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Genome-wide association studies have proved very successful in identifying novel single-nucleotide poly-
morphisms (SNPs) associated with disease or traits, but the related, functional SNP is usually unknown. In
this paper, we describe a methodology to locate and validate candidate functional SNPs using lipoprotein
lipase (LPL), a gene previously associated with triglyceride levels, as an exemplar. Two thousand seven hun-
dred and eighty-six healthy middle-aged men from the NPHSII UK prospective study (with up to six measures
of plasma lipid levels) were genotyped for 20 LPL tagging (t)SNPs using Illumina Bead technology. Using
model-selection procedures and haplotypes, we identified eight SNPs that consistently maximized the fit
of the model to the phenotype. Fifteen SNPs in high linkage disequilibrium with these were identified, and
functional assays were carried out on all 23 SNPs. Electrophoretic mobility shift assay (EMSA) was used
to identify SNPs that had the potential to alter DNA–protein interactions, reducing the number to eight poss-
ible candidate SNPs. These were examined for ability to alter expression using a luciferase reporter assay,
and two regulatory SNPs, showing genotype differences, rs327 and rs3289, were identified. Finally, multi-
plexed-competitor-EMSA (MC-EMSA) and supershift EMSA identified FOXA2 to rs327T, and CREB-binding
protein (CBP) and CCAAT displacement protein (CDP) to rs3289C as the factors responsible for transcription
binding. We have identified two novel candidate functional SNPs in LPL and presented a procedure aimed to
efficiently detect SNPs potentially causal to genetic association. We believe that this methodology could be
successfully applied to future re-sequencing data.

INTRODUCTION

With the increasing use of genome-wide association studies
(GWAS), the number of single nucleotide polymorphisms
(SNPs) associated with disease or intermediate phenotypes is
rapidly mounting (1). Despite this increase in signals of
association, the discovery of the functional changes respon-
sible for those signals is still a laborious and slow task. The

discrepancy between the two is predominantly attributable to
two factors: linkage disequilibrium (LD) between SNPs and
the location of many of the SNPs in non-coding regions.
LD, the violation of statistical independence between genetic
loci, causes all SNPs in LD with the functional locus to
carry some, or all, of the association with the trait of interest
even if they have no relevant function. The second problem
is that although we can, with some accuracy, predict the
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effect that a SNP will have on an amino acid change and thus
protein function, it is becoming clear that the majority of
genetic markers associated with traits or disease are present
in non-coding regions and are therefore likely to affect gene
regulation or pre-mRNA splicing or mRNA stability, rather
than protein function (2). To achieve the goal of using genetics
in disease prevention and treatment, it is important to identify
these functional genetic variants, which will help disentangle
the complexity evident in common diseases and allow the
development of new targeted medication.

Coronary heart disease (CHD) is a complex disease that
develops as a result of both environmental and genetic contri-
buting factors. Elevated triglyceride (TG) levels in blood has
been shown to be an epidemiological risk factors for CHD,
where it is suggested that it increases the development
of atherosclerosis, by promoting the production of pro-
atherogenic small dense LDL particles (3). The risk
associated with a 1 mmol difference in TG levels is 1.32
(1.26–1.39) in men and 1.72 (1.5–2.07) in women (4).
Recently, several GWAS reported associations of TG with a
number of loci (5–9), including the lipoprotein lipase gene
(LPL), a ‘candidate’ gene that has previously demonstrated a
strong and consistent association with TG levels and with
CHD risk in prospective and case–control studies (10). LPL
is primarily expressed in adipose tissues and muscle, where,
attached to the capillary endothelium, it hydrolyses TG-rich
lipoprotein particles, although expression also occurs in the
heart, liver, lungs, nervous system, macrophages and pancrea-
tic islet cells (11). LPL functions as a homodimer and cata-
lyses the rate-limiting step in TG hydrolysis and also acts as
a ligand/bridging factor for the receptor-mediated uptake of
lipoproteins (12). Severe mutations that result in LPL
deficiency lead to familial hyperchylomicronaemia (13),
whereas common non-synonymous variants rs1801177
(D9N) and rs328 (S447X) have been consistently associated
with higher and lower risk of CHD, respectively (10).
Recent GWAS on lipoprotein phenotypes identified several
LPL variants associated with effects on TG levels:
rs10096633 (5), rs12678919 (6), rs17482753 (7), rs17410914
(8), rs6993414 (9) and rs328 (14). However, LD between
neighbouring SNPs, insufficient coverage of the locus and
the use of univariate statistical methods hinder the identifi-
cation of the true functional change.

Here, using LPL and its association with TG as an example,
we present statistical and laboratory procedures to identify
candidate functional SNPs from dense tagging SNPs
(tSNPs). We give examples of statistical tests available for
the analysis of association between SNPs and continuous vari-
ables. Popular model selection criteria are calculated for the
data and their results are compared, while haplotypes are
used both as mediators of association and as an additional
method of model selection. Having determined the SNPs
with the highest likelihood of marking a functional variant,
all SNPs in strong LD with these were examined for functional
effects. Electrophoretic mobility shift assays (EMSAs) were
carried out on these variant sequences, and those SNPs that
showed differences in EMSA were further examined in repor-
ter gene expression studies. For the SNPs that also demon-
strated expression differences, the identification of potential
DNA-binding factors mediating this effect was carried out

using multiplexed-competitor EMSAs (MC-EMSAs) and
supershift EMSAs.

RESULTS

Table 1 shows the basic characteristics of the genotyped sub-
jects as well as a summary of all six TG measures available.
From the 22 SNPs successfully genotyped in LPL, four
SNPs were out of Hardy–Weinberg equilibrium (HWE). For
two SNPs, rs1800590 and LPL-95, this was strongly signifi-
cant (P , 0.0001 for both) and they were subsequently
dropped from the analysis, whereas rs3779788 and
rs7016529 were retained, being only moderately out of
HWE (P ¼ 0.0187 and 0.0018, respectively). Of the remaining
20 SNPs, 14 were significantly associated with levels of TG.
Estimates of effect size both as beta coefficients and R2,
together with levels of TG per genotype can be seen in
Table 2, and the results of alternative strategies for statistical
analysis are shown in the Supplementary Material. To
resolve problems due to rare alleles, a permutational test of
10 000 repeats was also run with the results shown in Sup-
plementary Material, Table S2. Adjustment for age and prac-
tice centre did not materially change the statistical significance
of the results (Supplementary Material, Table S2).

