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Genome-wide association studies (GWAS) have extensively analyzed single SNP effects on a wide variety of common and complex
diseases and found many genetic variants associated with diseases. However, there is still a large portion of the genetic variants
left unexplained. This missing heritability problem might be due to the analytical strategy that limits analyses to only single
SNPs. One of possible approaches to the missing heritability problem is to consider identifying multi-SNP effects or gene-gene
interactions. The multifactor dimensionality reduction method has been widely used to detect gene-gene interactions based on the
constructive induction by classifying high-dimensional genotype combinations into one-dimensional variable with two attributes
of high risk and low risk for the case-control study. Many modifications of MDR have been proposed and also extended to the
survival phenotype. In this study, we propose several extensions of MDR for the survival phenotype and compare the proposed

extensions with earlier MDR through comprehensive simulation studies.

1. Introduction

In early genome-wide association studies (GWAS), massive
amounts of results have been reported on the associations
between single-nucleotide polymorphisms (SNPs) and dis-
eases. By now, 2,051 studies and 14, 836 causal variants
(p value < 5.0 x 107®) have been added to catalogue of
published Genome-Wide Association Studies [1]. However, it
has been found that the effective sizes of the loci identified
via GWAS are relatively small and a large proportion of
heritability is still missing. This missing heritability problem
has been studied by either considering gene-gene and gene-
environment interactions or investigating rare variants based
on new generation sequencing technology.

Traditional statistical methods are not well suited for
detecting such interactions since the number of SNPs and
their interactions increase exponentially. To address these
issues, many bioinformatics methods for identifying gene-
gene interactions have been proposed and one such method is

multifactor dimensionality reduction (MDR) [2]. The MDR
method is a computationally efficient method for detect-
ing higher-order interactions between genes (and/or gene-
environmental factors) and a binary phenotype. The key idea
of MDR is to reduce multidimensional genotypes into one-
dimensional binary attributes by using a well-defined classi-
fier. Many modifications and extensions of MDR have been
developed, which include log-linear models [3], generalized
linear models [4], and model-based methods [5]. Among
those, the generalized multifactor dimensionality reduction
(GMDR) method extends MDR to both dichotomous and
continuous phenotypes and allows for the adjustment of
covariates such as age, sex, and other clinical variables.

In this study, we focus on gene-gene and/or gene-
environment interactions associated with the survival pheno-
type. In a prospective cohort study, survival time has been
one of the important phenotypes in studies of associations
with gene expression levels measured by high-throughput
microarray technology. Similarly, it has been important to
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identify the effect of SNPs on the survival phenotype in
GWAS. A series of extensions of MDR to the survival
phenotype has recently been proposed, which includes Surv-
MDR [6], Cox-MDR [7], and AFT-MDR [8]. Those methods
propose new statistics for classifying multilevel genotypes
into a binary attribute under the MDR framework. However,
as shown in the earlier simulation results [8], Cox-MDR has
reasonable power in most cases and is robust to the censoring
fraction, while AFT-MDR has similar power as Cox-MDR
under no censoring but is very sensitive to the fraction of cen-
soring. It is shown that the power of AFT-MDR substantially
reduces, when the fraction of censoring increases more than
30%. That is why we propose two extensions of AFT-MDR,
called dAFT-MDR and rAFT-MDR, to improve the power of
AFT-MDR under heavier censoring.

Recently, a simple approach to MDR analysis of gene-
gene interactions for quantitative traits, called QMDR, has
been proposed [9]. The QMDR method replaces the balanced
accuracy with a t-test statistic as a score to determine the best
interaction model, which yields much less computing load.
We extend the idea of quantitative MDR (QMDR) algorithm
to Cox-MDR and AFT-MDR methods and propose two
extensions of QMDR, called qCox-MDR and gAFT-MDR.

