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Turbulence hierarchy in a random fibre laser
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Turbulence is a challenging feature common to a wide range of complex phenomena. Random

fibre lasers are a special class of lasers in which the feedback arises from multiple scattering

in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures

of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped

erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of

intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours:

a Gaussian regime below threshold, a mixture of two distributions with exponentially

decaying tails near the threshold and a mixture of distributions with stretched-exponential

tails above threshold. All distributions are well described by a hierarchical stochastic model

that incorporates Kolmogorov’s theory of turbulence, which includes energy cascade and the

intermittence phenomenon. Our findings have implications for explaining the remarkably

challenging turbulent behaviour in photonics, using a random fibre laser as the experimental

platform.
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T
he phenomenon of turbulence manifests itself in a myriad
of natural events, such as atmospheric, oceanic and
biological1–4, as well as man-made systems including

fibre lasers5,6, Bose–Einstein condensates7, nonlinear optics8, and
integrable systems and solitons9,10. In a broader context,
turbulence theory has been used to explain financial market
features11,12. In particular, atmospheric turbulence has an impact
on optical communications, in which encoding of information in
orbital angular momentum has been employed as a form of
mitigation, in a context where Kolmogorov turbulence plays a
relevant role13.

Random lasers, predicted in the late 1960’s (ref. 14), were
unambiguously demonstrated in 1994 (ref. 15) and since
then they have been thoroughly characterized in a diversity
of systems, for example, biological materials16, cold atoms17,
rare-earth-doped nanocrystals18 and plasmonic-based nanorod
metamaterials19. Among the applications, their use as speckle-free
sources for imaging20 and chemical identification21 are some
of the most promising reported so far. Random fibre lasers, on
the other hand, were first demonstrated in 2007 as a
quasi-one-dimensional random laser, using a photonic crystal
fibre22. Several advances in random fibre lasers have been
exploited lately, in particular in conventional optical fibres23,
including applications in optical telecommunications and
temperature sensing.

In contrast to both conventional and fibre lasers, where the
feedback providing gain amplification is mediated by a closed
cavity formed by mirrors or fibre Bragg reflectors24,25, the optical
feedback in random lasers and random fibre lasers arises from the
multiple scattering of photons in a disordered medium, thereby
forming an open-complex, disordered nonlinear system, in which
light propagation occurs in the presence of gain, leading to
laser emission26,27.

Recently, both random lasers and random fibre lasers have been
shown to play a major role as platforms for multidisciplinary
demonstrations and analogies with physical systems otherwise
unavailable in the laboratory environment. Examples include
astrophysical lasers17 and statistical physics phenomena, such as
Lévy statistics behaviour of intensity fluctuations28,29, extreme
events30,31 and spin–glass analogy through the observation of the
replica-symmetry-breaking phase transition32–38. In a recent report,
Churkin et al.39 described an approach to analyse the results of
Gorbunov et al.31 based on a modified wave kinetic model directly
related to the wave turbulence scenario. More recently, a direct
observation of turbulent transitions in propagating optical waves
was reported40.

In this work, we employ a theoretical framework, based on a
multiscale approach to hierarchical complex systems, to
explain the experimentally identified turbulent emission in the
erbium-based random fibre laser (RFL) (Er-RFL) with contin-
uous-wave (cw) pump. Turbulent behaviour in a random fibre
laser is clearly demonstrated for the first time to occur both near
and above the laser threshold transition. We show that the
interplay of nonlinearity and disorder is essential to induce
photonic turbulence in the distribution of intensity fluctuations in
the random laser phase of Er-RFL. In this system, the nonlinearity
arises from the process of single-photon induced nonlinear
absorption, whose microscopic origin stems from the electronic
levels of the erbium ions. On the other hand, the disorder is
provided by the random fibre gratings inscribed in the doped
fibre. In the turbulent emission regime, the theoretical description
is possible only through a superposition or mixture of statistics
that arises from a hierarchical stochastic model for the multiscale
fluctuations.

Results
Theoretical framework. A remarkable aspect of random lasers
and random fibre lasers is the strong intensity fluctuations in
the emission spectra, accompanied by non-trivial temporal
correlations in the time series of intensity measurements, which
result from the interplay between amplification, nonlinearity and
disorder. Indeed, these ingredients have been shown to be
essential to promote the observed shift from the Gaussian to a
Lévy-like statistics of output intensities in the Er-RFL system35.

