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Abstract

The identification of functional driver events in cancer is central to furthering our understanding of cancer biology and indispensable for the
discovery of the next generation of novel drug targets. It is becoming apparent that more complex models of cancer are required to fully
appreciate the contributing factors that drive tumorigenesis in vivo and increase the efficacy of novel therapies that make the transition from pre-
clinical models to clinical trials.

Here we present a methodology for generating uniform and reproducible tumor spheroids that can be subjected to siRNA functional screening.
These spheroids display many characteristics that are found in solid tumors that are not present in traditional two-dimension culture. We show
that several commonly used breast cancer cell lines are amenable to this protocol. Furthermore, we provide proof-of-principle data utilizing
the breast cancer cell line BT474, confirming their dependency on amplification of the epidermal growth factor receptor HER2 and mutation of
phosphatidylinositol-4,5-biphosphate 3-kinase (PIK3CA) when grown as tumor spheroids. Finally, we are able to further investigate and confirm
the spatial impact of these dependencies using immunohistochemistry.

Video Link

The video component of this article can be found at https://www.jove.com/video/54738/

Introduction

Solid tumors display significant histological, genetic and micro-environmental intra-tumor heterogeneity, which presents clinicians with a
significant challenge in being able to treat patients successfully. The majority of models used to identify novel targeted therapies do not
incorporate many of these features. Indeed, current targeted therapies utilized in the clinic have been developed in the last decade employing
screening approaches that rely on cancer cell lines grown under two-dimensional (2D) culture conditions. Although this has brought about
various successes, such as receptor tyrosine kinase inhibitors, it is becoming apparent that more complex models of cancer are required to
fully appreciate the contributing factors that drive tumorigenesis in vivo and increase the number of new therapies that make the transition
from pre-clinical models to clinical trials. Moreover, it is now well appreciated that 2D culture systems fail to reflect in vivo behavior 1,2. For
example, in poorly vascularized tumors, as the demand for oxygen and nutrients within the microenvironment outstrip supply, regions of high
and low deliveries develop. The presence of low oxygen (hypoxia) in tumors, as detected by the immunohistochemical staining of tumor sections
for established hypoxic markers such as carbonic anhydrase IX (CAIX), correlates with a poorer clinical outcome in breast cancer 3,4 Thus
incorporating features such as hypoxia into screening models may enhance our capacity to discover novel drug targets that will be more
efficacious in vivo. Indeed, successfully targeting aggressive tumors that contain hypoxia is a clinical priority 5.

The altering of traditional 2D siRNA screening, in an attempt to more accurately recapitulate elements of the conditions encountered by cancer
cells in the tumor microenvironment, has led to the identification of several genes that have been found to be important for tumor growth in vivo.
These include functional genomic screens performed under low serum conditions 6, hypoxic conditions 7 and in combination 8. For example,
silencing of 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4), a protein responsible for regulating carbon entering glycolysis,
only induced apoptosis in prostate cancer lines derived from metastasis when grown in low serum. Silencing of PFKFB4 in normal prostate
cell lines under the same conditions had no effect, whereas, depletion of PFKFB4 completely ablated the growth of prostate cancer cell line
xenografts 6.

In an extended panel of breast cancer cell lines, the silencing of mono-carboxylase transporter 4 (MCT4) preferentially led to the reduction of
cell line growth under conditions of low oxygen. This vulnerability was validated in vivo in breast cancer cell line orthotropic xenografts. Perhaps
most strikingly, silencing of Acetyl-CoA synthetase 2 (ACSS2), an enzyme responsible for converting acetate into acetyl-CoA, reduced cancer
cell number under nutrient stress conditions (low oxygen and serum) but had little or no effect under normal culture conditions 8. Ablation of
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ACSS2 impacted the growth of breast and prostate cancer xenografts suggesting that nutrient gradients do not exist in isolation within the
tumor microenvironment and that cells that reside in these regions are essential for tumor progression 8. Furthermore, ACSS2 was also found
to be important in glioblastoma and hepatocellular carcinomas 9,10, suggesting that increased ACSS2 activity in tumors could be a fundamental
mechanism that supports growth under unfavorable conditions.