Model selection methods

The SNPs considered were not completely independent of
each other, with LD ranging from an r2 value of 3.53 ×
1027 to 0.74 (Supplementary Material, Fig. S1), and so the
respective P-values for their association with TG would also
be non-independent. A model using all of the SNPs as expla-
natory variables will account for the between-SNP associ-
ations, but would also lead to overfitting. To find the
smallest set of SNPs accounting for the association of the
LPL with TG, we used a number of criteria of fit, with both
stepwise and best-subset methods. Table 3 shows all the cri-
teria used and the SNPs in the best model in each case. As
expected, from all the possible models, the Bayesian infor-
mation criterion (BIC) chose the simplest model with only
rs301, whereas the Akaike information criterion, Mallows
Cp and a Cross-validation scheme all selected a model

Table 1. Characteristics of the NPHSII men with complete genotype data. All
six measures of TG are shown for baseline and five annual visits

Variable Observations Mean SD

Age (years) 2385 55.90 3.37
BMI (kg/m2) 2382 26.48 3.47
Total cholesterol (mmol/l) 2370 5.74 1.00
LDL-cholesterol (mmol/l) 2068 3.08 1.00
HDL-cholesterol (mmol/l) 2054 1.72 0.59
Baseline TGs (mmol/l) 2372 2.07 1.25
TGs phase 1 (mmol/l) 2204 1.98 1.14
TGs phase 2 (mmol/l) 2097 1.97 1.17
TGs phase 3 (mmol/l) 2023 1.97 1.19
TGs phase 4 (mmol/l) 1805 2.12 1.21
TGs phase 5 (mmol/l) 1689 2.15 1.22
TGs mean (mmol/l) 2383 2.05 1.04
Log TGs mean (log(mmol/l)) 2383 0.61 0.45
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containing five SNPs: rs17410577, rs264, rs268, rs301 and
rs3289, all significant in the univariate analysis. Other criteria
used were the residual mean square, which left out of the best
model SNPs rs17410577 and rs264, and the adjusted R2

measure, which was the most permissive, allowing, in addition
to the previous five SNPs, rs10099160 which is non-significant
in the univariate analysis. A rank of P-values is also shown in
Table 3, with only the top-ranking SNP (rs301) found in all

Table 2. Means and SDs of genotype distribution and TG for the 20 genotyped LPL SNPs. Beta coefficients and R2of the additive model for log mean of TG
together with the observed counts, means, SDs and P-values for the 20 successfully genotyped LPL SNPs for each SNP of LPL. SNPs ordered by chromosome
position

SNP rs
number

Beta
coefficienta

R2 Common/
rare allele

Common homozygote Heterozygote Rare homozygote P-value HW
equilibriumn Mean

TG
levels

SD n Mean
TG
levels

SD n Mean
TG
levels

SD

rs17410577 0.041∗ 0.0009 G/C 1547 1.994 0.945 728 2.145 1.173 105 2.150 1.316 0.0103 0.0999
rs1534649 20.015 0.0028 G/T 737 2.062 0.994 1145 2.058 1.085 496 1.999 0.998 0.2322 0.1691
rs3779788 20.073∗∗∗ 0.0006 C/T 1693 2.103 1.093 648 1.910 0.886 40 1.907 0.837 0.0001 0.0187∗

rs7016529 0.103∗ 0.0065 T/C 2310 2.04 1.038 70 2.302 1.088 3 1.893 0.491 0.0395 0.0018∗∗

rs1121923 0.016 0.0018 G/A 2247 2.049 1.051 133 2.017 0.827 3 1.976 0.053 0.6665 0.4800
rs248 20.049∗ 0.0001 G/A 2035 2.068 1.066 337 1.921 0.852 11 2.013 1.015 0.0469 0.4612
rs249 20.025 0.0017 A/G 2020 2.059 1.046 352 1.979 1.006 11 2.109 0.734 0.3020 0.2910
rs253 20.032∗ 0.0004 C/T 725 2.108 1.048 1164 2.050 1.078 489 1.949 0.925 0.0129 0.5677
rs264 20.082∗∗∗∗ 0.0026 G/A 1707 2.112 1.095 630 1.884 0.860 45 1.902 0.923 ,0.0001 0.1683
rs268 0.127∗∗ 0.0084 T/C 2284 2.034 1.031 97 2.379 1.177 2 1.336 0.777 0.0045 0.3575
rs270 0.022 0.0034 G/T 1711 2.017 0.965 598 2.146 1.242 67 1.964 0.867 0.2090 0.0973
rs283 0.030 0.0007 C/T 1584 2.014 1.005 701 2.113 1.083 98 2.117 1.243 0.0648 0.0703
rs301 20.079∗∗∗∗ 0.0014 T/C 1367 2.142 1.124 878 1.931 0.902 133 1.825 0.828 ,0.0001 0.6622
rs316 20.058∗∗ 0.0112 C/A 1852 2.076 1.068 495 1.965 0.935 36 1.669 0.757 0.0036 0.6508
rs328 20.081∗∗∗ 0.0036 G/C 1889 2.092 1.081 467 1.870 0.830 26 1.940 1.046 0.0001 0.7598
rs10099160 0.003 0.0063 A/C 1406 2.048 1.021 839 2.030 1.064 134 2.144 1.086 0.8651 0.5542
rs3289 0.113∗∗ 0.0000 A/G 2255 2.035 1.032 123 2.221 1.106 4 3.568 1.636 0.0037 0.0915
rs13702 20.063∗∗∗∗ 0.0035 T/C 1212 2.144 1.143 984 1.954 0.908 184 1.894 0.891 ,0.0001 0.4602
rs4921684 20.043∗ 0.0079 C/T 1730 2.072 1.068 598 2.001 0.966 53 1.756 0.825 0.0190 0.8673
rs2197089 0.037∗∗ 0.0023 A/G 695 1.962 0.941 1175 2.060 1.057 509 2.134 1.120 0.0048 0.7497

aAsterisks denote level of significance: ∗0.05, ∗∗0.01, ∗∗∗0.001, ∗∗∗∗,0.0001.

Table 3. Comparison of different model selection approaches. All the methods and criteria used to select SNPs most likely to be tightly associated with a func-
tional variant

SNP rs
number

Mean of logarithm of TG
for additive modela

Rank of
P-value

Adj.
R2

Mallows
Cp

RMS AIC BIC Cross-validation Stepwise
regression using
AIC

Stepwise
regression using
P ¼ 0.1

rs17410577 0.0103∗ 9 × × × × 0.130399 0.015
rs1534649 0.2322 19
rs3779788 0.0001∗∗∗ 4
rs7016529 0.0395∗ 13
rs1121923 0.6665 20
rs248 0.0469∗ 15
rs249 0.3020 17
rs253 0.0129∗ 12
rs264 ,0.0001∗∗∗∗ 2 × × × × 0.069453
rs268 0.0045∗∗ 6 × × × × × 0.005754 0.005
rs270 0.2090 16
rs283 0.0648 14
rs301 ,0.0001∗∗∗∗ 1 × × × × × × 0.004087 ,0.001
rs316 0.0036∗∗ 8
rs328 0.0001∗∗∗ 5
rs10099160 0.8651 18 × 0.060
rs3289 0.0037∗∗ 7 × × × × × 0.016188 0.020
rs13702 ,0.0001∗∗∗∗ 3
rs4921684 0.0190∗ 11
rs2197089 0.0048∗∗ 10

For additive model and stepwise regression with a P-value cut-off point, P-values are shown. For the stepwise AIC the AIC is given. For the best-subset models,
cross (×) denotes inclusion in the best model.
aAsterisks denote level of significance: ∗0.05, ∗∗0.01, ∗∗∗0.001, ∗∗∗∗,0.0001.
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selected models, while the second-ranking SNP is in four and
the third-ranking SNP in none of the six selected best models.
Stepwise regression using AIC stopped at the same five-SNP
model as the best-subset method, whereas when a P-value of
0.1 was used as a cut-off for removal from the model, the step-
wise regression chose an alternative five-SNP model with
rs17410577, rs268, rs301, rs10099160 and rs3289.