The complex behaviour of random lasers and random fibre
lasers has also been recently accounted for in a statistical physics
approach that establishes a formal correspondence between these
photonic systems and disordered magnetic spin glasses32–34,41.
By starting from the Langevin dynamics equations for the
amplitudes of the normal modes, a photonic Hamiltonian was
obtained, which is an analogue of a class of disordered spin
models. Besides the linear terms associated with the gain and
radiation loss, as well as to an eventual effective damping
contribution due to the cavity leakage, the Langevin equations
also include a nonlinear term related to the wð3Þ susceptibility. The
influence of the disorder mechanism manifests itself in the
spatially inhomogeneous refractive index by its modulation
through the wð3Þ susceptibility and non-uniform distribution of
the gain with a random spatial profile. A rich photonic phase
diagram thus emerges32–34 as a function of the input excitation
power (analogue to the inverse temperature in spin models),
degree of nonlinearity and disorder strength, which tends to
hamper the synchronous oscillation of the modes. In particular,
in the Er-RFL system, the photonic replica-symmetry-breaking
spin–glass transition was shown to coincide with the Gaussian-to-
Lévy statistics shift in the distribution of output intensities35,36.
More generally, in analogy to what happens in spin glasses,
replica symmetry breaking has been shown to occur32–38 in
random lasing media, such as random lasers and random fibre
lasers, which respond non-uniquely to each measurement
performed under identical but time-lapsed conditions. Thus,
these systems demonstrate a transition from a smooth emission
below threshold, which fits a Gaussian distribution, to a Lévy
statistical regime just above threshold, with strong intensity
fluctuations. Hence, random lasers and random fibre lasers
constitute ideal platforms to study the dynamical photonic
response under changing conditions, in which a rich variety of
phenomenon from chaotic behaviour to turbulence is predicted.

The introduction of nonlinearities can also give rise to wave
turbulence. In ref. 42, the authors found turbulent emission in
quasi-cw Raman fibre lasers in the absence of any form of built-in
disorder, which was modelled by a complex Ginzburg–Landau
equation. Here we employ, instead, a statistical approach to
describe the non-Gaussian behaviour of the time series of
intensity increments in Er-RFL, in which disorder is present in
the form of customized random Bragg grating scatterers.

Our starting point is a dynamical hierarchical model recently
proposed43,44 to accommodate, through simple physical
requirements, the basic concepts of Kolmogorov’s statistical
approach to turbulence: energy cascade, whereby energy is
transferred from large to small scales, and the phenomenon of
intermittency, which is the tendency of the distribution of velocity
differences between two points in the fluid to develop long
non-Gaussian tails. In Kolmogorov’s theory, one surmises that at
large Reynold’s number big eddies are created spontaneously,
which, because of large inertia effects, must decay into smaller
eddies, in a cascade of events that go all the way down to the
smallest scale, where all eddies disappear through viscous
dissipation45. In this view, intermittency is then caused by
fluctuations in the energy transfer rates or energy fluxes between
adjacent scales, because otherwise (that is, if the energy fluxes
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were constant) the fluid velocity fluctuations would display
regular Gaussian statistics. This hierarchical model of
intermittency in turbulence43,44 will be applied below to
describe non-Gaussian fluctuations in the emission intensity of
Er-RFL.

By employing the cw-pumped Er-RFL system, we acquired a
rather large number (150,000) of successive optical spectra for
each value of the excitation power P, with a t¼ 100 ms wide
integration time window. Figure 1a–c displays representative
samples of 500 emission spectra for each excitation
power, respectively, in the regimes below (P/Pth¼ 0.72), near
(P/Pth¼ 0.99) and above threshold (P/Pth¼ 2.92), where the
power threshold, Pth¼ 16.30 mW, was measured from the
FWHM analysis (see Methods). We determined the maximum
intensity in each spectrum of the whole data set and thus
obtained a long time series of fluctuating intensity values I(t),
with the dimensionless time index t¼ 1, 2, y, 150,000, which is
illustrated in Fig. 1d–f for the respective values of P/Pth. It is clear
from these plots that there is a dramatic change in the fluctuation
pattern of I(t) as the excitation power crosses the threshold. In
fact, we shall see below that this transition actually marks the
onset of turbulent emission in the Er-RFL system.