Collectively, these studies prove that recapitulating the conditions encountered in vivo and performing siRNA screens allows for the identification
of genes essential for cancer survival. As well as impacting 2D cancer cell growth under nutrient stress conditions, depletion of target genes in
these studies inhibited cancer cell line spheroid growth, mirroring what was observed in tumor xenografts 6,8. Thus, cancer cell line spheroids
contain several of the conditions encountered in the tumor microenvironment that impart sensitivity to ACSS2 silencing. Indeed, spheroids
display nutrient gradients (Serum and oxygen), changes in pH, three-dimensional (3D) cell-cell contact, but also, alterations in proliferative
celerity with cells undergoing cell cycle arrest and apoptosis. This is exemplified by the presence in cancer spheroids of necrotic regions, a
feature not found in traditional 2D culture.

Cancer cell spheroids have already been used as more biologically relevant models to screen small molecule inhibitors but this only allows
for the validation of compound efficacy or the repurposing of compounds originally design for other diseases 11. Current spheroid screening
methods do not allow for the analysis of specific gene depletion in a high-throughput of high-content manner. Here, we describe for the first
time, a functional genomics pipeline for uncovering specific gene dependencies utilizing small interfering RNA (siRNA) technology in cancer
cell line spheroids. We designed a bespoke library with siRNAs targeting the 200 most frequently mutated genes in human breast cancers and
assessed the impact of gene depletion on spheroid size and metabolic activity in BT474 breast cancer spheroids. We were able to robustly and
reproducibly detect the impact of ERBB2 and PIK3CA silencing in 3D cultures. Moreover, we could assess the impact of gene depletion on the
spatial architecture of BT474 spheroids using immunohistochemistry.

Protocol

1. Preparation of 96-well siRNA Plates

NOTE: The outer edges of a 96-well plate are more prone to evaporation compared to other wells, thus limit the amount of siRNAs to 60 per
96-well plate. Fill in outer wells with plain medium or PBS to limit this. In addition, a validation screen of hits is recommended to alleviate plate
biases.

1. Dilute the siRNAs to 250 - 500 ng/μL in reduced serum medium (as per manufacturer's recommendations) and aliquot 10 μL to the
appropriate wells of the ultra-low attachment plate. Perform all screens in triplicate.
 

NOTE: Incorporate appropriate non-targeting (negative) and killing (positive, such as UBB and PLK1) siRNA controls in the plate design to
ensure transfection efficiency can be assessed. The use of low-attachment plates for the siRNA work is critical, as cells will be added to the
transfection mixture. We cannot rule out that some manufacturers ultra-low attachment plates may have subtle effects on spheroid growth. As
such we recommend that these are tested by the end user.

2. Cover plates with adhesive seals and store at -20 °C.

2. Reverse Transfection of Cell Line

1. On the day of the screen, defrost the plates at room temperature and spin for 5 min at 1,000 x g using a bench-top centrifuge. Add 10 μL of
reduced serum medium containing the optimized-transfection reagent to each well using a multichannel pipette. Leave plates for 15 min for
transfection complexes containing siRNA to form.
 

NOTE: This study utilized the breast cancer cell line BT474 for functional genomic screening (cultured in high glucose DMEM (Dulbecco's
Modified Eagle Medium) supplemented with 10% fetal bovine serum (FBS) and antibiotics).

2. Trypsinize the cells to be screened (0.05% trypsin and 0.53 mM EDTA) until they detach from the flask, neutralize using appropriate volume
of cell line specific medium and spin for 5 min at 1,000 x g on a bench-top centrifuge to remove trypsin. Resuspend cells with an appropriate
volume of medium and determine accurate cell number using a cell counter.
 

NOTE: Typically 5,000 cells per well are sufficient for spheroid formation across most cell lines tested. It is important to accurately count the
cells as a single cell suspension for accurate size comparisons.

3. Dilute cells to 5,000 cells per 180 μL in cold medium (4 °C).
 

NOTE: The addition of reconstituted basement membrane matrix components will negatively impact transfection efficiency and it is
recommended that it is not used. Cell line optimization to confirm spheroid forming capacity and knockdown efficacy should be performed
prior to the screen.

4. Transfer the cell suspension to a reservoir, pipet to mix and add 180 µL to each well of the 96-well ultra-low attachment plate containing the
siRNA prepared previously (2.1).