Haplotype approaches

For the 20 SNPs, 242 haplotypes were identified (220 possible)
of which 21 were present at a frequency higher than 1% captur-
ing 87.1% of the population, and with just 4 above 5% account-
ing for only 52.9% of haplotypic variability. To capture 90% of
all the haplotypes, 26 were needed with a minimum frequency
of 0.52%, whereas for 99% coverage, 101 haplotypes were
required with a minimum relative frequency of 0.021% (Sup-
plementary Material, Table S3). Using the frequency cut-off
of 1%, three haplotypes had TG levels significantly lower
than those of the most common haplotype in the population,
with a single haplotype being associated with higher TG
levels, when additivity of haplotypes was assumed (Supplemen-
tary Material, Table S4). Aligning the five haplotypes SNP by
SNP as shown in Supplementary Material, Table S5, we can
see that eight SNPs were common in all haplotypes making
them unlikely to be responsible for the lowering of TG
observed. It is expected that functional variants, or SNPs in
LD with them, will be the same in the three lowering haplotypes
and differ between them and the most common and raising hap-
lotypes. Three SNPs—rs301, rs13702 and rs2197089—
followed this pattern, with the LD r2 ranging from 0.23 to
0.33 between them. For the TG-raising haplotype, only SNP
rs17410577 was consistent with the phenotypic change (Sup-
plementary Material, Table S5).

We repeated the entire haplotype procedure including only
the five SNPs (rs17410577, rs264, rs268, rs301 and rs3289)
chosen by the model selection step described earlier. Twenty
haplotypes were found, 7 with a frequency of more than 1%
accounting for 98.2% of the population (Supplementary
Material, Table S6). Three haplotypes were found to have stat-
istically different TG levels from the most common haplotype,
2 of them associated with lower and 1 with higher TG levels
(Supplementary Material, Table S7). Again, aligning the hap-
lotypes revealed that rs301 was consistent with the pattern of
the lowering haplotypes, whereas, in contrast to what was seen
earlier, the rs268 SNP was now characterizing the haplotype
of higher TG levels (Supplementary Material, Table S8).

Using the 21 common haplotypes obtained for all 20 LPL
SNPs, we constructed a haplotypic tree showing their sequence
relatedness (Supplementary Material, Fig. S2). Using TreeScan,
all the branches were tested for association with TG levels. After
10 000 simulations using the analysis of variance tests, the only
evidence for association with the phenotype was the change
between Haplotype (Hap)10 (10th most common haplotype)
and the node between Hap11 and Hap9, with a permutational
P-value (after monotonicity is enforced) of 0.053. This branch
of the tree was associated with the change of the SNP rs301
(Supplementary Material, Fig. S2). We repeated the tree infer-
ence and analysis using only the five SNPs selected earlier,
and the results are presented in Figure 1. The tree has a

very pronounced loop between Hap1, Hap3, Hap4 and Hap5.
For the benefit of analysis, we assumed that common haplotypes
were giving rise to haplotypes of smaller frequency. Thus,
the two possible alternatives of the tree is either a cut of the
loop between Hap4 and Hap5 or between Hap5 and Hap1.
Testing both alternatives, we found that there were three
branches associated with TG levels. The strongest association
(P , 0.0001) was between Hap1 and Hap3 because of a
change in the rs301 SNP. The branches between Hap3
and Hap4 (P ¼ 0.0010), and between Hap1 and Hap7
(P ¼ 0.0310) due to SNPs rs264 and rs268, respectively, were
also significantly associated with the phenotype.

Association of minimal SNP set with other lipid traits

To explore the effect of the selected set of LPL SNPs on other
CHD traits, the association of both the SNPs and their haplo-
types was examined. As shown in Supplementary Material,
Table S9, in addition to TG, LPL was also associated with
changes in HDL-cholesterol (HDL-C) levels, though with
more modest effects. Apolipoprotein (apo) AI and apo B also
showed signals of association with LPL with three and one
SNPs, respectively, although, owing to the number of tests per-
formed and the P-values obtained, these associations do not
permit safe conclusions to be drawn for these associations.
Using the haplotypes of the five SNPs of the reduced model
to test for association with other lipid markers, we found that

Figure 1. Haplotypic tree for five selected SNPs. Haplotypes are ordered by
frequency with Hap1 the most common. Numbers on branches stand for the
specific SNP change between the haplotypes with SNP 1 rs17410577, SNP
2 rs264, SNP 3 rs268, SNP 4 rs301 and SNP 5 rs3289. When each change
in the tree was tested for association with TG, the changes between Hap1
and Hap7, Hap1 and Hap3, and Hap3 and Hap4 were found to be statistically
significant.

Human Molecular Genetics, 2010, Vol. 19, No. 20 3939

http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1


haplotype 4 was associated with an increase in both ApoAI and
HDL-C levels when compared with the most common haplo-
type (Supplementary Material, Table S10).

Selection of putative SNPs that marks functional variants

From the statistical tests of best model selection, five SNPs were
deemed as the most likely candidates: rs17410577, rs264, rs268,
rs301 and rs3289. These five SNPs as well as rs10099160
(selected from the R2 criterion), rs13702 and rs2197089
(suggested from the haplotypic association) were examined for
functionality. SNPs in high LD with these eight SNPs (r2 .
0.8) were identified from the Genome Variation Server database
(http://gvs-p.gs.washington.edu/GVS/). A total of 23 SNPs were
selected from the original eight, and the LD between the SNPs is
shown in Supplementary Material, Figure S3.

Functional assessment of LPL SNPs

To investigate the effect of the putative functional LPL SNPs
on DNA-binding proteins, EMSAs were performed using
probes of �30 bp sequences that encompassed the common
or rare variant of each of the 23 SNPs. Nuclear extracts
from Huh7 (human liver cell line) and human smooth
muscle cells were used in the assays to include a wide range
of possible DNA-binding proteins that may be involved in
LPL regulation. Initial EMSA analysis revealed potential
binding differences between eight wild-type and variant
alleles (rs17410577, rs268, rs327, rs326, rs331, rs3289,
rs3208305 and rs2197089; Fig. 2) using the Huh7 cell line,
and all these were followed-up for further analysis. Using
nuclear extract from human smooth muscle cells did not
provide any further allele-specific bands to those found
using the Huh7 cell line (data not shown). The probes that
did not bind any proteins by EMSAs, or those that the
common and rare variants were bound by the same intensity,
and therefore likely to bind outside the SNP location, were
rejected from further analysis. The relative location of SNPs
examined and those that showed allele-specific protein
binding are shown in Supplementary Material, Figure S4.

Luciferase reporter assays

To determine the possible transcriptional effect that the tran-
scription factor (TF)-binding sites identified by EMSAs may

be having on LPL expression, a luciferase reporter system
was created, whereby the LPL promoter (from 2724 to
+39) was inserted upstream of luciferase, and 100 bp
sequences encompassing each SNP allele were individually
placed downstream of the SV40 late poly(A) signal for the
luc+ reporter, and therefore able to act as an enhancer for
gene expression (Supplementary Material, Fig. S5). No
SNPs located in the LPL promoter itself were identified by
statistical analysis, and so inserting SNP sequences directly
upstream of luciferase was not appropriate in this model.

Transfection of LPL constructs was carried out in Huh7 and
smooth muscle cells, using a Renilla-containing vector to
control for transfection efficiency. Figure 3A and B shows
expression levels in Huh7 and smooth muscle cells, respect-
ively, relative to expression of the pGL3 basic vector contain-
ing the LPL promoter only. In Huh7 cells, expression from
rs327 G construct was 1.7-fold higher than that from the
rs327 T construct (P , 0.001). Expression from the rs3289
C construct was 1.6-fold higher than that from the rs3289 T
construct (P , 0.01). There were no other significant differ-
ences in reporter expression between alleles. The differences
in expression were not observed when transfected into
human smooth muscle cells, indicating that the enhancer/
silencer elements are likely to be tissue-specific, as is the
case with the majority of distal regulatory elements.