In analogy to fluid turbulence, where the relevant
statistical quantities are velocity increments between two points
(rather than the velocities themselves), we shall analyse here the
intensity increments, dI(t)�I(tþ 1)� I(t), between successive
optical spectra. More specifically, we define the signal associated
with the intensity fluctuations as the stochastic process given by
xðtÞ � dIðtÞ, where var(dI(t)) denotes the variance of the time
series of intensity increments. If nonlinearities are not relevant, as
in the prelasing regime, then the intensity increments are
statistically independent and the probability distribution P(x) is
a Gaussian.

On the other hand, as the excitation power is increased beyond
the threshold, we show below that dynamical nonlinearities give
rise to turbulent emission. This implies that the Gaussian form of
the signal distribution remains valid only at a local level,
acquiring a slowly fluctuating variance e along the time series.
In this case, we can still write its local distribution as a conditional
Gaussian Pðx jeÞ ¼ expð� x2=2eÞ=

ffiffiffiffiffiffiffi
2pe
p

, where the parameter
e characterizes the local equilibrium. The basic hypothesis46

underlying the statistical description of turbulence is that the
non-Gaussian global form of P(x) can be obtained by
compounding the local Gaussian with a background
distribution of variance fluctuations f(e). We thus have

PðxÞ ¼
Z1

0

Pðx jeÞf ðeÞde; ð1Þ

where the complex dynamics (intermittency) of the turbulent
state is captured by the density f(e). We take f(e) from a stochastic
model that incorporates Kolmogorov’s hypothesis of turbulent
cascades. It has been recently shown44 that there are two
universality classes of such models, which differ with respect to
the asymptotic tails of the signal distribution: one class has a
power-law tail and the other shows a stretched-exponential
behaviour. Here we shall describe only the stretched-exponential
class, which generalizes the K-distribution usually employed in
the description of wave scattering in a turbulent medium47,48.
A complete presentation of the two classes can be found
elsewhere44. We note in passing that the K-distribution is
defined47 by p(x)¼ 2b(bx/2)nþ 1Kn(bx)/G(1þ n), where Kn(x) is
the modified Bessel function, G(n) is the gamma function, and
b and n are characteristic parameters. In particular,
this distribution has exponential tails of the form pðxÞ � xnþ

1
2

expð� bxÞ, for xc1. The hierarchical distribution discussed
below generalizes this behaviour to a stretched-exponential tail.

Our approach is based on a hierarchical dynamical model
defined by the following set of stochastic differential equations,

deiðtÞ ¼ � gi ei� ei� 1ð Þdtþ ki
ffiffiffiffiffiffiffiffiffiffiffiffi
eiei� 1
p

dWiðtÞ; ð2Þ
for i¼ 1, y, N, where N denotes the number of relevant
fluctuation time scales in the background variables. Here,
ei represents the fluctuating parameters at the respective scales
in the hierarchy, e0 is their long-term mean, gi and ki are positive
constants and Wi are independent Wiener processes (that is,
zero-mean Gaussian processes with variance dW2

i

� �
¼ dt). The

first term in equation (2) describes the deterministic coupling
between adjacent scales, which tends to cause a relaxation to
the average e0, whereas the second term accounts for the
multiplicative noise and is the source of intermittency. The form
of the multiplicative noise is dictated by scale invariance in the
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Figure 1 | Emission spectra and time series of maximum intensities in Er-RFL. (a–c) Representative samples showing 500 successive emission spectra at

each excitation power P (normalized by the threshold value Pth) below [(a) P/Pth¼0.72], near [(b) P/Pth¼0.99] and above [(c) P/Pth¼ 2.92] the random

laser threshold of Er-RFL. Intensities I are displayed in arbitrary units as function of the wavelength l. The portrayed spectra were collected at times tt, with

integration time window t¼ 100 ms and dimensionless index t¼ 1,501, 1,502, y, 2,000. (d–f) For each one of the 150,000 spectra in the whole data set, the

maximum intensity was recorded, resulting in the long time series I(t), with t¼ 1, 2, y, 150,000, which is shown in d–f for the respective values of P/Pth.
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sense that a rescaling of variables ei-lei should leave the
dynamics unchanged44. Solving the stationary Fokker–Planck
equation associated with equation (2), one finds that the
stationary conditional probability distribution f(ei|ei� 1) is given
by a gamma density,

f ðei jei� 1Þ ¼
ðbi=ei� 1Þbi

GðbiÞ
ebi� 1

i e� biei=ei� 1 ; ð3Þ

with bi ¼ 2gi=k
2
i . In the regime of large separation of time scales,

that is, in the case gNcgN� 1cyg1, we thus find that the density
fN(eN) at the shortest scale is

fNðeNÞ ¼
Z

deN � 1 . . .

