2, VarScan2 and Shimmer

Strelka2
Min Somatic EVS=7
Mutect2

Min base quality score =10

Min Phred-scaled confidence threshold =10
Min TLOD =5.3

Min NLOD =23

Sample ploidy =2

FilterMutectCalls:

Min MedianBaseQuality = 20

Min MedianMappingQuality = 30

Shimmer
Max g-value acceptable FDR = 0.05
VarScan2

Min coverage in normal, in tumor=38, 6
Min variant allele frequency = 0.01

Max somatic p-value = 0.05
somaticFilter:

Min variant allele frequency =0

Min read depth=10

Min average quality = 20

Max somatic p-value =0.01

Identifying the threshold maximizing the overlap between
FF and FFPE samples

For each variant caller, we searched for an optimal sig-
nificance threshold in the FFPE sample to obtain the lar-
gest concordance between samples (maximal F1-score).
The screening space for the optimization of the signifi-
cance threshold is displayed in Table 4.

Mutational profile analysis

The mutation profile of a sample is created by measuring
the frequency of SNVs in each of the 96 mutation types.
Those 96 mutation types represent every possible single
base substitution (C>A, C>G, C>T, T>A, T>C, T>
G) and the 5" and 3’ surrounding nucleotides, also called
trinucleotide context (e.g. A [C>A] T, A [C> A]C). The
mutational profiles were used at first to confirm that the
same mutational patterns were observed between the
matching FF and FFPE samples. Hereto, we measured for
each caller the cosine similarity between the mutational
profiles of the matching FF and FFPE samples. A higher
cosine similarity between the FF and the FFPE mutational
profiles indicates that the variant caller returns the same
mutation types in both samples and hence that no FFPE
specific mutational patterns were present that could re-
flect FFPE related biases.

In addition, the mutational profiles were used to assess
whether the FFPE sample was biased towards specific se-
quencing artefacts reflected by known COSMIC signa-
tures. Hereto, the fit to_signatures function from
Mutational Patterns R package [19] was used to decom-
pose mutational profiles into pre-defined COSMIC single
base substitution signatures [20]. This function searches
for the optimal linear combination of COSMIC signatures
that most closely reconstructs the mutation profile of the
sample by solving a non-negative least-squares problem,

where every COSMIC signature is defined by a unique
combination of the 96 mutation types. Subsequently, we
assessed for each sample to what extent COSMIC signa-
tures representative for sequencing artefacts contributed
to the most optimal reconstruction of its mutational pro-
file. Signatures reported in COSMIC as potentially repre-
sentative for artefacts but that were found in multiple
patients with prostate and renal cancer in COSMIC (bold
and underlined in Suppl. Table 1, Additional File 1) were
not considered as representative for artefacts in the ana-
lysis of the samples that originated from respectively a
prostate or renal tumors. Only samples that displayed a
minimal cosine similarity of 0.9 between the reconstructed
mutation profile of COSMIC signatures and the original
mutation profile were used to estimate the contribution of
sequencing artefact to the mutation profiles.

Copy number variation calling

Copy Number Variant (CNV) calling was done using the
GATK (version 4.1.2) somatic CNV calling pipeline.
Read counts per 1000 bp intervals were corrected for GC
bias and the samples from a pilot study of the 100,000
Genomes Project England were denoised using a panel
of normals (PoNs). We noted that these correction steps
resulted in less noisy count profiles (see Suppl. Fig. 2,
Additional File 2), but that in almost all samples, the
final FFPE CN segments were more fragmented com-
pared to those in the FF sample (see Suppl. Fig. 3, Add-
itional File 2). To assess to what extent these scattered
fragments resulted in a different CN status, we calcu-
lated the overlap of the segments, see Suppl. Table 2,
Additional File 1. From this table, it can be seen that the
fragmented segments in the FFPE sample often resulted
in false positive amplifications and, to a lesser extent, de-
letions. Since the VAF of variants in those segments

Table 4 Screening space for the threshold optimization for each variant caller

Strelka2

Somatic EVS from 5 to 20 (steps of 0.25)
Mutect2

TLOD from 0 to 200 (steps of 1)

Shimmer
Q-value from 0.0005 to 0.05 (steps of 0.0005)
VarScan2

Somatic p-value from 0.00005 to 0.01 (steps of 0.00005)
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would be corrected in the FFPE sample and not in the
FF sample, the CN calling could introduce an additional
bias in the analysis of VAFs. Therefore, we only selected
variants called by at least two callers in segments that
are diploid in both the FF and the FFPE samples, re-
ferred to as bona fide diploid variants. For the same rea-
son, variants on the sex chromosomes were excluded
from the analysis. Suppl. Table 3 (Additional File 1)
shows how many variants were retained for each sample.

Purity correction

To assess the purity of the samples, we could rely on the
pathologists’ estimate, where samples with a purity below
40% were discarded. To compensate for potential bias in
the pathologist’s estimate, we also applied two different
tools to estimate tumor purity. TPES [21] estimates tumor
content based on the set of variants called by at least two
variant callers in each sample and was complemented with
the FACETS tool [22], which looks at common human
SNP sites and measures purity based on an Expectation
Maximization of the ASCAT formulas [23]. For TPES, the
variants obtained through our variant calling strategy were
used as inputs (VCFs), together with the seg files obtained
from the GATK CNV pipeline. Because those filtered
VCFs contain less, but high-confident variants, we had to
lower the minSNVs parameter to 3 [23]. FACETS was run
using default parameters [22]. For patient UZ001, match-
ing RNA material was available such that we could assess
Tumor Infiltrating Leukocytes (specifically we tested for
infiltration of B cells, CD4 T cells, CD8 T cells, Mono-
cytes, Neutrophils and NK cells) through transcriptome
deconvolution, done using EPIC [24].