MC-EMSA and supershift assay

To identify the TFs involved in binding to the LPL variants,
which also conferred differential expression in luciferase
reporter assays, competition assays were carried out using
MC-EMSAs (15). In this procedure, excess unlabelled compe-
titor dsDNA consensus sequences for well-characterized TFs
were multiplexed and included in the EMSA-binding reaction.
Elimination of the bandshift for a particular set of TFs is
caused by the sequestration of the causal TF by the unlabelled
competitor probe. When used on the sequence containing the
rs327 T allele, one set of MC sequences eliminated the band-
shift (Fig. 4A). When individual competitors from this set
were examined in a further EMSA (data not shown), this indi-
cated that the additional band produced by rs327 T compared
with G was due to a FOXA family TF. A supershift assay con-
firmed this to be FOXA2 (Fig. 4B). Similarly, MC-EMSAs
suggested that the additional bands produced by rs3289 T
were from a heterodimer of TFs, CREB-binding protein

Figure 2. Representative EMSA binding using probes surrounding SNPs associated with TG levels. Red arrows indicate the presence of an allele-specific DNA–
protein complex: (A) rs17410577; (B) rs268; (C) rs326; (D) rs327; (E) rs331; (F) rs3289; (G) rs3208305; (H) rs2197089.
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(CBP) and CCAAT displacement protein (CDP) (Fig. 4C–E),
although without a clear supershift this could not be conclus-
ively proved.

DISCUSSION

Using 20 dense tSNPs for LDL, we identified a smaller subset of
SNPs likely to be associated with DNA changes affecting TG
levels. The selection was based on best-subset and stepwise
regression techniques using a number of criteria of fit together
with an analysis of haplotypes both before and after model selec-
tion. These SNPs, in addition to SNPs in strong LD with them,
were investigated further in functional studies. We performed
an EMSA for each SNP and those that showed differential
binding were subsequently cloned into a reporter construct to
study their effect on expression. We identified two SNPs that
showed novel functionality, through a mechanism affecting
gene expression. Finally, we identified the binding TF using
MC-EMSA and supershift EMSA methodologies.

In terms of the statistical analyses, in the supplementary
section we have presented a detailed walkthrough of a number
of alternative approaches for the analysis of genotypic data in
association studies. We showed that a power transformation is

better in achieving a distribution close to the normal than the
logarithmic transformation commonly used. Nevertheless, we
chose to present the latter, because effect size measures on a log-
arithmic scale have an intuitive meaning of multiplication,
which the more complex power transformation is unable to
convey. We also presented both a longitudinal model through
all multiple measurements of TG as well as a much simpler
model where the mean TG levels over 6 years was used as the
response variable. Again, a trade-off between simplicity and
accuracy was evident. The longitudinal model is better suited
for the available data but it lacks the user-friendliness of the
simple model. In this case, the choice between them does not
change our conclusions; thus simplicity was favoured. Simi-
larly, the more elaborate genotypic model, making no assump-
tion for the dominance between the two alleles, is usually a
better approximation of the truth, since only rarely will the het-
erozygous trait mean level be situated exactly between the two
homozygotes, as is the assumption of the additive model,
though the genotypic model will have a degree of freedom
more than the corresponding additive model, lowering the
power of the test. We tested the dominance deviation for all
the SNPs and we found that only one of the SNPs showed signifi-
cant deviation from additivity, thus making the use of the

Figure 3. Results of luciferase reporter assay showing relative expression of LPL-luciferase-enhancer constructs relative to the LPL-luciferase construct (pro-
moter only). (A) Transfection of a Huh7 cell line. Significant differences in expression are seen in rs327, where expression from the G allele is 1.7 times that of
the T allele. Similarly, in rs3289, expression from the C allele is 1.6 times that shown of the T allele. (B) Transfection of a smooth muscle vascular cell line.
There were no significant differences in expression between alleles for this cell line.
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assumption-free model unnecessary, although, as a general rule,
we suggest that both models are considered initially.

Model selection

It is evident that model selection is an important tool in dis-
tinguishing overlapping genetic effects when dense SNPs are

considered. With most of the criteria used, we ended up
with the same or similar subset of SNPs. SNPs rs3289, ident-
ified as functional, and rs301, in strong LD with the functional
SNP rs327, were in all selected models, except BIC which
selected only rs301. In contrast, we were unable to find any
functional change associated with SNP rs268, which
was also considered a very good candidate and had similar

Figure 4. (A) MC-EMSA using cocktails of unlabelled DNA competitors to 70 well-characterized DNA-binding proteins, using the rs327 T allele probe and
Huh7 nuclear extract. The final column of multiplexed competitors prevents binding of rs327 T DNA to the protein. (B) Supershift EMSA on rs327 T
probe. The single competitors from the final column in 7(a) were run individually in a further EMSA, showing FOXA competitor resulted in competition
(data not shown). To confirm FOXA binding, a supershift assay was carried out using an antibody to FOXA2. Lane 1 represents the shift produced by the
FOXA2–DNA interaction, lane 2 includes unlabelled consensus DNA for FOXA competition, lane 3 demonstrates a supershift with the addition of a
FOXA2 monoclonal antibody, confirming binding of FOXA2. (C) MC-EMSA using cocktails of unlabelled DNA competitors to 70 well-characterized DNA-
binding proteins, using the rs3289 C allele probe and Huh7 nuclear extract. The first column of multiplexed competitors prevents binding of rs3289 C DNA to the
protein. (D) The single competitors from the first column in 7(c) were run individually in a further EMSA, showing both CBP and CDP competitors resulted in
competition. (E) Supershift against rs3289 C allele probe using antibodies for CBP, CDP and FOXA2 (as a negative control). Addition of antibody to CBP results
in the elimination of bands 1, 3 and 4. Addition of antibody to CDP results in the elimination of band 4. A supershift is not observed, possibly due to hindrance
from heterodimeric binding.
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statistical evidence with the other two. It is difficult to say
which criterion of fit is the most appropriate for all cases but
we can see that, at least in our case, BIC was the most conser-
vative. Cross-validation, Mallows Cp and AIC are identical
but AIC is the easiest of the three to calculate and has been
implemented in a wide range of statistical packages.
However, the commonly used method of considering the
importance of SNPs based on their P-values was not supported
from our results, with the first and seventh ranked SNPs found
to be associated with changes of LPL transcription. We are
currently working on a simulation study to assess the effi-
ciency of each selection criterion in different scenarios of
LD and the number of functional SNPs.

Model selection also benefited the analysis of haplotypes.
Excluding SNPs not selected as contributing to the fit of the
model decreased the noise associated with haplotypic analysis.
In this case, the analysis of haplotypes was used as a means of
identifying potentially interesting SNPs when the pattern of
common lineage was accounted for rather than a test of associ-
ation for a single extended haplotype. The use of haplotypic
trees gave another level of information for the haplotypes,
both in terms of the relationship between them, sometimes in
evolutionary terms, as well as on the effect of SNPs in a
context-dependent manner, as seen in the TreeScan method.
We also explored the idea of using the inferred haplotypes
and their respective trees as tools for finding SNPs associated
with functional changes. Although we were able to identify
rs301 in both cases, this method severely penalizes rare
SNPs, and more work is required before we can claim that it
is a successful method for further refinement of association
signals. If rare functional SNPs in and around LPL are contri-
buting to a significant extent to the association of the gene
with TG levels, then rare haplotypes sharing the same lineage
might prove informative, as outlined recently in a modelling
paper (16). In this study, we considered HapMap CEU SNPs
with frequencies higher than 4%, thus limiting our ability to
identify truly rare polymorphisms, which would require
re-sequencing of many subjects for a comprehensive analysis.