5. Centrifuge the plate at 1,000 x g in a precooled 4 °C centrifuge for 10 min and then return to a 37 °C tissue culture incubator.
6. NOTE: The cells will appear as a mosaic in the bottom of the wells. Over the next 12 - 24 h the cells will aggregate together to form a single

sphere.
7. After 24 h, observe the cells form a single spheroid in the center of the well. Add 100 µL of complete medium to each well to encourage

growth.
8. Replenish medium after three days. Gently remove 100 µL of medium from each well and add 100 µL of fresh medium.
9. On day 7, quantify the automated spheroid size on a plate reader that can quantitatively monitor spheroid growth over time (see Section 3).
10. Afterwards, determine cell viability using a luminescent cell viability dye (see Section 4).
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3. Automated Image Acquisition

1. Scan the plates on a bench-top, micro-well plate imaging cytometer on day 7.
1. Open the software, select the following: '96-well plate', select the appropriate plate type and enter an experiment name. NOTE: Any

additional information can also be added into the software.
2. Select the 'Tumorsphere' application. Alter the focus so that the spheroid is in focus and has optimal contrast.

 

NOTE: We recommend 'image based focus' as significant variations in spheroid sizes are expected.
3. Select the wells that require scanning and 'Start scan'.
4. Using the plate scanner software, ensure that the object mask accurately represents the spheroid size. Do this by adjusting the colony

diameter, border dilation, minimum thickness and precision settings, specific to each cell line tested 11,12.
 

NOTE: The spheroid area will then be calculated using the software algorithm. For example, to accurately calculate the area of BT474
spheroids grown for seven days adjust precision to 'high' and set the minimum colony diameter to 200 µM. This should produce an
appropriate spheroid mask representative of the spheroid area.
 

NOTE: These data can then be exported from the machine, using the export function, in in the form of an annotated data file. Date is
plate median normalized, combined and analyzed either by z-score or strictly standardized mean difference (SSMD) to identify siRNAs
that had a statistically significant effect on spheroid area.

4. Determining Cell Viability

1. After spheroid area has been calculated, determine the viability using a luminescent viability cell dye. Prepare the reagent as per the
manufacturer's instructions.

2. Carefully remove 100 µL of medium from each well and add 100 µL of viability dye. Incubate plates for 15 min then scan using a luminescent
plate reader.
 

NOTE: These data can then be exported from the machine, using the export function, in in the form of an annotated data file. Date is plate
median normalized, combined and analyzed either by z-score or strictly standardized mean difference (SSMD) to identify siRNAs that had a
statistically significant effect on spheroid viability.

Representative Results

Spheroid assays in ultra-low attachment 96-well plates provide a high-throughput phenotypic assessment for potential oncogenicity in a context
that more readily recapitulates the physiological conditions found in tumors in vivo. Indeed, the cancer cell lines MCF10DCIS.com and BT474
form tight spheroid structures (Figure 1A) and immunohistological investigation of spheroid sections showed distinct spatial changes in cellular
and nuclear morphology. Over time, some spheroids such as BT474 spheroids develop necrotic regions, a common feature of aggressive solid
tumors (Figure 1B). Some spheroids do not develop necrotic cores, such as the MDA-MB-231 cell line, but do display marked variation in the
proliferative marker Ki67, which inversely correlates with cleaved caspsase-3 expression, a marker of apoptosis (Figure 1C). To establish that
multiple cell lines are indeed receptive to siRNA-mediated gene silencing BT474, MCF10DCIS.com, MDA-MB-231 and JIMT1 cells were reverse
transfected with siRNA for seven days. The presence of transfection reagent (mock) or transfection of control siRNAs had no effect on spheroid
viability, while silencing of the essential gene Ubiquitin B (UBB) significantly reduced spheroid viability in all the cell lines tested (Figure 1D).

We designed a human siRNA library that encompassed the most frequently mutated genes in unselected, ER+, HER2+ and triple negative
breast cancers. This library consists of genes of known function, such as MYC, PIK3CA and TP53 and those whose contribution to
carcinogenesis is not established. The screen also contains several non-targeting control siRNAs (Control #1, Control #2) and siRNAs targeting
essential genes, such as PLK1 and UBB, which act as killing controls (Table 1). We chose to use the breast cancer cell lines BT474 as they
readily form spheroids without the addition of reconstituted basement membrane, are established workhorse cell lines and have a known
genomic architecture. For example, BT474 cells are positive for the estrogen receptor (ER+), overexpress the human epidermal growth factor
receptor 2 (HER2+) and harbor mutations in TP53 (E285K) and PIK3CA (K111N)13.