Clonal variant extraction

To identify clonal variants, we grouped the bona fide dip-
loid variants into different categories using the same ap-
proach as the TPES tool [21]. First, a kernel distribution is
estimated for the VAF distribution, where a Gaussian ker-
nel was used [25]. The optimal bandwidth for the kernel
function was determined using cross-validation over a grid
[0.1, 0.01], optimizing the log likelihood of the data [25].
Once the kernel density was estimated, the VAF data was
cut into segments at each local minimum of the density
distribution (see Suppl. Fig. 4, Additional File 2, for an il-
lustration). Then, by visual inspection of the plots, the
clonal population for each sample was determined. All
high-confidence variants with a VAF lower than the vari-
ants in the clonal subpopulation were labelled subclonal.

Results

In depth analysis of variant calling on matching FF and
FFPE metastatic prostate tumor samples (UZ001)

We aimed at testing to what extent WGS of FF- and
FFPE-derived material results in the identification of the
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same somatic SNVs. Hereto, we used one FF and one
FFPE sample of the same metastatic prostate tumor
from patient UZ001 (see Methods). We opted for a
metastatic sample as this is in general more homogenous
than primary samples, reducing differences in variant
calls due to ITH and sampling variation. A matching
blood sample, taken from the same patient, was used as
a reference to identify germline mutations.

Quality checking showed that in the matching FF and
FFPE samples, a comparable number of variants was
called (see Suppl. Tables 4 and 5, Additional File 1). In
addition, no bias towards FFPE specific C>T deamin-
ation artefacts was observed (see Suppl. Table 4, Add-
itional File 1). Both samples showed a similar average
coverage (see Suppl. Table 5, Additional File 1). To en-
sure that comparing the somatic variants called from the
matching FF and FFPE samples would be independent
of the specificities of the variant caller, we used four
somatic variant callers, i.e. Strelka2 [15], Mutect2 [16],
VarScan2 [18] and Shimmer [17].

Comparison of variants detected in respectively the FF
and FFPE sample
At first, we compared the extent to which each caller
identifies the same variants in the matching FF and FFPE
samples. All variant callers except VarScan2 were run
under default settings (see Methods). In general, more
calls were reported in the FFPE than in the FF sample, ex-
cept for VarScan2 (see Suppl. Fig. 5, Additional File 2).
Table 5 shows the overlap between somatic calls in the
matching FF and FFPE samples in terms of sensitivity and
precision using the calls from the same variant caller on
the FF sample as gold standard. Overall, variant callers
have an average sensitivity and precision of respectively
50.97 and 52.41%, meaning that 50.97% of the variants
from the FF sample are also detected in the FFPE sample
and 52.41% of the FFPE somatic variants are detected in
the FF sample. We also report the F1-score, which is the
harmonic mean of sensitivity and precision. On average,
the variant callers achieved an F1-score of 50.05%. Among
the four variant callers considered in this study, Strelka2
achieved the highest F1-score.

To get an idea of how good the sensitivity and preci-
sion from Table 5 are, we compared the calls from dif-
ferent variant callers on the same sample. In general, the

Table 5 Performance measures of calls considering the FF
sample as gold standard for each variant caller (UZ001)

Variant caller FF FFPE  Overlap Sensitivity Precision F1-score
Strelka2 6292 6761 4225 06715 0.6249 0.6474
Mutect2 10460 11,815 5755 0.5502 04871 0.5167
VarScan2 4067 1760 883 02171 05017 03031
Shimmer 8109 10,080 4865 0.6000 04826 0.5349
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difference between variant callers on the same sample is
larger than the difference between the FF and the FFPE
sample observed for the same caller (see Suppl. Fig. 5 and
6, Additional File 2). This implies that the choice of vari-
ant caller is at least as important as whether or not the
sample was FF or FFPE. Overall, the overlap between vari-
ant callers on the same sample is low, especially for the
FFPE sample (see Suppl. Fig. 6, Additional File 2). Shim-
mer agrees the least with the other variant callers, whereas
Strelka2 and Mutect2 tend to mutually agree in both the
FF and the FFPE samples (see Suppl. Tables 6 and 7, Add-
itional File 1).

To further confirm that no bias towards specific muta-
tional patterns was present between the FF and the FFPE
sample that could indicate FFPE related artefacts, we
assessed, for each caller, the cosine similarity between
the mutational profiles of the FF and the FFPE sample
(see Methods). Suppl. Table 8 (Additional File 1) illus-
trates that the mutational profiles of variants reported by
each caller were consistent between the FF and the FFPE
sample except for Shimmer, indicating the absence of
any bias towards specific mutational patterns in the
FFPE sample.

While the choice of variant caller turns out to play a piv-
otal role in the calls that are obtained, the basic analysis
above does not account for the properties of the called
variants. Indeed, we will demonstrate that the variants
considered in Table 5 represent both true variants and ar-
tefacts of the used variant caller, consistently made in the
FF and the FFPE sample. To assess the relevance of the
calls made by each of the callers in the overlap between
the FF and the FFPE sample, we first assessed to what ex-
tent each of the callers tends to reconstruct the same
(sub) clonal subpopulations in both the FF and the FFPE
samples and secondly whether high confidence calls are
consistent between both sample types.