Functional assays of identified SNPs

Once the SNPs in strong LD with the tSNPs associated with TG
levels were identified, a simple procedure to examine function-
ality of a large subset of SNPs was required. As the SNPs were
present almost exclusively in non-coding regions, there was a
high likelihood that a functional SNP would be effecting gene
regulation. As a regulatory SNP would necessarily alter DNA-
binding properties, EMSA analysis was the most appropriate
and simplest tool to measure this possibility. Chromatin immu-
noprecipitation would be another potential tool, with the advan-
tage of being an in vivo approach, but this procedure requires
prior knowledge of the DNA-binding proteins involved. Once
EMSAs had identified allele-specific differences in affinity
for DNA-binding proteins, expression differences were then
examined. Luciferase reporter assays were carried out, using
the LPL promoter driving luciferase, with the potential regulat-
ory alleles acting as an enhancer element.

The strongest statistical association with TG levels was with
the tSNP rs301. One SNP in strong LD with this SNP, rs327,
also affected expression levels in an enhancer-based luciferase

construct driven by the LPL promoter. In this scenario, the T
allele resulted in decreased expression and appears to act as
a distal transcriptional silencer. An alternative explanation is
that there is a transcription silencer nearby, but not including
rs327, and the G allele is acting as a classical enhancer.
Using MC-EMSAs, followed by supershift assay demonstrated
strong binding of FOXA2 to the T allele, but no binding to the
G allele. FOXA2 (previously known as hepatic nuclear
factor-3b) is a member of the forkhead class of DNA-binding
proteins, which acts as a transcriptional activator of liver-
specific genes, and can also interact with chromatin. The
LPL promoter has been well-characterized, and a study by
Enerbäck et al. (17) has previously identified two elements
in the promoter with DNA-binding properties similar to
those of the forkhead family of TFs. These elements were
able to confer differentiation-linked expression in vitro in a
system that mimicked LPL expression during adipocyte differ-
entiation. A similar system may be working at this intronic
enhancer, where the T allele, but not the G allele, of rs327
may affect the differentiation-linked LPL expression.
Another explanation could lie with the involvement of
FOXA2 in chromatin remodelling. The FOXA proteins are
able to open highly compacted chromatin in vitro through a
process that does not involve the SWI/SNF chromatin remo-
delling complex and likely occurs through the ability of the
FOXA proteins to bind the core histones H3 and H4 (18).
Binding of the T allele to FOXA2 may facilitate an open chro-
matin structure surrounding intron 8/9, facilitating further
access of DNA-binding proteins that may act as a complex
transcriptional silencer. Indeed, analysis of chromatin signa-
tures indicates the presence of a regulatory region surrounding
rs327. A study into genome-wide histone methylation profiles
identified an H3K4me1 (histone H3 monomethyl K4) profile
surrounding rs327 (Supplementary Material, Fig. S6A and
B) (19). This signature is often found downstream of transcrip-
tion start sites and is associated with enhancer/silencer elements.
Another genome-wide study examined nuclease-accessible
sites in CD34+/2 cells, which, in strong concordance with
the H3K4me1 profile, demonstrates such a site in this region
(Supplementary Material, Fig. S6A and B) (20). Together,
these data add weight to the likelihood of this being an important
regulatory region and the possibility that rs327 is an important
SNP in LPL regulation.

The ‘HindIII’ polymorphism (rs320), also in strong LD with
rs301, has been associated with TG levels in a number of
studies (10). A study by Chen et al. (21) examined the func-
tionality of this SNP, and EMSA analysis demonstrated the
binding of TATA-binding protein to both alleles, with a mar-
ginally higher affinity to the common allele. This was comple-
mented by a reporter assay, whereby the entire intron 8
sequence with either rs320 T or G was cloned downstream
of the LPL promoter (1537 bp), driving luciferase expression.
The authors found higher luciferase expression with the T
allele construct. We, however, found no allelic difference in
DNA binding to rs320 and did not pursue this SNP further.
The model used for the reporter assay by Chen et al. (21)
was for a promoter, rather than an enhancer. As the SNP is
located .22 kb downstream of the transcription start site,
any functional effect is likely to be through long-range inter-
actions and acting as an enhancer/silencer element.
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Another SNP which showed both differential expression
and TF-binding in an enhancer construct was rs3289.
Although rare (minor allele frequency , 0.05), this variant
provides an additional, independent functional SNP that may
regulate LPL levels. EMSA-based analysis indicated binding
of both CBP and CDP to the T allele but not the C allele.
CDP acts as a transcriptional repressor by binding to unique
nucleotide sequence elements and is also involved in the regu-
lation of gene transcription through nuclear matrix attachment
(22). CBP is a transcription co-activator, having acetyltrans-
ferase activity with its binding partners. A study by Li et al.
(23) demonstrated that CDP interacts with CBP, and the tran-
scriptional repression is regulated by acetylation of specific
lysine residues near the homeodomain of CDP (23). This
mechanism may explain the reduced transcriptional activity
of the construct containing the rs3289 T allele.

A recent study using the Cardiometabolic Illumina chip (24),
encompassing 50 000 SNPs focusing on candidate genes for
cardiovascular disease (25), included both rs327 and rs3289.
There are 74 SNPs on the CVD chip in and around the LPL
locus with 31 of them significant at the 1025 cut-off point. Of
the 20 SNPs we analysed, 17 were also included in the
HumanCVD BeadChip (rs248, rs283 and rs4921648 only in
NPHSII data) with 7 significant in both studies (rs253, rs264,
rs301, rs328, rs3289, rs13702 and rs2197089). After variable
selection, only rs3289 was common in the best model in both
studies, consistent with our conclusion that this is a functional
SNP. In contrast, rs327, although present in the second study,
was dropped from the best model and two SNPs in high LD
with it were included (rs331: r2 ¼ 0.949;rs3916027: r2 ¼
0.899). We are unsure if the exclusion of rs327 was due to
chance and the inherent uncertainty of best model selection,
or it signifies that an as yet undiscovered SNP is responsible
for the improvement of rs331 and rs3916027 fit beyond that
of rs327. Interestingly, the well-characterized stop codon
rs328 SNP, although significant in the univariate analysis of
both the present study (P ¼ 0.0001) and the HumanCVD
study (P ¼ 8.4 × 10210), was not selected in the best model
for either of them. In our data, rs328 is no longer informative
when the rs301 SNP is included in the best model, with rs301
in high LD with our functional candidate SNP rs327 (r2 ¼
0.94). This raises the possibility that rs328, at least in Cauca-
sians, might not itself be a functional locus, but in LD with
one or more causal variants. This is further supported by the
work of Deo et al. (26), which used admixture mapping in an
African American sample from the Jackson Heart Study.
They concluded that, in European-derived populations, rs328
is not itself the major causal variant but a marker for it,
because of its effect size showing a statistically significant
dependence on local ancestral background. Our candidate func-
tional SNP, rs327, although above the statistical significance
cut-off level of 0.0006 (P ¼ 7.8 × 1024), had a consistent
effect in all subpopulations tested, more so than the
rs10096633 SNP suggested by the authors as a possible func-
tional variant. Unfortunately, the majority of studies, although
identifying more than one statistical significant signal in the
LPL gene (5–9,27), as we do, do not perform model selection
or conditional P-value analysis in the locus in order to find
which SNP is more closely associated with the functional
variant. In the case of Tang et al. (28), conditional analysis of

rs326 and rs13702 using rs328 as a covariate suggested that
their effect is beyond what is explained by the stop codon
rs328, with rs326 in high LD with our functional candidate
rs327 SNP. Imputation of the SNPs previously identified as
important or likely functional (rs10096633 (5), rs12678919
(6), rs17482753 (7), rs320 (10), rs328 (14)), and subsequent
conditional analysis with the SNPs we identified (Supplemen-
tary Material, Table S11) revealed that rs327 can, to some
degree, account for the association observed with the pre-
viously reported SNPs, suggesting that although these are sig-
nificant in a univariate analysis, and are unlikely to be
functional.