Employing the protocol outlined above, we monitored the impact gene depletion had on spheroid size and viability after seven days of siRNA
reverse transfection (Figure 1E). Interestingly, the majority of genes did not have a significant effect on spheroid area or viability (Figure 2A).
Silencing of FOXO3, PIK3CA, ERBB2 and SF3B1 resulted in the most significant reproducible reduction in spheroid size. This reduction was
also observed in spheroid viability after ERBB2 and SF3B1 silencing. Encouragingly, we confirmed the impact of PIK3CA, ERBB2 and SF3B1
silencing on spheroid size using bright-field microscopy (Figure 2B). We previously identified SF3B1 as an essential gene in numerous cell line
models and thus siSF3B1 represents a good killing control in addition to UBB 14. Interestingly, of all 200 genes only the silencing of E-Cadherin
resulted in a significant increase in spheroid viability (Figure 2A). Investigation of spheroid morphology showed that E-Cadherin silencing
resulted in a complete breakdown of spheroid architecture, with viable cells resting on the bottom of the low attachment well (Figure 2B). Manual
reinvestigation of the spheroid volume screen data showed that this had also been observed but had been eliminated from area quantification
due to the object being above the set size restrictions. As previously highlighted, BT474 cells overexpress the receptor tyrosine kinase HER2
and harbor an oncogenic mutation in PIK3CA (K111N). We confirmed that silencing of ERBB2 and PIK3CA resulted in reduced spheroid viability,
while transfection with non-targeting controls had no effect (Figure 2C).

Next we investigated the impact of siRNA depletion on spheroid histology. BT474 spheroids were reverse transfected with non-targeting control
siRNA and siRNAs targeting PIK3CA, ERBB2 and UBB. Silencing of ERBB2 and UBB resulted in a reduction of the pro-proliferative marker Ki67
compared to control siRNA (Figure 2D). The activation of the pro-apoptotic marker cleaved caspase-3 was only observed after UBB silencing,
suggesting that depletion of HER2 and PIK3CA did not result in apoptosis but were cytostatic rather than cytotoxic. Indeed, silencing of HER2
and PIK3CA did result in an increase in the protein expression of the cell cycle arrest protein p27 compared to control transfected spheroids.
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Taken together, these results show that BT474 cells are driven by oncogenic HER2 and PIK3CA signaling when grown as 3D spheroids. More
importantly, these results show that it is possible to design and implement a bespoke siRNA screening library of hundreds of genes in cancer cell
line spheroids robustly and reproducibly.

 

Figure 1: Cell Line Optimization for 3-dimensional Growth. A. The breast cancer cell lines, MCF10DCIS.com and BT474 were cultured
in low attachment plates for 7 days. Brightfield representative images were taken using an inverted microscope. Scale bars = 100 µm. B.
MCF10DCIS.com and BT474 spheroids were cultured for 28 days. 100 μL of fresh media was replenished every 3 - 4 days. Spheroids were
fixed in 3.8% formaldehyde, embedded, sectioned and stained with hematoxylin and eosin (H&E). Representative images are shown at low
and high magnification. Scale bars represent 100 µm and 33 µm, respectively. C. MDA-MB-231 spheroids were cultured for 21 days. 100 μL
of fresh media was replenished every 3 - 4 days. Spheroids were fixed in 3.8% formaldehyde, embedded, sectioned and stained with Ki67 and
cleaved caspase-3. Representative images are shown. Scale bars = 100 µm. D. BT474, MCF10DCIS.com, MDA-MB-231, and JIMT1 cell lines
were reverse transfected with mock (transfection reagent only) and the control siRNAs and UBB, ultra-low attachment plates were then spun to
form spheroids. Fresh medium (100 µl) was added on days 1 and 4. After 7 days, cell viability was quantified. Data represent the mean ± SD of
two independent biological replicates performed in triplicate normalized to control #1. Statistical significance was calculated using an unpaired
Students t-test (p< 0.05). E. A flow diagram summarizing the reverse transfection protocol used to functionally interrogate gene dependency in
cancer cell line spheroids. Please click here to view a larger version of this figure.
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Figure 2: Functional Genomic Investigation of BT474 Spheroids Uncovers Oncogenic Dependencies. A. BT474 cells were reverse
transfected with the 200-gene human siGENOME siRNA library in triplicate. Spheroid size and viability was observed. Raw data values were
plate median normalized and z-scores were calculated to identify significant outliers greater than 1.7x the standard deviation of the plate median
15. Note outlying genes ERBB2, SF3B1, PLK1 and UBB and E-cad. siRNAs that significantly increased or reduced spheroid area and viability
are shaded in blue and red, where red depicts the control siRNA's. B. Cells were reverse transfected with non-targeting control, E-Cadherin (E-
Cad), PIK3CA, ERBB2 or UBB siRNA and then spun in an ultra-low attachment plate to form spheroids. After 7 days, brightfield representative
spheroid images were taken using an inverted microscope. Scale bars = 100 µm. C. Cells were reverse transfected with non-targeting control,
PIK3CA, ERBB2 or UBB siRNA and then spun in an ultra-low attachment plate to form spheroids. After 7 days, cell viability was quantified. Data
represent the mean ± SD of two independent biological replicates performed in triplicate normalized to control #1. Statistical significance was
calculated using an unpaired Students t-test (p < 0.05). D. After 7 days, spheroids were fixed, embedded, sectioned and stained for H&E, Ki67,
Cleaved Caspase-3, and p27. Representative images are shown. Scale bars = 100 µm. Note the H&E of the siControl spheroids appear smaller
due to an artefact of processing and individual intact spheroids chosen for staining. However this does not detract from the changes observed
with the scanned images and cell viability results. Please click here to view a larger version of this figure.
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1 2 3 4 5 6 7 8 9 10 11 12