Z
de1f ðeN jeN � 1Þ . . . f ðe1 je0Þ; ð4Þ

where f(ei|ei� 1) is given by equation (3). It can be shown that this
multiple integral has a simple representation in terms of a special
transcendental function, namely the Meijer G-function49,

fNðeNÞ ¼
o

e0GðbÞ
GN;0

0;N
�

b� 1
j oeN

e0

� �
; ð5Þ

where o ¼
QN

j¼1 bj and we have introduced the vector notation
b�(b1, y, bN) and GðaÞ �

QN
j¼1 GðajÞ. As the first lower index

of the Meijer G-function in equation (5) is null, the parameters in
the top row are not present, as indicated by the dash49.

The compound integral (1) for the signal distribution can thus
be written as

PNðxÞ ¼
1ffiffiffiffiffi
2p
p

Z1

0

exp � x2

2eN

� �
e� 1=2

N fNðeNÞdeN ; ð6Þ

where fN(eN) is given by equation (5). Using a convolution
property of the G-function49, this integral can be performed
explicitly, yielding

PNðxÞ ¼
o1=2ffiffiffiffiffiffiffiffiffi

2pe0
p

GðbÞGN þ 1;0
0;N þ 1

�
b� 1=2; 0

j ox2

2e0

� �
: ð7Þ

As anticipated above, for N¼ 1 this expression recovers the
K-distribution. The large-x asymptotic limit of equation (7) is a

modified stretched exponential44,

PNðxÞ � x2yexp �ðN þ 1Þðox2=2e0Þ1=ðN þ 1Þ
h i

; ð8Þ

where y ¼ ð
PN

i¼1 bi�NÞ=ðN þ 1Þ.
Finally, a more general family of distributions can be obtained

when the data contain some internal structure that could lead to
the presence of clusters of statistically independent samples. In
this case, we may decompose PN(x) as a discrete statistical
mixture of multiscale distributions,

PNðxÞ ¼
Xn

j¼1

pjP
ðjÞ
N ðxÞ; ð9Þ

where the statistical weights pj satisfy
Pn

j¼1 pj ¼ 1 and PðjÞN ðxÞ is
obtained from equation (7). This form of discrete statistical
mixture has found applications, for example, in oceanic
turbulence50 and finance51.

Experimental results. The Er-RFL fabrication along with
the fibre Bragg grating inscription is detailed in ref. 52 and
the experimental setup is the same as reported in refs 35,36
(see Methods).

As a first quantitative characterization of the experimental
time series I(t) of maximum intensities, shown in Fig. 1d–f,
we calculated the power spectral density,

SðkÞ ¼
XL

n¼1

Inexp
� 2piðn� 1Þðk� 1Þ

L

� ������
�����

2

; ð10Þ

by subdividing the time series into 550 windows of size L¼ 256,
evaluating S(k) for each window and then performing the average
of S(k) over all windows. Here, In denotes the nth value of the
intensity inside the window and k/L is the dimensionless
frequency. In Fig. 2 we show log–log plots of S(k) for the
three mentioned values of the excitation power: (a) P/Pth¼ 0.72,
(b) P/Pth¼ 0.99 and (c) P/Pth¼ 2.92, corresponding, respectively,
to the regimes below, near and above the threshold. The lines are
fits to the power-law behaviour S(k)Bk� a. The white noise
(a¼ 0) observed below threshold in Fig. 2a is consistent with
the statistically independent non-turbulent intensity fluctuations,
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Figure 2 | Spectral density and turbulence in the intensity dynamics in Er-RFL. Log–log plots of the power spectral density S(k) (in arbitrary units) of the

time series of maximum intensities as function of the normalized frequency k. Results are shown for the regimes of excitation power P (normalized by the

threshold value Pth) (a) below (P/Pth¼0.72), (b) near (P/Pth¼0.99) and (c) above (P/Pth¼ 2.92) the threshold. Solid lines are power-law fits, S(k)Bk� a,

to the experimental data depicted in blue circles. In a, the white noise (horizontal red line with exponent a¼0) is consistent with statistically independent

non-turbulent Gaussian intensity fluctuations below threshold. The non-trivial double power-law behaviour, indicated by red and green lines in b,c, suggests

the existence of turbulence in the Er-RFL dynamics both near and above the threshold. The green lines in b,c are associated with the exponents a¼ 1.17 and

a¼ 1.04, respectively. The red lines in b,c are associated with the exponents a¼ 1.84 and a¼ 3.01, respectively.
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displaying Gaussian distributions for both intensities and
intensity increments.