Limitations

Our current use of the methodology described here, and tested
on the LPL association with TG levels, has a number of limit-
ations. TG level is a distant phenotype compared to LPL
activity or mass, and other factors might also be involved in
the regulation of this association; in contrast, to the measure-
ments of the immediate protein levels, TG has the advantage
of showing effects owing to both changes in expression and
protein function. We cannot claim that the results presented
describe a comprehensive analysis of the LPL locus. The
identification of tSNPs and SNPs in LD with the ones we con-
sidered as most likely linked to a functional variantwas done
predominantly through the use of HapMap. Our coverage of
the area relies on the completeness of the data (29), and thus
more, yet undiscovered, causal common variants might still
exist in and around LPL. The 1000 Genomes Project (http://
www.1000genomes.org/) and the increasing use of
re-sequencing will significantly enhance our ability to test
all the variations in a locus, including rare SNPs. In our
case, further information was lost because of the failure in
genotyping some of the tSNPs, using 20 of the original 27 con-
sidered. As with all in vitro models for in vivo processes,
DNA–protein interactions in vitro may not fully represent
those occurring in vivo, particularly where chromatin structure
and epigenetics may play an additional and important role.
Furthermore, there may be tissue-specific TFs involved in
LPL expression that are not represented either in the liver or
smooth muscle cells used in this study. The luciferase reporter
assay is a crude model to demonstrate regulatory potential of
DNA sequences, and although currently the only technique to
measure allelic expression differences in vitro, suffers mostly
from limitations of insert size and no consideration of chroma-
tin structure, which may be one of the major influences on
gene expression.

Conclusions

We described a process of statistical analysis and experimental
follow-up aimed to identify candidate functional SNPs in and
around LPL. Two novel SNPs were shown to affect regulation
of LPL in vitro and these were in LD with SNPs identified as
being associated with levels of TG in a sample of middle-aged
healthy men. We believe that the same process can be used to
easily, and cost-effectively, determine potential functional var-
iants in a number of genes shown to be associated with inter-
mediate phenotypes or disease. More specifically, the cost of
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re-sequencing long stretches of DNA is becoming more and
more affordable. This will provide us with a wealth of infor-
mation never seen before but will also present new challenges.
Signals of association are going to be clustered in areas of LD
that can extend to great distances away from the gene. More-
over, any independent signals of association within the cluster
are going to be difficult to distinguish. The proposed pro-
cedures offer an efficient method in identifying the most
important SNPs and scanning their most closely linked SNPs
to identify candidate functional variants.

MATERIALS AND METHODS

Study design and phenotypic measures

The Northwick Park Heart Study II (NPHS-II) is a prospective
study of 3012 healthy middle-aged men aged 50–64 years at
recruitment, sampled from nine UK general practices
between 1989 and 1994 (30). They were free from disease
at the time of recruitment, and information on lifestyle
habits, height, weight and blood pressure were recorded at
baseline and on subsequent prospective follow-up. Venepunc-
ture was performed in the morning, and participants had been
requested to take only a light breakfast. Baseline measures of
cholesterol, TG and apolipoproteins AI and B were made
using standard assays (31) with up to five subsequent annually
repeated measurements of total cholesterol and TG. HDL-C
was measured directly in samples taken at year 4 (31). A
DNA repository was established using samples from 2775 par-
ticipants obtained at the time of recruitment. Full details of
recruitment, measurements, follow-up and definitions of inci-
dent disease have been reported elsewhere (30).

Genotyping

A customized Illumina 768 SNP genotyping array was assembled
to capture common genetic variation in more than 76 genes (32)
including the gene for LPL. We selected 27 tSNPs using the Hap-
loview implementation of Tagger on HapMap data, applying a
pairwise r2 threshold of 0.8 with a minor allelic frequency
threshold of 0.04. Another five (c)SNPs were previously geno-
typed, with three also in the new array and one in LD with
them. Of the 27 SNPs included in the array, 22 were successfully
genotyped, with the rest either failing the final quality control or
failing genotyping altogether.

Statistical analysis

TG levels were transformed using a logarithmic transform-
ation (see Supplementary Material for a power transformation
approach). The multiple measurements of TG, in baseline and
five annual visits, were analysed using the mean of all six
measurements adjusting for age and practice centre in
STATA (version 10, STATA Corporation; see Supplementary
Material for a longitudinal mixed-effect model). In terms of
dominance between the two SNP alleles, we used an additive
model, where the heterozygous effect is expected to be exactly
between the two homozygotes (the genotypic model is
described in the Supplementary Material). The subset of
SNPs providing the best fit to the data, among all the

possible models, was selected using a number of criteria in
R (http://www.r-project.org/, 2.9.0). Haplotypes consisting of
all the LPL SNPs were inferred using Phase (33). TG levels
of haplotypes with a relative frequency of more than 1% were
compared with that of the most common haplotype using 300
random draws from the posterior distributions of the haplotypes
as computed by Phase. Each imputed data set was then tested sep-
arately, and the results were summarized using Rubin’s rule (34)
in Stata with mim (35). Those showing significant differences
were aligned and the SNPs identifying haplotypes with lower
or higher levels of TG were found. Using TCS (36), we con-
structed an unrouted network of haplotypes showing the relation-
ships between the sequences. The haplotypic tree obtained was
used to search for phenotype–genotype associations with TreeS-
can (37). Throughout, we use a rather permissive cut-off point of
0.05. This is done to reflect our prior knowledge of the effect of
LPL on TG levels and the fact that our aim was not to discover
signals of association but to identify the most likely SNPs of
functional variation. Imputation of additional SNPs was done
using MACH 1.0.16 (http://www.sph.umich.edu/csg/abecasis/
MACH/index.html) and data from the full data set of HapMap
phase 1 and 2 (http://hapmap.ncbi.nlm.nih.gov/).

SNPs in high LD with those identified as potentially inter-
esting tSNPs (r . 0.8) were obtained from the Genome Vari-
ation Server database (http://gvs-p.gs.washington.edu/GVS/)
using the combined LD derived from the CELERA Collection
of 653 Caucasian individuals from CEPH pedigrees, CELERA
Collection of 30 unrelated Caucasian individuals and 252
genotypes from Utah residents with Northern and Western
European ancestry from the CEPH collection.