Assessing whether variants called in the FF and FFPE

samples represent the same (sub) clonal populations

Given that the FF and the FFPE samples should have a
similar subclonal structure, as they derive from the same
metastatic tumor, we judged the relevance of the variants
called by either method by assessing whether they corre-
sponded in the FF and the FFPE sample to the same (sub)
clonal populations. To visualize the different populations
in each sample, we plotted for all detected variants the
coverage as a function of the VAF and the corresponding
histogram representing the distribution of the VAFs [26].
Figure 1 shows the results for Strelka2 in both the FF and
the FFPE samples. Similar figures for the three other vari-
ant callers can be found in the Supplementary Figures,
Additional File 2. Note that the VAF estimate of the major
distributions slightly differs between the different tools
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because of small discrepancies in their definition of the
VAF (see Suppl. Fig. 7, Additional File 2).

According to Strelka2 (Fig. 1), two distinct clusters of
variants can be observed in the FF sample, denoted by
the blue bars in the histogram: a small cluster at a VAF
of 0.05 and a larger cluster around a VAF of 0.25. In the
FFPE sample, only one cluster can be observed around a
VAF of 0.15. The calls that are common to the FF and
the FFPE sample are shown in orange, demonstrating
that the peak at a VAF of 0.25 in the FF sample does in-
deed shift to 0.15 in the FFPE sample. Almost all vari-
ants from the largest cluster in the FF sample, ie. at a
VAEF of 0.25, are identified in the FFPE sample but most
of the FF calls belonging to the smaller peak at 0.05 are
not detectable in the FFPE sample. This shows that most
variants from the major population identified in the FF
sample are recovered in the FFPE sample.

We observed similar results for Mutect2 with the peak
representing the major cluster at VAF 0.25 in the FF
sample being shifted to a lower VAF in the FFPE sample
(see Suppl. Fig. 8, Additional File 2). For VarScan2, only
a small proportion of the variants detected at an average
VAF of 0.25 in the FF is recovered in the FFPE sample
(see Suppl. Fig. 9, Additional File 2). Shimmer could
barely detect the cluster of variants at VAF 0.25 in the
FF and completely misses the major cluster in the FFPE
sample (see Suppl. Fig. 10, Additional File 2). A deeper
analysis shows that Shimmer reports many somatic vari-
ants in the tumor sample that have a VAF above zero in
the normal sample (putative germline calls). This behav-
ior is not expected and not observed for any of the other
variant callers, explaining the poor overlap between
Shimmer and the other variant callers (see Suppl. Ta-
bles 6 and 7, Additional File 1). Only keeping for Shim-
mer the variants with zero VAF in the normal sample
filtered those putative germline calls and allows to better
recover a cluster of variants at VAF 0.25 in the FF, but
still not in the FFPE sample (see Suppl. Fig. 11, Add-
itional File 2).

In addition to the cluster at VAF 0.25, VarScan2 also
reports a peak of variants at an average VAF of 0.5 in
the FF sample. These are likely germline variants as
more than 65% of variants with VAF above 0.5 are
present in dbSNP database (see Suppl. Table 9, Add-
itional File 1). Except for Mutect2, which has a similar
number of germline calls above and below a VAF of 0.5,
other callers reported up to 8 times more calls from
dbSNP at a VAF above 0.5. This suggests that calls re-
ported with VAF above 0.5 are more likely to be false
positives. Indeed, most of the calls with VAF above 0.5
detected consistently in both the FF and the FFPE sam-
ples tend to be residual germline calls.

Hence, the cluster of variants detected at VAF 0.25
likely represents the major population of variants in the
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Fig. 1 (Sub) clonal populations detection in the FF (left) and the FFPE (right) sample using Strelka2 (UZ001). The upper panel shows coverage as
a function of the VAF [26], where a higher variance in the coverage can be observed for the FFPE sample. The lower panel shows the distribution
of the VAFs. The blue distribution denotes all calls made in a given sample, while the orange distribution shows only the calls common to the FF
and the FFPE sample

_

metastatic sample. All variant callers except Shimmer
could at least partially recover these variants in the FFPE
sample albeit at lower VAF (see Suppl. Fig. 12, Add-
itional File 2). Imposing a zero VAF criterion in the nor-
mal sample helped Shimmer to recover the major
cluster of variants that was also recovered by the other
callers, but only in the FF sample. In addition, only a mi-
nority of calls (813) are retained of which most (604)
were also reported by other callers. This indicates that
many of the calls uniquely made by Shimmer without
imposing the zero VAF criteria in the normal sample
and reported in Table 5 are likely spurious calls, despite
being consistently detected in both the FF and the FFPE
samples. For the remainder of the analysis, variants re-
ported by Shimmer with a positive VAF in the normal
sample were filtered.

Comparing for each of the different callers the significance
levels between the FF and FFPE sample
To assess the relevance of the calls in the overlap be-
tween the FF and the FFPE sample, we also compared,
for each caller, the distributions of the significance
scores of the somatic variant calls detected in the FFPE
sample that were also called in the FF sample, hereby as-
suming that the FF sample is less prone to artefacts and
constitutes the reference as to what should be detected.
Table 6 shows that calls reported in both samples typic-
ally received lower significant scores in the FFPE than in
the FF sample, which can be explained by the discrepan-
cies in VAF observed in Fig. 1.

In addition, the boxplots in Fig. 2 show that the FFPE
calls that were also made in the FF sample, received a
relatively higher significance score than FFPE calls not

made in the FF sample. This shows that the most reli-
able variants in the FFPE sample generally correspond to
those detected in the FF sample.