In contrast, the non-trivial double power-law behaviour,
noticed both near and above threshold in Fig. 2b,c, respectively,
suggests the existence of turbulence in the intensity fluctuations
dynamics, which is confirmed below. Such behaviour of S(k) is
also consistent with the double cascade phenomenon observed in
the wave turbulence scenario53.

In Fig. 3 we display the experimental distribution of intensity
increments below threshold, at P/Pth¼ 0.72. The good Gaussian
fit corroborates the results for the prelasing regime in Fig. 2a. The
variance e does not fluctuate, corresponding to the density
f(e) given by a Dirac delta function in the compound integral
(equation (1)). Consequently, a multiscale turbulent cascade is
absent below threshold (N¼ 0 in the theoretical model), which
implies that the dynamics of intensity fluctuations in Er-RFL
produces intensity increments that are statistically independent.

The scenario is drastically modified as the excitation power is
increased near and above the threshold. Indeed, the excellent fit
to the distribution of intensity increments observed in Fig. 4(a) at
P/Pth¼ 0.99 is described by the statistical mixture

PNðxÞ ¼ pPNðb; e0; xÞþ ð1� pÞPNðb0; e00; xÞ; ð11Þ
where PN(b, e0; x) is given by equation (7), with bj¼b for all j.
The values of the parameters are N¼ 1 (K-distribution), p¼ 0.94,
b¼ 4.21, e0¼ 0.36, b0 ¼ 1:2 and e00 ¼ 12:0. In this case, the
statistical model predicts a single time scale (N¼ 1) influencing
the dynamics of the background variable (that is, the fluctuating
variance of intensity increments), which in turn characterizes the
turbulent behaviour of the fluctuation dynamics of the output
intensity in Er-RFL near the threshold.

To verify the compound hypothesis expressed in equations (1)
and (6), we implemented a procedure to compute a subsidiary
time series of variance estimators E(t). To this end, the time series
x(t) of intensity increments was subdivided into overlapping
intervals of size M and for each such interval we computed
the variance estimator EðtÞ ¼ 1

M

PM
j¼1½xðt� jÞ� �xðtÞ�2, where

�xðtÞ ¼ 1
M

PM
j¼1 xðt� jÞ and t¼M, y, 150000, thus generating a

new time series. Next, we numerically compounded the
distribution of E(t) with a Gaussian function, as suggested by
equation (6), for various M and selected the value of M for which

the corresponding superposition integral best fitted the
distribution of the original time series. Excellent agreement for
P(x) was found using M¼ 15, as seen in the inset of Fig. 4b. The
optimal value of M can be interpreted as an estimation of the
large timescale associated with fluctuations in the background
variable e. In the main plot of Fig. 4b, we show the good
agreement between the distribution related to the E(t)-series
generated using the optimal window size M and the background
density fN(eN) with statistical mixture

fNðeNÞ ¼ pfNðb; e0; eNÞþ ð1� pÞfNðb0; e00; eNÞ; ð12Þ
where fN(b, e0; eN) is given by equation (5), for the same
parameters as in Fig. 4a, as expected from the consistency with
the joint fit of statistical mixtures. The individual components of
the mixture are shown by green lines in both Fig. 4a,b.