Non-
targeting 1

TP53 DST KMT2C Untreated
1

FCGBP ARID1B FBXM7 TTC40 Non-
targeting 2

GATA3 TTN MUC12 MUC4 AHNAK HUWEI1 DNAH11 ITPR2 ABCA13 CREBBP

MAP2K4 PIK3CA F5 APOB ANKRD30A MUC17 DNAH17 LAMA2 ACE CSMD2

STARD9 USH2A FAT3 LPR2 CSMD3 MYO18B DNAH5 MDN1 ARHGAP5 DNAH9

CXCR3 MUC16 RB1 PKHD1L1 DNAH2 SYNE2 DYNC1H1 PCLO CACNA1B ERBB2

PLK1 SYNE1 LYST PTEN SPTA1 Untreated
2

VHL RYR1 COL6A3 UBB

1 2 3 4 5 6 7 8 9 10 11 12

Non-
targeting 1

ENAM RYR2 BRCA2 Untreated
1

FMN2 HECW1 LAMB4 SI Non-
targeting 2

FHOD3 MACF1 RYR3 C2ORF16 DMD FRG1 HERC2 MYH11 STAB1 ZDBF2

GOLGA6L2 NEB SMG1 CACNA1E DNA14 GCC2 HIVEP2 NIPBL TANC1 ZNF536

HMCN1 NF1 UBR5 CACNA1F DYNC2H1 GON4L HYDIN PKD1L1 TF ANK3

HRNR OBSCN USP34 CYMA5 FAM208B GPR112 ITSN2 RNF213 TPR ASPM

PLK1 PCDH15 XIRP2 COL7A1 FLG2 Untreated
2

VHL SAGE1 UNC80 UBB

1 2 3 4 5 6 7 8 9 10 11 12

Non-
targeting 1

DCHS2 MUC5B ZFHX4 Untreated
1

MYO9A SPHKAP CXORF22 NCOR1 VPS13D

ATR DMXL2 MXRA5 ANK2 KIAA1210 PRUNE2 TCHH DANH6 NOTCH2 ANKRD12

BIRC6 DNAH10 TENM1 ATM LRP1 SCN10A VPS13C DNAH7 SPEN C5ORF42

CDH1 DNAH3 PEG3 DIDO1 MAP1A SCN2A IPTR3 ERBB3 SRRM2 CCDC88A

CUBN NOCK11 RELN DNAH8 MED12 SHROOM2 CEP350 FAT4 SZT2 CHD4

PLK1 EYS SACS KIAA1109 MED13 Untreated
2

VHL KMT2A VPS13A UBB

1 2 3 4 5 6 7 8 9 10 11 12

Non-
targeting

QSER1 ARID1A WDFY3 Untreated
1

SDK1 TEX15 LAMA1 Non-
targeting 2

COL14A1 SHROOM3 ATRX EFCAB5 SF3B1 CBFB AHNAK2

CSMD1 TBX3 KIAA0947 FOXA1 ITPR1 DDX3X KIF4A

MEFV UBR4 MYCBP2 INPPL1 FLG HECTD4 FAT2

MGAM VCAN NBEAL1 MAP3K1 AKAP9 GPR98 FOXO3

PLK1 ZNF462 SETX NRP1 HERC1 Untreated
2

VHL UBB

Table 1: Plate Layout and Human siRNA Library De-convolution. The table contains the content of each of the siRNA pools and layout for
the low attachment plates used in the screen.

Discussion

Three-dimensional models of cancer are being increasingly employed to evaluate the efficacy of known and novel compounds that have been
designed to selectively kill cancer cells. Cancer cell spheroids are structures that display conditions more similar to those encountered in tumors
in vivo, thus compounds that have increased efficacy in 3D are more likely to have an effect in vivo. However, these modalities do not allow
for the identification of potentially novel targets that have not been the subject of drug design that could have considerable efficacy in treating
cancer.

We developed a siRNA functional genomics approach that allowed for durable gene silencing for up to seven days in cancer cell line spheroids.
There are several critical steps to the protocol that require optimization before a siRNA screen can be performed. The ability to form reproducible
viable spheroids on a large scale is essential. Moreover, appropriate transfection conditions should be rigorously optimized. We suggest trialing
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several different transfection reagents with appropriate non-targeting and killing controls prior to attempting the screen. We were able to show
that several commonly used breast cancer cell lines, namely BT474, MCF10DCIS.com, MDA-MB-231 and JIMT1 were amenable to siRNA