We compare the power of the proposed methods for vari-
ous parameters including heritability, minor allele frequency
(MAF), and censoring proportion with and without adjust-
ment of covariates. It has been found that the improvements
of AFT-MDR are less sensitive to censoring fraction than the
original AFT-MDR but tend to have less power as the effect
of covariate increases. On the other hand, the improvement
of Cox-MDR is relatively robust to censoring fraction and
tends to have reasonable power across many combinations of
parameters.

2. Materials and Methods

2.1. Surv-MDR, Cox-MDR, and AFT-MDR. Since the MDR
method has been originally proposed for a binary phenotype
in case-control study, it was extended to quantitative traits
and various sampling designs. Among those, the Surv-MDR
was first proposed [6] for the survival phenotype by using
the log-rank test statistic to classify the multi-genotypes into
high and low risk groups. It replaces balanced accuracy by
log-rank test statistics to determine the best model. However,
Surv-MDR cannot allow for covariate adjustment, although
adjustment of individual-specific covariates is very important
in association studies to remove the confounding effect of
covariates.

To overcome the drawback of Surv-MDR, the Cox-MDR
method was proposed [7], in which the martingale residual
of a Cox model is used as a new score for classifying high
and low risk groups. In other words, if the sum of martingale
residuals is positive for a specific genotype combination,
then the corresponding genotype combination is classified
as high risk group or low risk group, otherwise. Once all of
genotype combinations are classified as either high or low
risk group, the same procedure of original MDR algorithm
is implemented to find the best interaction model. Since
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the martingale residual is obtained from a Cox model with
adjusting covariates, the confounding effect of the covariates
can be adjusted. It was shown from the simulation result in
[7] that Cox-MDR has greater power than Surv-MDR and
becomes much better when the effect of covariate increases.
Furthermore, Cox-MDR keeps reasonable power even when
the fraction of censoring increases, which implies that Cox-
MDR is robust to heavier censoring.

Similarly, the AFT-MDR method has also been proposed
by using the standardized residual as a new classifier under
the accelerated failure time model [8] and the power of AFT-
MDR is compared with that of Cox-MDR. As shown in the
simulation results [8], the power of Cox-MDR seems to be
reasonable in most cases and be robust to the fraction of
censoring while the power of AFT-MDR decreases sensitively
as the fraction of censoring increases, whereas it has similar
power as Cox-MDR under no censoring. From the simulation
results, it is shown that the power of AFT-MDR substantially
reduces when the fraction of censoring increases more than
30%. Since censoring is very common to occur in survival
data, we need to make AFT-MDR more robust to heavier
censoring.

2.2. Improvements of AFT-MDR: dAFT-MDR and rAFT-
MDR. As mentioned in the previous section, the improve-
ment of AFT-MDR is needed to make it more robust to the
fraction of censoring. Based on the simulated data in [8], the
distribution of the standardized residual tends to have a long
tail as the censoring fraction increases. Then the outliers may
have a strong impact on the sum of the standardized residuals
in AFT-MDR as those do on the mean value. We consider two
different improvements to reduce the effect of the extreme
values on the sum of standardized residuals in AFT-MDR.

We first transform the continuous standardized residual
into a binary variable instead of taking their sum as done in
AFT-MDR. In other words, the individual having the posi-
tive standardized residual is regarded as a control, whereas
the individual having the negative standardized residual is
regarded as a case. As a result, all data is discretized into 0
or 1 and then the original MDR algorithm is implemented,
which is called dAFT-MDR (discretized AFT-MDR). Though
dAFT-MDR is based on a binary value as the original MDR, it
can adjust the covariate effect using the standardized residual
of the AFT model, whereas the original MDR cannot adjust
the covariate effect.

Secondly, we specify the lower and upper bounds of the
standardized residuals and replace the extreme values of the
standardized residuals beyond these bounds by either lower
or upper bounds. Then we apply the algorithm of AFT-
MDR, which is called rAFT-MDR (restricted AFT-MDR). By
replacing the extreme values by the prespecified thresholds,
the effect of the outliers on the standardized residual may be
weakened when the distribution of the standardized residual
is extremely skewed under the heavier censoring. However,
the determination of threshold of the lower and upper bounds
seems to be arbitrary and it should be considered with the
behavior of the standardized residuals.
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TaBLE 1: The false detection rate of AFT-MDR, dAFT-MDR, rAFT-MDR, Cox-MDR, qCox-MDR, and qAFT-MDR for the log-normal

distribution with C, and MAF when y = 0.