For each caller, we calculated the correlation between
the significance levels reported in the FF and in the
FFPE sample of somatic variants called in both samples.
Suppl. Table 10 (Additional File 1) shows that the sig-
nificance levels of Strelka2 and Mutect2 are significantly
correlated in both the FF and the FFPE samples. In
addition, the significance levels between the callers
themselves seems to be consistent between the FF and
the FFPE sample. For Shimmer and VarScan2, this
consistency between both samples cannot be observed.
Furthermore, all callers assign a similar relative rank to
common variants in the FF sample but not necessarily in
the FFPE sample (i.e. the same variant is ranked high by
all callers in the FF sample but in the FFPE sample the
ranks for that variant vary depending on the caller). This
indicates that these variant callers are less performant in
the FFPE sample. A possible explanation for this could
be that the underlying hypergeometric testing procedure
(used in both VarScan2 and Shimmer) cannot cope with
the lower VAFs present in the FFPE sample.

Table 6 Average significance scores for somatic variants
reported in both samples for each variant caller (UZ001). For
Strelka2 and Mutect2, a higher Somatic EVS and TLOD means a
higher confidence in the calls, while for VarScan2 and Shimmer
a lower value implies a higher confidence

Sample Strelka2 Mutect2 VarScan2 Shimmer
FF 17.33 51.88 0.0024 0.0160
FFPE 14.34 26.00 0.0038 0.0166
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Fig. 2 Boxplots comparing the significance level of FFPE reported or not in FF (UZ001). For Strelka2 and Mutect2, a higher Somatic EVS and TLOD
means a higher confidence in the calls, while for Varscan2 and Shimmer a lower value implies a higher confidence

Relation between the (sub) clonal structure and the
significance level
To investigate the relation between the (sub) clonal struc-
ture and the significance of the calls, we map for each
variant caller the 25% highest confidence calls on the
coverage versus VAF plots. The upper panel of Fig. 3
shows how, for Strelka2, these most significant calls are
located around a VAF of 0.25 in the FF and 0.15 in the
FFPE sample, and hence make up the aforementioned
major subpopulation that was detected in both the FF and
the FFPE samples.

For Mutect2, most significant calls also belonged to this
cluster of variants (see Suppl. Fig. 13, Additional File 2).
For VarScan2 and Shimmer (see Suppl. Fig. 14-16,

Additional File 2), a similar effect is observed, although
not as pronounced as in Strelka2 and Mutect2. Subse-
quently, many of the highly significant calls belong to the
major subpopulation at a VAF of 0.25 in the FF and 0.15
in the FFPE sample; such that the analysis of the signifi-
cance levels and the clonal subpopulations points at the
existence of a highly confident subset of variants, present
in both the FF and the FFPE samples.

In addition, the lower panel in Fig. 3 shows that many
variants called by other callers are also located in the
variant cluster (see also the lower panels of Suppl.
Fig. 1316, Additional File 2). This is in line with the ob-
servation that for each variant caller (except Shimmer),
calls made by any of the other three variant callers in
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Fig. 3 Coverage versus VAF for variants reported by Strelka2, comparing FF (left) against FFPE (right) (UZ001). This plot is identical to the upper
panel of Fig. 1 but with a color used to indicate the most significant calls. The upper panel shows the 25% highest confidence calls in orange
and the lower confidence in blue. The lower panel shows which calls are also found by other callers where blue = unique calls, orange = calls
reported by two callers, green = calls reported by 3 callers, red = calls reported by 4 callers




Schaetzen van Brienen et al. BMC Medical Genomics (2020) 13:94

general received a higher significance especially in the
FF sample (Suppl. Fig. 17 and 18, Additional File 2).
Using two criteria, based the (sub) clonal structure (Fig.
1) and significance score of the variants (Fig. 2), we
could see that calls common to the FF and the FFPE
sample tend to belong to the major subpopulation and
are highly significant. Importantly, the lower panel of
Fig. 3 and Suppl. Fig. 17 and 18 (Additional File 2) show
that variants called by more than one caller tend to sat-
isfy these two criteria as well. In the next section, we in-
vestigated how well these calls, reported by more than
one variant caller, overlap between the FF and the FFPE
sample.

Optimizing for each variant caller its significance threshold
by optimizing the overlap in variants between the FF and
FFPE sample

To assure that only biologically relevant calls are consid-
ered, we first identified a highly reliable subset of calls in
the FF sample. This subset, referred to as the ground
truth, can then be used to more qualitatively assess how
well each caller can recover these highly reliable calls in
the FFPE sample. From our analysis above, an ideal
ground truth would consist of all highly reliable calls
made in the reference FF sample that also represent the
major population in the metastatic sample. We have
shown that calls made by at least two callers tend to sat-
isfy these criteria. Therefore, the ground truth is defined
as the union of all calls that were detected by at least
two callers in the FF sample.