Cell culture and plasmid preparation

Huh7 cells (HPACC, Porton Down, UK) were maintained in
high-glucose Dulbecco’s modified Eagle’s medium (PAA,
Yeovil, UK) supplemented with 2 mM L-glutamine (PAA)
and 10% fetal bovine serum (FBS) (PAA) at 378C, 5% CO2.
Human smooth muscle cells (Lonza, Porrino, Spain) were cul-
tured in SmGM-2 Smooth Muscle Growth Medium-2 (Clo-
netics), containing 5% FBS.

The LPL promoter (2724 to +39 relative to the transcrip-
tion start site) was amplified using standard PCR methods, and
ligated into the linearized pGL3 basic vector using the Acc651
and HindIII sites. The integrity of the construct was verified by
sequencing. To add the putative regulatory elements surround-
ing the SNPs of interest, oligonucleotides were designed with
the addition of BamHI restriction sites at the 5′- and 3′-ends,
and PCR amplification of common and rare homozygous indi-
viduals performed (oligos and PCR parameters are available
upon request). The PCR products were digested with BamHI
and ligated into the BamHI-linearized LPL–pGL3 vector,
downstream of the SV40 late poly(A) signal. All sequences
used in plasmid construction are available upon request.

Electrophoretic mobility shift assay

Nuclear extracts were obtained from Huh7 cells and smooth
muscle cells using the NE-PER Nuclear and Cytoplasmic
Extraction Reagents Kit (Pierce) as described in the manual,
with the addition of Complete Protease Inhibitor (Roche) to

Human Molecular Genetics, 2010, Vol. 19, No. 20 3945

http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1
http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1


buffers CER I and NER I. EMSA probes were designed with
�15 bp each side of the candidate SNPs (probe sequences are
available upon request). Probes were labelled using the Biotin
3′-end DNA Labelling Kit (Pierce) as described in the manual.
Each binding reaction consisted of 2 ml of 10X binding buffer
(100 mM Tris, 500 mM KCl; pH 7.5), 1 mg of p[dI-dC], 5 mg of
nuclear extract, 200 fmol of biotin-labelled DNA, made to a
total of 20 ml with H2O and incubated at 258C for 30 min, fol-
lowed by the addition of 5X loading buffer. Samples were
loaded onto a 6% polyacrylamide gel and electrophoresed
for 150 min at 120 V at 48C. Transfer to positively charged
nylon membrane was achieved through Southern transfer,
and detection using the Chemiluminescent Nucleic Acid
Detection Module (Pierce).

Luciferase reporter assay

Huh7 cells were seeded at a density of 2.5 × 104 per well in a
96-well plate format, and smooth muscle cells at a density of
1.5 × 104 per well and grown to confluence overnight in the
appropriate media (described above). Cells were transfected
with 200 ng of pGL3 reporter construct with 10 ng of
pRLTK as a transfection control. Transfection was carried
out in Opti-Mem serum-free media (Sigma) using Lipofecta-
mine 2000 (Invitrogen) as described in the manual. Media
was replaced 8 h following transfection, with serum-
containing media described above, and the cells left for 2
days before harvesting. Cells were lysed using Passive Lysis
Buffer (Promega), and luciferase expression was determined
using the Dual-Luciferase Reporter Assay System (Promega)
and measured using a Tropix TR717 Microplate Luminometer
(PE Applied Biosystems). Luciferase assays were carried out
in triplicate, and the mean relative expression differences
between alleles were determined by t-test. Three clones for
each allele were examined to ensure reproducibility.

TF identification

Identification of DNA-binding proteins was carried out using
MC-EMSAs, as previously described (15). In brief, 100X
unlabelled DNA competitors to 70 well-characterized DNA-
binding proteins were added to the binding reaction described
above, using arrays of 10 competitors per reaction, with a
30-min incubation on ice prior to the addition of labelled
probe. Where a band shift was eliminated by multiplexed com-
petition, the 10 individual competitors from the relevant array
were run separately in a further EMSA. For verification of
DNA-binding factor, 1 mg of monoclonal antibody (FOXA2,
CDP and CBP; Abcam, UK) was used in place of the DNA
competitor to create a supershift.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

We acknowledge the contribution of the late Professor George
Miller (1939–2006) who was the PI on the NPHSII study. We

also thank all the medical staff and patients who contributed to
the NPHSII study and the Office for National Statistics (NHS)
Central Registry for provision of mortality data.

Conflict of Interest statement. None declared.

FUNDING

This work was supported by the British Heart Foundation
(RG05/014 and PG08/008). The NPHSII study was supported
by the Medical Research Council, the US National Institutes
of Health (NHLBI 33014) and Du Pont Pharma. Funding to
pay the Open Access Charge was provided by British Heart
Foundation.

REFERENCES

1. Hindorff, L.A., Junkins, H.A., Mehta, J.P. and Manolio, T.A. (2009) http://
www.genome.gov/26525384. Accessed 14 October.

2. Hardy, J. and Singleton, A. (2009) Genomewide association studies and
human disease. N. Engl. J. Med., 360, 1759–1768.

3. Kannel, W.B. and Vasan, R.S. (2009) Triglycerides as vascular risk
factors: new epidemiologic insights. Curr. Opin. Cardiol., 24, 345–350.

4. Hokanson, J.E. and Austin, M.A. (1996) Plasma triglyceride level is a risk
factor for cardiovascular disease independent of high-density lipoprotein
cholesterol level: a meta-analysis of population-based prospective studies.
J. Cardiovasc. Risk, 3, 213–219.

5. Aulchenko, Y.S., Ripatti, S., Lindqvist, I., Boomsma, D., Heid, I.M.,
Pramstaller, P.P., Penninx, B.W., Janssens, A.C., Wilson, J.F., Spector, T.
et al. (2009) Loci influencing lipid levels and coronary heart disease risk
in 16 European population cohorts. Nat. Genet., 41, 47–55.

6. Kathiresan, S., Willer, C.J., Peloso, G.M., Demissie, S., Musunuru, K.,
Schadt, E.E., Kaplan, L., Bennett, D., Li, Y., Tanaka, T. et al. (2009)
Common variants at 30 loci contribute to polygenic dyslipidemia. Nat.
Genet., 41, 56–65.

7. Saxena, R., Voight, B.F., Lyssenko, V., Burtt, N.P., de Bakker, P.I., Chen,
H., Roix, J.J., Kathiresan, S., Hirschhorn, J.N., Daly, M.J. et al. (2007)
Genome-wide association analysis identifies loci for type 2 diabetes and
triglyceride levels. Science, 316, 1331–1336.

8. Kooner, J.S., Chambers, J.C., Aguilar-Salinas, C.A., Hinds, D.A., Hyde,
C.L., Warnes, G.R., Gomez Perez, F.J., Frazer, K.A., Elliott, P., Scott, J.
et al. (2008) Genome-wide scan identifies variation in MLXIPL
associated with plasma triglycerides. Nat. Genet., 40, 149–151.

9. Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L.,
Clarke, R., Heath, S.C., Timpson, N.J., Najjar, S.S., Stringham, H.M.
et al. (2008) Newly identified loci that influence lipid concentrations and
risk of coronary artery disease. Nat. Genet., 40, 161–169.

10. Sagoo, G.S., Tatt, I., Salanti, G., Butterworth, A.S., Sarwar, N., van
Maarle, M., Jukema, J.W., Wiman, B., Kastelein, J.J.P., Bennet, A.M.
et al. (2008) Seven lipoprotein lipase gene polymorphisms, lipid fractions,
and coronary disease: a HuGE association review and meta-analysis. Am.
J. Epidemiol., 168, 1233–1246.