MAF C » AFT-MDR dAFT-MDR rAFT-MDR Cox-MDR qCox-MDR qAFT-MDR
0.2 0 0.008 0.004 0.006 0.006 0.008 0.003
0.2 0.3 0.002 0.005 0.008 0.006 0.007 0.005
0.2 0.5 0.007 0.005 0.004 0.005 0.004 0.003
0.4 0 0.003 0.006 0.006 0.004 0.008 0.006
0.4 0.3 0.004 0.004 0.005 0.003 0.006 0.003
0.4 0.5 0.007 0.006 0.005 0.006 0.005 0.008

MAF: minor allele frequency; C,: censoring proportion.

2.3. Improvements of Cox-MDR and AFT-MDR: qCox-MDR
and gAFT-MDR. Recently, a simple MDR approach called
QMDR for the quantitative trait has been proposed [9],
in which the t-test statistic is used to determine the best
interaction model in the frame of MDR. The key idea of
QMDR can be easily adapted to modify Cox-MDR and AFT-
MDR since both the martingale and standardized residuals
are quantitative variables.

For Cox-MDR, we obtain the mean value of the mar-
tingale residual for each genotype combination and then
compare it with the overall mean of the martingale residual.
If the mean value of the martingale residual from the
specific genotype combination is greater than the overall
mean, the corresponding genotype is considered high risk
group. Otherwise, it is considered low risk group, since
the larger value of martingale residual has higher risk than
expected. Once all of the genotypes are classified as high
risk and low risk groups, a new binary attribute is created
by pooling the high risk genotype combinations into one
group and the low risk into another group. Then we use a
t-test statistic to test the significant difference between high
and low risk groups and choose the best model. The cross
validation procedure for QMDR is the same as that used
in original MDR. The difference is that the training score
and testing score from the f-test statistics are used instead of
training and testing balanced accuracies. As done in MDR,
the training scores to determine the best k-order interaction
model are computed and the maximum testing score is used
to identify the best overall model. Similarly, the AFT-MDR
method is also improved by using ¢-test statistic calculated
from the standardized residuals of high and low risk groups.
These improvements are called qCox-MDR and qAFT-MDR,
respectively.

3. Simulation Results

We propose various improvements of AFT-MDR and Cox-
MDR to increase the power for detecting gene-gene inter-
actions with the survival phenotype. We implement the
comprehensive simulation studies to compare the power of
these improvements with those of original AFT-MDR and
Cox-MDR.

For the simulation studies, the two disease-causal SNPs
are considered among 20 unlinked diallelic loci with the
assumption of Hardy-Weinberg equilibrium and linkage

equilibrium. For the covariate adjustment, we consider only
one covariate which is associated with the survival time but
has no interactions with any SNPs. The simulation datasets
are generated from different penetrance functions which
define a probabilistic relationship between a status of high
or low risk groups and SNPs. We consider eight different
combinations of two minor allele frequencies of 0.2 and 0.4
and the four different heritabilities of 0.1, 0.2, 0.3, and 0.4. For
each of the eight heritability-MAF combinations, a total of 5
models are generated, which yield 40 epistatic models with
various penetrance functions, as described in [10].

Suppose that SNP1 and SNP2 are the two disease-causal
SNPs and let f;; be an element from the ith row and jth
column of a penetrance function. Then we have the following
penetrance function:

fij = P (high risk | SNP1 =i, SNP2 = j). o

We generate 200 high risk patients and 200 low risk patients
for each of the 40 models which depend on the penetrance
function, MAF, and heritability. A more detailed description
about the heritability assumption is given in [11]. For each
dataset, we implement 5-fold cross validation and repeat it
10 times to reduce the fluctuation due to chance of divisions
of the data. As a result, we have 100 datasets for each model.