Our previous analysis also shows that the subpopulation
represented by the ground truth is also present in the
FFPE sample albeit at lower VAF (median VAF of 0.1083
in the FFPE instead of 0.2323 in the FF sample). Hence,
fully recovering the subpopulation of highly significant
variants from the FFPE sample will require the identifica-
tion of a significance threshold in the FFPE sample. Be-
cause calls in the FF sample were reported with a higher
significance scores, the threshold in the FFPE sample will
typically be lower than the threshold that would be neces-
sary in the FF sample to capture the ground truth (see
Suppl. Fig. 17 and 18, Additional File 2). In addition, pre-
vious analysis shows that it is feasible to set a threshold in
the FFPE sample as calls common to the FF and the FFPE
sample tend to have a higher significance level in the FFPE
sample (see Fig. 2). However, the lower VAF in the FFPE
sample complicates identifying a threshold that distin-
guishes the true calls from the noise (the significance dis-
tribution of noisy and true calls starts overlapping, see
Suppl. Fig. 18, Additional File 2). We determined, for each
variant caller, a threshold in the FFPE sample that opti-
mized the F1-score with the FF-derived ground truth (i.e.
that optimizes the tradeoff between precision and sensitiv-
ity in recovering the ground truth). Table 3 shows for each
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caller their sensitivity and precision in recovering the
ground truth. This table also shows that Strelka2 and
Mutect2 are performing the best in recovering from the
FFPE sample the calls that belong to the ground truth.
Table 7 now quantitatively illustrates how Shimmer
underperforms on the ground truth despite calling con-
sistently the same mutations in the FF and the FFPE sam-
ple, which was shown in Table 5. This suggests that most
of the calls made by Shimmer in the overlap between the
FF and the FFPE sample are likely spurious. The same is
to some extent true for VarScan2 because of the high
number of residual germline calls.

Table 7 gives an estimate of the expected overlap be-
tween the FF and the FFPE sample after optimizing the
thresholds in the FFPE sample using the ground truth
based on the variants detected in the FF sample. How-
ever, often only FFPE samples are available, such that
the stringency thresholds cannot be optimized based on
observations in the FF sample. Therefore, rather than
optimizing the threshold for each caller separately, we
assessed to what extent combining the output of differ-
ent variant callers in the FPPE sample allows recovering
the ground truth from the FF sample.

Table 8 shows how taking the intersection of the four
variant callers maximizes the precision but comes at the
expense of losing almost all sensitivity. As discussed
above, Shimmer can barely retrieve the cluster represent-
ing the major subpopulation in the FFPE sample (see
Suppl. Fig. 15 and 16, Additional File 2) and most of the
calls retrieved by Shimmer in the FFPE sample are unique
(even after correcting for the so-called somatic calls with
high VAF in the normal sample). Because the intersection
seems too strict and limits the sensitivity, we considered
calls reported by at least three callers. It results in a high
precision but still relatively low sensitivity in recovering
the ground truth (Table 8) because VarScan2 reports less
calls in the FFPE than in the FF sample and loses many
true positive calls. Using the calls returned by at least two
of the four callers in the FFPE sample drastically increases
sensitivity while only slightly decreasing precision. The
performance here is even better than the performance of
the best caller (Strelka2) that was obtained after optimiz-
ing its stringency thresholds based on the ground truth.
This indicates that there is some complementarity in the
calls made by different callers.

Note that when considering only variants called by at
least two variant callers in both samples, the cosine simi-
larity between the mutational profiles was of 0.995 which
is higher than the cosine similarities between the FF and
the FFPE samples for any of the caller (see Suppl. Table 8,
Additional File 1). This further confirms the consistency
between the calls made on the FF and the FFPE samples.
Moreover, we decomposed the mutational profiles of the
variants called in both the FF and the FFPE samples into
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Table 7 Optimized F1-scores of calls for each variant caller considering FF sample as gold standard (UZ001). Optimized F1-scores of
calls made by each variant caller considering FF sample as gold standard

Caller - threshold FF (gold std.) FFPE Overlap Sensitivity Precision F1-score
Strelka2-9.5 4656 4559 3316 0.7122 0.7274 0.7197
Mutect2-13 4656 5658 3418 0.7341 0.6041 0.6628
VarScan2-0.00995 4656 1755 425 0.1045 0.2422 0.1460
Shimmer - 0.0495 4656 262 16 0.0197 0.0611 0.0298

COSMIC signatures [20]. Some of those signatures are
representative for sequencing artefacts (see Suppl. Table
1, Additional File 1). When considering the union of calls
made by the four callers in the FF and the FFPE sample,
the contribution of the COSMIC signatures representative
for sequencing artefacts to the total mutational profile was
of 15.21 and 17.68% respectively. When considering only
variants called by at least two callers those proportions de-
creased significantly (8.22% for the FF and 9.36% for the
FFPE sample) indicating that considerably less spurious
calls related to sequencing artefacts were made.

Validation of the at least two variant calling strategy on
samples from the 100,000 genomes project England
Comparison of variants detected in respectively the FF and
FFPE samples

Nine paired FF-FFPE samples from the same tumors ob-
tained from a pilot study of the 100,000 Genomes Pro-
ject England have been analyzed in order to validate our
approach. As for patient UZ001, variant callers reported
systematically more calls in the FFPE than in the FF
samples (except for Shimmer in GeL365 patient). Either
Strelka2 or Mutect2 achieved the highest Fl-scores.
Overall, the highest F1-score per variant caller varied be-
tween 10.12% (GeL032) to 77.30% (GeL300) with an
average of 44.10% (see Table 9). On average, the variant
callers were less consistent in the FFPE samples than in
the FF samples and the difference between callers in the
FFPE sample was larger than the difference between the
FF and the FFPE samples using the same variant caller.
This is consistent with our findings on the metastatic
prostate sample of patient UZ001. The difference be-
tween the variant callers in the FF sample was larger
than the difference of each caller between the FF and
the FFPE samples for GeL004, GeL300, GeL365 and
UZ001 (see Suppl. Table 11, Additional File 1). In

addition, for two tumor samples, the VAF was lower in
the FFPE sample than in the FF sample (GeL007,
GeL028), for one of them the opposite holds true
(GeL008). For the rest of the tumor samples, the VAF was
consistent between the FF and the FFPE samples (see
Suppl. Table 12, Additional File 1). In general, Mutect2
and Strelka2 reported the most similar mutational profiles
between the FF and the FFPE samples (see Suppl. Table 13,
Additional File 1). No bias towards specific mutational
patterns was observed in the FFPE samples.