transfection. Furthermore, we provide proof-of-principle data screening the 200 most frequently mutated genes in breast cancer in BT474
spheroids, confirmed their dependency on amplification of HER2 and oncogenic mutation of PIK3CA. Interestingly, silencing of the transcription
factor FOXO3 resulted in a reduction in spheroid size but no significant effect on viability. FOXO3 is known to regulate the response to hypoxia,
altering the metabolic capacity of cancer cells allowing them to adapt more readily to their environment 16. This role could potentially interfere
with the cell viability reading as it detects ATP abundance, one of the main products of cell metabolism.

In support of the observation of a reduction in spheroid size, it has been shown that silencing of FOXO3 in HeLa xenografts impaired tumor
growth and induced apoptosis 17. It is important to note that some genes may impact the capacity of cancer cells to retain their 3D architecture,
which could result in false positives. For example, knockdown of E-Cadherin resulted in dissolution of BT474 spheroid structure. This had
been previously reported using E-Cadherin targeted antibodies 18. As with any screening platform, potential targets should be rescreened to
assess the reproducibility of the effect observed. There are limitations to the technique, namely the transient nature of the siRNA-mediated gene
knockdown. Sustained silencing longer than seven days was not achievable with siRNA.

The advantage of this approach is that it can be coupled with various other biometric dyes not just those that assess spheroid viability, for
example, giving spatial information of spheroid hypoxia or monitoring cells undergoing apoptosis. Moreover, because the plate reader scans
are relatively quick and non-invasive, the impact of siRNAs on spheroid size can be assessed over time rather than just at the experimental end
point. Indeed, we are currently exploring several of these avenues within our screening pipeline. An alternative approach that utilizes 3D cultures
to identify novel dependencies is the use of chemical libraries that inhibit either a broad range of targets or particular families of proteins. Indeed,
Bitler et al. utilized this targeted approach to identify the synthetic lethality interaction between ARID1A status and EZH2 inhibitors in ovarian
clear cell carcinomas 19. The discovery of CRISPR-Cas9 gene editing technology has also allowed for the development of genetic screens in
organoid cultures and in vivo. However, this approach is dependent on having appropriate animal facilities and may be cost prohibitive 20.

In conclusion, we believe that we have outlined a protocol that more accurately models the oxygen and nutrient gradients, which are features of
the tumor microenvironment in vivo, allowing for the identification of novel cancer targets or robust validation of established targets. Moreover,
our protocol can be applied to any type of cell line that forms spheroids and hence can be routinely used in the cancer research community for
high-throughput siRNA screens.
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