To generate the survival time, we consider three different
models: log-normal, Weibull, and Cox model. For each
model, the effect size of the genetic factor is fixed as 1.0 and
the effect sizes of adjusted covariate are given as y = 0.0,
1.0. For the censoring fraction, we consider three different
censoring proportions, C,, = 0.0,0.3,0.5, because the power
of AFT-MDR shows substantially decreasing trend when
the censoring is heavier than 0.3 in the previous simulation
results [8].

First, we check whether the false detection rate is close
to the expected value when there is no gene-gene interaction
effect because the best model is selected using the maximum
balanced accuracy in the algorithm of MDR. To do this, we
generate 100 datasets from each of the 40 models, which is
a total of 4000 null datasets. Here the false detection rate
is estimated as the percentage of times that the method
randomly chooses the two disease-causal SNPs as the best
model out of each set of 100 datasets for each model.
Table 1 shows the false detection rate for AFT-MDR, dAFT-
MDR, rAFT-MDR, Cox-MDR, qCox-MDR, and gAFT-MDR
for the log-normal distribution when the effect size of the
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FIGURE 1: Comparison of the power of AFT-MDR, dAFT-MDR, and rAFT-MDR for the log-normal distribution when y = 0.0. "MAF: minor

allele frequency; h*: heritability; C p censoring proportion.
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FIGURE 2: Comparison of the power of AFT-MDR, dAFT-MDR, and rAFT-MDR for the log-normal distribution when y = 1.0."MAF: minor

allele frequency; h*: heritability; C p censoring proportion.

adjusting covariate is given as y = 0.0. Since only two disease-
causal SNPs are considered among 20 SNPs, the expected
false detection rate is given as 0.005. As shown in Table 1,
the false detection rate varies from 0.002 to 0.008 across the
combination of censoring proportion and MAE For other
simulation settings, the false detection rate behaves similarly
as shown in Table1 though not displayed here. It can be
concluded that the false detection rate is close to the expected
value.

For the power, we consider 100 simulated datasets for
each of the 40 models, including two disease-causal SNPs,

and we selected the best model over all possible two-way
interaction models without and with adjustment of covari-
ates, respectively. The power of dAFT-MDR is estimated as
the percentage of times dAFT-MDR correctly chooses the
two disease-causal SNPs as the best model out of each set
of 100 datasets for each model. The power of the other
improvements is defined as the same way of that of dAFT-
MDR.

Figures 1 and 2 present the power of AFT-MDR, dAFT-
MDR, and rAFT-MDR under the log-normal distribution
when y 0 and y 1, respectively. As shown in



BioMed Research International

0.8 |
06|
04|
02|
0
Cpl 0 [03]05] 0 [03]|05| 0 |03[05[0 [03][05]0[03|05|0 [03[05]0[03]|05|0 [03]05
n2|o1|o1]01]02]02|02[03]03]03|04|04[04][01]01]|01|02][02]02]|03]|03]|03]|04]04]04
MAF| 02 |02 [02]02]02 |02 |02[02]02]02]|02|02|04]|04]|04|04|04]|04]|04|04|04]04]|04]04
[ COX-MDR [l AFT-MDR
[ qCOX-MDR qAFT-MDR

FIGURE 3: Comparison of the power of Cox-MDR, qCox-MDR, AFT-MDR, and qAFT-MDR for a Cox model when y = 0.0. "MAF: minor

allele frequency; h’: heritability; C p: censoring proportion.