Validation of the at least two strategy to call variants

To validate our at least two variant calling approach, we
ran all four variant callers on the matched FF and FFPE
samples for each patient. Then, we combined the vari-
ants using the at least two strategy that gave the best
performance for the UZ001 patient. We calculated the
Fl-score between the variants called in the FF and the
FFPE samples by each caller and compared them with
the F1-score obtained when considering only variants re-
ported by at least two variant callers in the FF and the
FFPE sample. The results are shown in Table 9. For all
samples, except GeL032, the variant calling approach
significantly improves upon the best single caller score
under default conditions. On average, more variants are
called in the FFPE sample than in its FF counterpart,
and this irrespective of the variant caller used (see
Suppl. Table 14, Additional File 1). From that table it
can also be seen that the one patient where the at
least two strategy did not work, GeL032, has a dispro-
portionate number of calls in the FFPE compared to
the FF sample. While this is likely related to poor
alignment quality in the FFPE sample, we decided for
the sake of completeness to include the sample in all
analyses, in line with the original publication of that
sample [14].

Table 8 Strategies to retrieve the ground truth calls from the FF in the FFPE sample (UZ001)

Reported by ... (in FFPE) FF (gold std.) FFPE Overlap Sensitivity Precision F1-score
at least 1 caller 4656 16,020 4155 0.8924 0.2594 04019
at least 2 callers 4656 4232 3684 0.7912 0.8705 0.8290
at least 3 callers 4656 340 325 0.0698 0.9559 0.1301
all 4 callers 4656 8 8 0.0017 1 0.0034
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Table 9 Summary table of the consistency (F1-scores) between the FF and the FFPE sample

Patient ID Strelka2 Mutect2 VarScan2 Shimmer Maximum At least 2 Improvement
uUzoo1 0.6474 0.5167 0.3031 0.5349 0.6474 0.8290 0.1816
GelL007 0.1533 0.1563 0.0297 0.0061 0.1563 0.2317 0.0754
GelL008 02344 0.0823 0.0168 0.0023 02344 0.3895 0.1551
GelL024 0.2298 0.1756 0.0210 0.0107 0.2298 04203 0.1904
Gel028 03586 0.2485 0.0449 0.0335 03586 0.5326 0.1740
Gel004 0.5656 05226 0.1502 0.2200 0.5656 0.7149 0.1493
Gel032 0.0646 0.1012 0.0034 0.0004 0.1012 0.0647 -0.0365
Gel065 0.6308 0.5309 0.1604 0.0304 0.6308 0.6345 0.0037
Gel 300 0.7724 0.7730 02358 0.5837 0.7730 08716 0.0986
Gel365 0.6532 06155 0.2473 0.1530 0.6532 0.8051 0.1519
Average 04310 03753 0.1212 0.1575 04350 0.5494 0.1144

Overall, the F1l-score improves on average by 0.1144,
suggesting that our variant calling strategy allows detect-
ing robustly somatic SNVs in the FFPE samples, offering
both a high sensitivity and precision. More detailed in-
formation about the sensitivity and precision of all vari-
ant callers on each sample are available in Suppl
Table 15 (Additional File 1). Note that selecting variants
called by at least two callers also increases the corres-
pondence of the mutational profiles between the FF and
the FFPE samples (higher cosine similarity scores, see
Suppl. Table 16, Additional File 1).

Analogously to the analysis we conducted for UZ001
patient, we also decomposed the mutational profiles of
the 100,000 Genomes Project England samples into
COSMIC signatures thereby assessing the contribution
of sequencing artefact signatures (see Methods). As
shown in Table 10, the contribution of artefact signa-
tures to the FF and the FFPE mutational profiles was of
the same order of magnitude for each of the paired FF-

FFPE samples. All variant callers except VarScan2 re-
ported a slightly higher proportion of artefact signatures
for the FFPE sample. Interestingly, Table 10 shows that
when considering only variants called by at least two
variant callers, the proportion of signatures representa-
tive of artefacts (see Suppl. Table 1, Additional File 1) is
significantly lower. This further confirms that our strat-
egy successfully removes sequencing artefacts.

Assessing the extent to which intra-tumor heterogeneity
(ITH) explains discrepancies in variants called between
the FF and FFPE samples

Table 10 shows that the at least two variant calling strat-
egy allows to reliably detect variants in most samples. By
applying this strategy on both the FF and the FFPE sam-
ples, we can investigate why certain variants are unique
to each sample type. Based on Fig. 1, the most plausible
explanation would be ITH that results in sampling dif-
ferent subclonal variants. If ITH plays a key role in the

Table 10 Artefact contribution to the mutational profiles of the FF and the FFPE sample per caller. Values with an asterisk are
artefact estimates based on reconstructed mutation profiles with a cosine similarity below 0.9 with the original mutation profiles.