11. Zechner, R. (1997) The tissue-specific expression of lipoprotein lipase:
implications for energy and lipoprotein metabolism. Curr. Opin. Lipidol.,
8, 77–88.

12. Stein, Y. and Stein, O. (2003) Lipoprotein lipase and atherosclerosis.
Atherosclerosis, 170, 1–9.

13. Merkel, M., Eckel, R.H. and Goldberg, I.J. (2002) Lipoprotein lipase:
genetics, lipid uptake, and regulation. J. Lipid. Res., 43, 1997–2006.

14. Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N.P., Rieder,
M.J., Cooper, G.M., Roos, C., Voight, B.F., Havulinna, A.S. et al. (2008)
Six new loci associated with blood low-density lipoprotein cholesterol,
high-density lipoprotein cholesterol or triglycerides in humans. Nat.
Genet., 40, 189–197.

15. Smith, A.J. and Humphries, S.E. (2009) Characterization of DNA-binding
proteins using multiplexed competitor EMSA. J. Mol. Biol., 385, 714–
717.

3946 Human Molecular Genetics, 2010, Vol. 19, No. 20

http://hmg.oxfordjournals.org/cgi/content/full/ddq308/DC1


16. Dickson, S.P., Wang, K., Krantz, I., Hakonarson, H. and Goldstein, D.B.
(2010) Rare variants create synthetic genome-wide associations. PLoS

Biol., 8, 12.

17. Enerback, S., Ohlsson, B.G., Samuelsson, L. and Bjursell, G. (1992)
Characterization of the human lipoprotein-lipase (LPL) promoter -
evidence of 2 cis-regulatory regions, Lp-alpha and Lp-beta, of importance
for the differentiation-linked induction of the LPL gene during
adipogenesis. Mol. Cell. Biol., 12, 4622–4633.

18. Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M. and Zaret,
K.S. (2002) Opening of compacted chromatin by early developmental
transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell, 9, 279–289.

19. Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey,
D.K., Huebert, D.J., McMahon, S., Karlsson, E.K., Kulbokas, E.J.,
Gingeras, T.R. et al. (2005) Genomic maps and comparative analysis of
histone modifications in human and mouse. Cell, 120, 169–181.

20. Gargiulo, G., Levy, S., Bucci, G., Romanenghi, M., Fornasari, L., Beeson,
K.Y., Goldberg, S.M., Cesaroni, M., Ballarini, M., Santoro, F. et al.

(2009) NA-Seq: A discovery tool for the analysis of chromatin structure
and dynamics during differentiation. Dev. Cell, 16, 466–481.

21. Chen, Q., Razzaghi, H., Demirci, F.Y. and Kamboh, M.I. (2008)
Functional significance of lipoprotein lipase HindIII polymorphism
associated with the risk of coronary artery disease. Atherosclerosis, 200,
102–108.

22. Liu, J.Q., Barnett, A., Neufeld, E.J. and Dudley, J.P. (1999)
Homeoproteins CDP and SATB1 interact: potential for tissue-specific
regulation. Mol. Cell. Biol., 19, 4918–4926.

23. Li, S.D., Aufiero, B., Schiltz, R.L. and Walsh, M.J. (2000) Regulation of
the homeodomain CCAAT displacement/cut protein function by histone
acetyltransferases p300/CREB-binding protein (CBP)-associated factor
and CBP. Proc. Natl Acad. Sci. USA, 97, 7166–7171.

24. Keating, B.J., Tischfield, S., Murray, S.S., Bhangale, T., Price, T.S.,
Glessner, J.T., Galver, L., Barrett, J.C., Grant, S.F., Farlow, D.N. et al.

(2008) Concept, design and implementation of a cardiovascular
gene-centric 50K SNP array for large-scale genomic association studies.
PLoS ONE, 3, e3583.

25. Talmud, P.J., Drenos, F., Shah, S., Shah, T., Palmen, J., Verzilli, C.,
Gaunt, T.R., Pallas, J., Lovering, R., Li, K. et al. (2009) Gene-centric
association signals for lipids and apolipoproteins identified via the
HumanCVD BeadChip. Am. J. Hum. Genet., 85, 628–642.

26. Deo, R.C., Reich, D., Tandon, A., Akylbekova, E., Patterson, N.,
Waliszewska, A., Kathiresan, S., Sarpong, D., Taylor, H.A. Jr and Wilson,
J.G. (2009) Genetic differences between the determinants of lipid profile
phenotypes in African and European Americans: the Jackson Heart Study.
PLoS Genet., 5, e1000342.

27. Lanktree, M.B., Anand, S.S., Yusuf, S. and Hegele, R.A.and the SHARE
Investigators (2009) Replication of genetic associations with plasma
lipoprotein traits in a multiethnic sample. J. Lipid Res., 50, 1487–1496.

28. Tang, W.M.D.P., Apostol, G.M.D.M.S., Schreiner, P.J.P., Jacobs,
D.R.J.P., Boerwinkle, E.P. and Fornage, M.P. (2010) Associations of
lipoprotein lipase gene polymorphisms with longitudinal plasma lipid
trends in young adults: the Coronary Artery Risk Development in Young
Adults (CARDIA) Study. Circulation: Cardiovasc. Genet., 3, 179–186.

29. Altshuler, D., Brooks, L.D., Chakravarti, A., Collins, F.S., Daly, M.J. and
Donnelly, P. International HapMap Consortium (2005) A haplotype map
of the human genome. Nature, 437, 1299–1320.

30. Cooper, J.A., Miller, G.J., Bauer, K.A., Morrissey, J.H., Meade, T.W.,
Howarth, D.J., Barzegar, S., Mitchell, J.P. and Rosenberg, R.D. (2000)
Comparison of novel hemostatic factors and conventional risk factors for
prediction of coronary heart disease. Circulation, 102, 2816–2822.

31. Talmud, P.J., Hawe, E., Miller, G.J. and Humphries, S.E. (2002)
Nonfasting apolipoprotein B and triglyceride levels as a useful predictor
of coronary heart disease risk in middle-aged UK men. Arterioscler.
Thromb. Vasc. Biol., 22, 1918–1923.

32. Drenos, F., Talmud, P.J., Casas, J.P., Smeeth, L., Palmen, J., Humphries,
S.E. and Hingorani, A.D. (2009) Integrated associations of genotypes with
multiple blood biomarkers linked to coronary heart disease risk. Hum.
Mol. Genet., 18, 2305–2316.

33. Stephens, M., Smith, N.J. and Donnelly, P. (2001) A new statistical
method for haplotype reconstruction from population data. Am. J. Hum.
Genet., 68, 978–989.

34. Rubin, D.B. (1987) Multiple imputation for nonresponse in surveys.
John Wiley & Sons, Inc., New York.

35. Royston, P., Carlin, J.B. and White, I.R. (2009) Multiple imputation of
missing values: new features for mim. Stata J., 9, 252–264.

36. Clement, M., Posada, D. and Crandall, K.A. (2000) TCS: a computer
program to estimate gene genealogies. Mol. Ecol., 9, 1657–1659.

37. Posada, D., Maxwell, T.J. and Templeton, A.R. (2005) TreeScan: a
bioinformatic application to search for genotype/phenotype associations
using haplotype trees. Bioinformatics, 21, 2130–2132.

Human Molecular Genetics, 2010, Vol. 19, No. 20 3947