Figures 1 and 2, the power of AFT-MDR, dAFT-MDR,
and rAFT-MDR has similar trend, which implies that the
power of three methods increases as the heritability increases
but is lower when the MAF increases from 0.2 to 0.4. As
expected, the power of these three methods decreases as the
censoring proportion increases from 0.0 to 0.5. In particular,
the power of AFT-MDR decreases dramatically when the
censoring proportion is lower than 0.3, whereas the power
of dAFT-MDR and rAFT-MDR decreases gradually up to
the censoring proportion of 0.3 but it decreases faster when
the censoring proportion is 0.5. For example, when the
MATF is 0.2, heritability is 0.2 and the censoring proportion
increases from 0.0 to 0.3 and the power of AFT-MDR
decreases from 0.9994 to 0.476 but the power of dAFT-
MDR decreases from 0.9904 to 0.8068 and the power of
rAFT-MDR decreases from 0.9992 to 0.8072, respectively.
Furthermore, when the censoring proportion increases from
0.3 to 0.5, the power of AFT-MDR decreases to 0.0292,
whereas the power of dAFT-MDR and rAFT-MDR decreases
to 0.3322 and 0.1838, respectively. The degree of decreasing
in power is substantially different by improvement in the
sense that AFT-MDR hardly detects the significant gene-
gene interactions associated with the survival time when the
censoring is heavier than 0.5, whereas the improvements
of AFT-MDR barely detect the gene-gene interactions. As
the heritability increases, the power of AFT-MDR does not
increase at all but the power of dAFT-MDR and rAFT-MDR
increases up to 0.7026 and 0.5925, respectively. Comparing
the power of dAFT-MDR with that of rAFT-MDR, these two
improvements seem to behave similarly under the moderate
censoring proportion but dAFT-MDR performs better than
rAFT-MDR under the heavier censoring as mentioned. This
implies that discretizing the standardized residual is more
effective than restricting the extreme values as the censoring
proportion is heavier than 0.5.

On the other hand, the power of AFT-MDR, dAFT-MDR,
and rAFT-MDR behaves similarly when the effect of the
covariate increases from y 0.0 to y 1.0 as shown
in Figures 1 and 2. This is because the effect of covariate is
adjusted by calculating the standardized residual from the
AFT model with the adjusted covariates. In addition, the
simulation results for the Weibull distribution show the same
trend as those for the log-normal distribution though not
shown here.

Figures 3 and 4 show the power of Cox-MDR, qCox-
MDR, AFT-MDR, and gAFT-MDR for a Cox model and the
log-normal distribution, respectively, when the effect size of
the adjusted covariate is y = 0.0. The power of these four
methods performs similarly when the covariate effect is y =
1.0. In addition, the power of these four methods for the log-
normal distribution is almost the same as that for Weibull
distribution though not shown here.

Comparing the simulation results shown in Figures 3
and 4, the power of Cox-MDR, qCox-MDR, AFT-MDR,
and qAFT-MDR for a Cox model is rather lower than that
for the log-normal model though these two power trends
are consistent under the various combinations of the MAF,
heritability, and the censoring proportion. The power of
these four methods commonly increases as the heritability
increases but decreases as the censoring proportion increases
and the MAF increases from 0.2 to 0.4. However, the power
of Cox-MDR and AFT-MDR is always lower than that of
qCox-MDR and qAFT-MDR and decreases substantially as
the censoring is heavier than 0.3. For a Cox model, when
the MAF is 0.2, the heritability is 0.2 and the censoring
proportion increases from 0.0 to 0.3, the power of Cox-MDR
decreases from 0.334 to 0.196, and the power of AFT-MDR
decreases from 0.270 to 0.018, respectively, whereas the power
of qCox-MDR decreases from 0.812 to 0.738 and the power
of gQAFT-MDR decreases from 0.818 to 0.038, respectively.
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FIGURE 4: Comparison of the power of Cox-MDR, qCox-MDR, AFT-MDR, and gAFT-MDR for a log-normal distribution when y = 0.0.
"MAEF: minor allele frequency; h*: heritability; C i censoring proportion.

Furthermore, when the censoring is heavier than 0.5, the
power of Cox-MDR and AFT-MDR decreases to 0.142 and
0.010, respectively, whereas the power of qCox-MDR and
qAFT-MDR decreases to 0.594 and 0.014, respectively. As
shown in Figure 3, only the power of qCox-MDR is robust
to heavy censoring mechanism, whereas the power of Cox-
MDR, AFT-MDR, and qAFT-MDR is very low when the
censoring proportion is heavier than 0.3.