These may be unreliable (see Methods)

Patient Strelka2 Mutect2 VarScan2 Shimmer At least 2

b FF FFPE FF FFPE FF FFPE FF FFPE FF FFPE
UZ001 0.1419 0.0847 0.1024 0.0757 02010 0.0981 0.3252% 0.6759*% 0.0822 0.0936
GelL007 0.1626 0.5381* 0.1285 0.1824 0.3843 0.1981 0.1555 0.1863 0.0714 0.1132
GelL008 02133 0.1377 0.1302 0.2501 04345 0.1925 0.2466* 0.1631 0.0796 0.1704
Gel024 04953 03111 0.1244 0.1261 05331 02191 0.1882 0.0556 0.1050 0.0899
Gel028 0.1344 0.1670 0.1041 0.0938 04947 0.1503 0.1152 0.0509 0.0666 0.0859
GelL004 0.2067 0.2896 0.1099 0.1611 0.3565 0.0932 0.1940 0.3090 0.0590 0.0775
Gel032 0.1164 0.1168 0.0833 0.2664 04955 0.1528 0.1474 03310 0.0747 0.0506
GelL065 0.1047 0.1686 0.0580 0.1127 0.1180 0.1425 0.1662 0.1458 0.1574 0.0816
GelL300 0.0822 0.2095 0.0781 0.0827 0.0583 0.0758 0.1022 0.1120 0.0544 0.0558
Gel 365 0.0886 0.1701 0.0662 0.1192 0.0862 0.1051 0.0894 0.1362 0.0331 0.0436
Mean 0.1746 0.2200 0.0985 0.1201 0.3162 0.1402 0.1730 0.2030 0.0783 0.0817
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difference between the FF and the FFPE samples, then we
would expect that the subclonal variants show a lower over-
lap than the clonal ones. However, to properly define clonal
and subclonal variants, it is necessary to correct the obtained
VAFs for copy number (CN) status and sample purity.

To perform CN correction, the CN variant calling pipe-
line from GATK was used to identify regions that are ampli-
fied (+), deleted (-) or neutral (0) (see Methods). Although
there is a limited number of publications demonstrating the
feasibility of CN calling on FFPE, our results clearly showed
a distinction between CN alterations called in the FF and
the FFPE samples (see Suppl. Table 2, Additional File 1).
The most plausible explanation for this observation is the
presence of short CN altered regions that are only observed
in the FFPE samples (see Suppl. Fig. 3, Additional File 2). It
is highly improbable that these regions are effectively CN al-
tered and therefore variants lying in these regions would be
falsely corrected based on their CN status. To avoid
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introducing such additional bias, only variants called by at
least two variants callers mapping to segments diploid in
both the FF and the FFPE samples were kept (bona fide var-
iants, see Methods and Suppl. Table 3, Additional File 1).
Additionally, we also discarded variants located on the mito-
chondrial DNA and the sex chromosomes.

To estimate sample purity, we compared the pathologist
purity estimates to those of two tools, TPES [21] and
FACETS [22]. In general, the purity estimates for the same
sample showed little consistency (see Suppl. Table 17, Add-
itional File 1). Therefore, correcting for purity risks introdu-
cing yet another bias. Therefore, we aimed at identifying
clonal variants for each sample individually, using a Kernel
Density Estimation (KDE) approach (see Methods). For
each sample, only considering bona fide diploid variants,
the clonal variants are identified based on the VAF distribu-
tion. The KDE approach then allows finding the clonal
population, regardless of the sample purity. Figure 4
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Fig. 4 Evaluating the overlap between clonal variants from FF and FFPE samples of UZ001. By first defining the clonal and subclonal variants (see
main text), it is possible to calculate the overlap between clonal variants only. Compared to Fig. 1, only variants using the at least two approach
are shown, which are known to lie in diploid regions in both FF and FFPE and can be considered clonal. Overlap: red (green) refers to variants in
the FFPE (FF) sample also found in the FF (FFPE) sample. Clearly, these additional filtering steps lead to an appreciable improvement in overlap
between the FF and the FFPE sample
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illustrates the KDE approach on samples from UZ001 pa-
tient and demonstrates that the agreement between the FF
and the FFPE sample is higher when considering only
clonal variants.

Table 11 shows the overlap between clonal variants in
the FF and the FFPE samples where variants were obtained
using the at least two variant calling strategy. The results
can be compared to subclonal variants (defined as all bona
fide diploid variants that are not clonal). Note that, as ex-
pected, clonal variants are in general easier to retrieve than
their subclonal counterparts. There is one example
(GeL007) were the opposite holds, but further investigation
showed that many clonal variants from the FF sample ap-
peared as subclonal variants in the FFPE sample (see Suppl.
Fig. 19, Additional File 2). These results demonstrate that
some of the discrepancies between the FF and the FFPE
samples from Table 10 can be attributed to ITH. Note that
for some patients (e.g. patient UZ001, see Fig. 4), we com-
pletely lose the clonal structure in the FFPE sample, such
that no subclonal variants can be defined in this sample.
For each patient, we also explicitly verified how many sub-
clonal variants in the FFPE sample were classified as clonal
in the FF sample and vice versa (see Suppl. Table 18, Add-
itional File 1). For most patients, the clonal structure in the
FFPE sample agrees well with the FF sample, the most not-
able exception being samples from GeL032 patient.