Figure 5a shows the distribution of intensity increments
well above the threshold, at P/Pth¼ 2.92. The red line displays
the fit to a statistical mixture in the form of equation (11),
with parameters N¼ 6, p¼ 0.30, b¼ 8.3, e0¼ 0.19 and e00 ¼ 1:3.
The background distribution is shown in Fig. 5b, along with
the fit (red line) to the statistical mixture as in equation (12),
with the same parameters. Excellent agreement is found in both
fits. The superposition of the distribution of the variance
estimator (M¼ 22) with a Gaussian distribution is depicted by
the red line in the inset of Fig. 5b. The individual components of
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the mixture are shown by green lines in both Fig. 5a,b. We
observe that the changes in the parameters b, b0, e0, e00 and p at
P/Pth¼ 2.92, in comparison with the respective values near the
threshold, accommodate well the changes in the shapes of the
experimental distributions for both x(t) and e(t) caused by
an enhancement of the intermittency effect. For example,
the decrease in the weighting parameter p (from p¼ 0.94 at
P/Pth¼ 0.99 to p¼ 0.30 at P/Pth¼ 2.92) indicates an increase in
the statistical relevance of the underlying structure associated
with the higher mean variance e00, whose weight is (1� p),
which is reasonable, as fluctuations become stronger above the
threshold. Similarly, the observed value of N is also consistent
with the expected rise in the number of relevant time scales upon
increasing the excitation power.

In this respect, we also notice that the emergence of
K-distributions in weak-scattering by continuous media, such as
sea clutter, has been attributed54 to the modulation of small-scale
fluctuations by more slowly changing large-scale structures,
a scenario that is consistent with our hierarchical model with a
single timescale for the background (N¼ 1). In Er-RFL near the
threshold, a similar mechanism may develop, whereby large
structures consisting of groups of correlated scatterers may
(intermittently) form, thus yielding N¼ 1, as verified above.
Beyond the threshold, stronger nonlinearities may lead to

multiscale dynamics where small-scale intensity fluctuations
are modulated by larger scales, which, in turn, are modulated
by even larger scales and so on, up to the largest scale in the
system. This cascade-like behaviour thus implies the existence of
a number N41 of characteristic scales—a view that is precisely
captured by the hierarchical model (2)— with N expected to grow
as the excitation power increases, provided there is no saturation
of the gain or the nonlinearity. We remark, however, that
although the existence of a turbulence hierarchy in the Er-RFL
system has been clearly identified from a statistical analysis
of a large set of emission spectra, more studies are necessary
to develop a comprehensive understanding of the underlying
physical mechanisms.

Discussion
From the analysis above, we observe that in the regimes near and
above the threshold, where the roles of disorder and nonlinearity
are mostly evidenced in the Er-RFL system, the theoretical
description is possible only through a mixture of statistics that
arises from a hierarchical stochastic model for the multiscale
intensity fluctuations, which is strictly related to the emergence of
Kolmogorov’s turbulence behaviour in the distribution of
intensity increments.

In this sense, the extensive size of the experimental data set
was proved essential to unveil the turbulent emission behaviour
in Er-RFL. Indeed, from the discussion above we infer that a
significant analysis of the variance fluctuations in the compound
integral should require at least B105 emission spectra.

We should however point out that discrete statistical mixtures
are usually associated with a partition of the data into statistically
independent subsets. In ref. 50, for instance, the probability
density function of the dissipation rate of kinetic energy in
oceanic turbulence has been found to be bimodal and well
described by a mixture of two log-normal distributions. In this
case, the authors speculate that the partition of the data was due
to a combination of an active mode and a quiescent one.
Although we did not attempt to separate our experimental data
according to some identified mechanism responsible for the
statistical mixtures observed both near and above the threshold,
we can infer from general grounds that such mechanism could
arise from a subtle combination of stimulated and spontaneous
turbulent emissions in the presence of both nonlinearity and
disorder. A detailed quantitative description of this particular
issue is, however, beyond the scope of the present study and will
be subject of a future investigation.

In conclusion, we reported on the first observation of the
statistical signatures of turbulent emission in a cw-pumped
one-dimensional random fibre laser, with customized random
Bragg grating scatterers. The distribution of intensity increments
in an extensive data set exhibits three qualitatively different forms
as the excitation power is increased: it is Gaussian below
threshold, it behaves as a statistical mixture of K-distributions
near the threshold and it is well described by a mixture of Meijer
G-distributions with a stretched-exponential tail above threshold.
A recently introduced hierarchical stochastic model43,44,
consistent with Kolmogorov’s theory of turbulence, was used to
interpret the experimental data. It is also a striking fact that the
emergence of turbulence behaviour coincided precisely with the
onset of the photonic replica-symmetry-breaking spin–glass
phase at the laser threshold in Er-RFL35,36. In fact, we observe
that amplification, nonlinearity and disorder are the essential
ingredients to induce both the photonic glassiness and turbulent
phenomena in this system. It remains, however, rather elusive
whether or not there exists some strict interplay between these
properties mediated by the common underlying mechanisms.