On the other hand, for a log-normal model, the power
of Cox-MDR decreases from 0.650 to 0.458 as the censoring
fraction increases to 0.3 when the MAF is 0.2 and the
heritability is 0.2, whereas the power of qCox-MDR changes
from 0.958 to 0.960. In addition, the power of Cox-MDR
decreases to 0.360 as the censoring fraction increases to 0.5,
but the power of qCox-MDR is 0.95, which implies that qCox-
MDR is very robust to the censoring fraction. Under the
same setting, however, the power of AFT-MDR decreases
from 0.738 to 0.302 and the power of gAFT-MDR decreases
from 0.998 to 0.564, respectively, as the censoring fraction
increases to 0.3. As the censoring fraction increases to 0.5, the
power of AFT-MDR and qAFT-MDR decreases to 0.098 and
0.232, respectively. This result is consistent for both the Cox
model and the log-normal model, which implies that only the
power of qCox-MDR is robust to heavy censoring, though
the power of QAFT-MDR is rather higher for the log-normal
model than that for Cox model. These trends are similar for
Weibull distribution.

In summary, the simulation results show that AFT-
MDR, dAFT-MDR, rAFT-MDR, and gAFT-MDR are more
sensitive to heavy censoring (more than 0.5) than Cox-MDR
and qCox-MDR across various situations. However, for the
moderate censoring (less than 0.3), dAFT-MDR, rAFT-MDR,
and gAFT-MDR perform much better than the original AFT-
MDR.

4. Conclusions

Since many findings from GWAS have been published for the
last decades, there is still a missing heritability problem. In
order to search the missing heritability, we focus on gene-
gene interactions because most of common diseases may be
due to the complexity of gene-gene and/or gene-environment
interactions rather than a single gene effect. Many plausible
approaches have been developed by extending existing meth-
ods into a more general framework.

In this paper, we propose various improvements to AFT-
MDR and Cox-MDR, which include dAFT-MDR, rAFT-
MDR, qAFT-MDR, and qCox-MDR. The motivation to
propose dAFT-MDR and rAFT-MDR is to improve the power
of AFT-MDR because the performance of AFT-MDR is
poor when censoring becomes heavier than 0.3. To reduce
the effect of heavy censored observation, we discretize the
standardized residual into a binary value, which yields dAFT-
MDR. Alternatively, we truncate the extreme values and
replace them by specified lower and upper bounds, which
leads to rAFT-MDR. As shown in the simulation results,
both AFT-MDR and rAFT-MDR have larger powers than the
original AFT-MDR for the moderate censoring but still have
low powers for the heavy censoring.

In addition, we considered the improvement of QMDR,
which has been recently proposed in [9]. By regarding the
martingale residual and the standardized residual as the
quantitative traits, we adapted the main idea of QMDR
and applied it to Cox-MDR and AFT-MDR, which yield
qCox-MDR and qAFT-MDR, respectively. As shown in the
simulation results, qCox-MDR and qAFT-MDR provided
improved performances compared to those of the original
Cox-MDR and AFT-MDR, respectively. In particular, qCox-
MDR showed the consistent power regardless of the censor-
ing fraction. However, gQAFT-MDR yielded the weak power
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when the censoring fraction is heavier than 0.3. The censoring
fraction seems to have a larger effect on the standardized
residual than on the martingale residual. It would be desirable
to consider how to make the standardized residual more
robust to censoring mechanism.

In conclusion, the improvement of Cox-MDR, say qCox-
MDR, has reasonable power and is robust to the heavy
censoring, whereas the several improvements of AFT-MDR,
say dAFT-MDR, rAFT-MDR, and qAFT-MDR, perform
better than AFT-MDR but are not robust to heavy censoring.
More studies on the behavior of the standardized residuals are
needed to improve the power of AFT-MDR under the heavier
censoring.
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