Discussion

In this work, we have investigated whether a metastatic
FFPE sample, embedded with recent protocols and sub-
jected to DNA extraction using specialized procedures, can
be used as a proxy for an FF sample to call somatic variants
for cohort analysis. In contrast to previous studies, which
focused on comparing the extent to which a small fraction
of the most reliable variants compares between an FF and
an FFPE sample (the fraction enriched in drivers or
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actionable mutations) [14], cohort analysis requires that as
many true somatic variants as possible are called (high sen-
sitivity) so that subsequent statistical analysis over a cohort
can identify driver variants. Because of the subsequent stat-
istical analysis, cohort analysis can tolerate some false posi-
tives and thus allows for a less stringent precision. Using
four different variant callers (Strelka2, Mutect2, VarScan2
and Shimmer), we compared the somatic calls on the FFPE
sample to its FF counterpart. At first sight, each variant
caller recovered about 50% of the FF calls in the FFPE sam-
ple. Interestingly, we observed a larger discrepancy between
variant callers on the same sample than between the FF
and the FFPE sample using the same variant caller. This
implies that the choice of variant calling tool is at least as
important as whether FF or FFPE material is being used.
Using coverage versus VAF plots on the FF sample, a
clear subpopulation of calls at VAF 0.25 was distinguish-
able and was enriched in highly significant calls, these
were the calls we aimed to recover in the FFPE sample.
However, while many of the calls detected in the FF
were effectively present in the FFPE sample, they were
reported with a lower VAF in the FFPE sample. This ef-
fect reduces the resolution of variant callers for the iden-
tification of low-VAF variants in the FFPE sample,
reducing the overlap between the FF and FFPE samples.
The effect was especially prominent in variant callers
that rely on hypergeometric testing, i.e. VarScan2 and
Shimmer. By choosing, for each variant caller, a specific
threshold on the significance level of the identified vari-
ants, the overlap between the FF and the FFPE sample
can be optimized in terms of sensitivity and precision.
However, in many real-life situations, there is no match-
ing FF sample available, and there is a need for a good
strategy to perform a precise yet sensitive variant calling.
Simply taking the intersection between the different callers,
turned out to be too simplistic, as the low resolution of

Table 11 Number of clonal and subclonal variants detected in diploid regions common to FF and FFPE. For both clonal and
subclonal variants the F1-score between the FF and the FFPE variants was calculated. Variants were called using the at least two

variant calling strategy

Clonality Clonal Subclonal At least 2
Patient ID FF FFPE Overlap Fl-score FF FFPE Overlap Fl-score Fl-score
uUzoo1 3229 3246 2795 0.86 372 0 0 0.00 0.83
GelL007 662 25 1 0.04 1862 1183 223 0.19 0.23
GelL08 1109 2417 996 041 425 0 0 0.00 0.39
GelL024 1016 296 244 0.82 275 1413 4 0.00 042
Gel028 1037 1585 908 057 721 0 0 0.00 0.53
Gel004 1074 1074 965 0.90 710 630 297 047 0.71
Gel032 3249 202 126 0.62 506 2103 4 0.00 0.06
GelL065 1434 1362 1287 0.94 587 552 321 0.58 0.63
Gel300 9660 9821 8890 091 354 678 16 0.02 0.87
Gel365 1099 1013 962 0.95 1331 1309 937 0.72 0.80
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certain variant callers in the FFPE sample (in this case
VarScan2 and Shimmer) obfuscated the final intersection.
Indeed, for these two variants callers, the calls common to
the FFPE sample and the FF gold standard are not receiving
a more significant score. Nevertheless, when considering
only calls reported by at least two variant callers (in our
hands Strelka2, Mutect2, VarScan2 and Shimmer), we ob-
tain almost 3700 calls present in both the FF and the FFPE
samples, with an F1-score higher than 80%. Using the cor-
rect variant calling strategy, the overlap between the FF and
FFPE sample in somatic SNVs increases to such an extent
that a large fraction of the calls detected in the FFPE sample
are contained in the FF sample and the number of variants
unique to each sample remains restricted. In addition, the
cosine similarity between the mutational profiles increased
after selecting variants called by at least two callers. More-
over, this at least two variant callers strategy considerably
reduces spurious calls related to sequencing artefacts.

The validation of our approach on nine paired FF-
FFPE samples from the same tumors obtained from a
pilot study of the 100,000 Genomes Project England
demonstrated that the proposed variant calling strategy
allows to robustly detect somatic SNVs in the FFPE sam-
ples. Indeed, our variant calling approach significantly
improves upon the best single caller score, resulting in
an Fl-score that is on average 0.1144 higher. Finally, we
demonstrated that discrepancies in variants detected in
matching FF and FFPE samples can largely be attributed
to ITH. Indeed, when focusing on clonal variants only,
the average Fl-score increased by another 0.1550,
highlighting the very good overlap of clonal variants be-
tween the FF and the FFPE samples.

Conclusion

In this study we aimed at investigating the feasibility of
somatic SNV calling in FFPE material. While previous
studies have focused on retrieving a set of highly reliable
variants in FFPE using a matched FF sample, this study
intended to maximize the overlap between the identified
variants in matching FF and FFPE samples in the context
of cohort analysis. Hereto, we developed and validated an
optimized strategy for variant calling in FFPE. We could
show that the strategy resulted in both a high sensitivity
and precision but also in a better concordance between
the mutational signatures of variants called in matching
FF and FFPE. In general, the retrieved variants are clonal
variants, implying that intra-tumor heterogeneity may
make up a large fraction of the observed discrepancy
between FF and FFPE samples. These observations all
demonstrate that clonal SNVs can be accurately called
using FFPE derived data, the most commonly available
source for DNA material. In conclusion, studies that en-
visage driver identification based on cohort analysis can
rely on FFPE material.
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