100
a

b

5

100

10–2

10–4

–10 –5 0 5 10

–5

0 5 10
t ×104

15

0

x

x

100

10–2

10–3

10–3 10–2 10–1 101100

10–2

P
(x

) x(
t)

P
(x

)
10–4

–10 –5 0 5 10

f(
  )

Figure 5 | Statistical mixture and multiscale turbulent behaviour above

the threshold in Er-RFL. (a) Semi-log plot of the distribution P(x) of

experimental intensity increments x (blue circles) in the regime well above

threshold, at the excitation power (normalized by the threshold value)

P/Pth¼ 2.92 and the prediction from the hierarchical model (2) for the

statistical mixture (11) (red line). The individual components of the mixture,

given by two Meijer G-distributions with N¼6, are shown by green lines.

The expected rise in the number of relevant time scales (N¼ 6) upon

increasing the excitation power is consistent with the multiscale turbulent

cascade behaviour of the intensity fluctuations dynamics in Er-RFL above

threshold. The inset shows the corresponding time series of intensity

increments. (b) Log–log plot of the density function f(E) of the experimental

variance series E(t) (blue circles) and the hierarchical model prediction for

the statistical mixture (12) (red line), with same parameters as in a. The

individual components of the statistical mixture are shown by green lines.

The inset displays the compounding of E(t) with a Gaussian function

(red line) and the experimental distribution (black circles).
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For instance, although these ingredients also constitute the basis
to the glassy properties and Lévy statistics of intensity fluctuations
that have been concurrently demonstrated35–38 in some random
lasers and random fibre lasers, it has been recently shown55 that a
rigorous connection between these features is not mandatory, so
that there can be circumstances in which, for example, a glassy
phase emerges along with a Gaussian statistics of intensity
fluctuations. We thus hope that our work stimulates this unique
opportunity to further investigate on these remarkably
challenging complex phenomena through controlled photonic
experiments in random lasers and random fibre lasers.

Methods
Er-based random fibre laser. The Er-RFL fabrication, including the fibre Bragg
grating inscription, is detailed in ref. 52. It employs a polarization maintaining
erbium-doped fibre from CorActive (peak absorption 28 dB m� 1 at 1,530 nm,
numerical aperture (NA)¼ 0.25, mode field diameter 5.7 mm), in which a randomly
distributed phase error grating was written. Using this procedure, a very high
number of scatterers (c103) was implemented, improving the fibre randomness. A
fibre length of 30 cm was used in the present work. The measured threshold from
the analysis of the full width at half maximum (FWHM) was Pth¼ (16.30±0.05)
mW. The Er-RFL linewidth was limited by our instrumental resolution to 0.1 nm.
We remark that the number of longitudinal modes in the Er-RFL, measured using
a speckle contrast technique, is B204 (ref. 36). This finding corroborates the
multimode character of the Er-RFL system.

Intensity measurements. For the intensity fluctuations measurements, an
extensive sequence of 150,000 emission spectra was collected for each excitation
power in the regimes below, near and above threshold. A home-assembled
semiconductor laser operating in the cw regime at 1,480 nm was used as the pump
source. The Er-RFL output was directed to a 0.1 nm resolution spectrometer with a
liquid-N2 charge-coupled device camera sensitive at 1,540 nm. The spectra for each
power were acquired with integration time t¼ 100 ms. We stress that the intensity
fluctuations of the pump source, o5%, were not correlated with the fluctuations
analysed here, as pointed out in refs 31,34, and also specifically in the present
experimental setup through the measurement of the normalized s.d. of both the
pump laser and the Er-RFL system. Indeed, although this quantity remained
constant in the former, it varied substantially in Er-RFL (see ref. 35).

Data availability. All relevant data are available from the authors.
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44. Macêdo, A. M. S., González, I. R. R., Salazar, D. S. P. & Vasconcelos, G. L.
Universality classes of fluctuation dynamics in hierarchical complex systems.
Phys. Rev. E 95, 032315 (2017).

45. Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press,
1995).

46. Castaing, B., Gagne, Y. & Hopfinger, E. J. Velocity probability density
functions of high Reynolds number turbulence. Phys. D 47, 177–200
ð1990Þ:

47. Jakeman, E. & Pusey, P. N. Significance of K distributions in scattering
experiments. Phys. Rev. Lett. 40, 546–550 (1978).
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