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Abstract
Background: Array-based comparative genome hybridization (aCGH) is a tool for rapid
comparison of genomes from different bacterial strains. The purpose of such analysis is to detect
highly divergent or absent genes in a sample strain compared to an index strain. Development of
methods for analyzing aCGH data has primarily focused on copy number abberations in cancer
research. In microbial aCGH analyses, genes are typically ranked by log-ratios, and classification
into divergent or present is done by choosing a cutoff log-ratio, either manually or by statistics
calculated from the log-ratio distribution. As experimental settings vary considerably, it is not
possible to develop a classical discriminant or statistical learning approach.

Methods: We introduce a more efficient method for analyzing microbial aCGH data using a finite
mixture model and a data rotation scheme. Using the average posterior probabilities from the
model fitted to log-ratios before and after rotation, we get a score for each gene, and demonstrate
its advantages for ranking and detecting divergent genes with enlarged specificity and sensitivity.

Results: The procedure is tested and compared to other approaches on simulated data sets, as
well as on four experimental validation data sets for aCGH analysis on fully sequenced strains of
Staphylococcus aureus and Streptococcus pneumoniae.

Conclusion: When tested on simulated data as well as on four different experimental validation
data sets from experiments with only fully sequenced strains, our procedure out-competes the
standard procedures of using a simple log-ratio cutoff for classification into present and divergent
genes.

Background
The genetic diversity among bacteria mirrors their life-
styles and physiological versatilities and evolves from
adaptation to their niches and growth conditions. Many
techniques have been used to obtain a picture of true

microbial diversity. Microarray-based comparative
genome hybridization (aCGH) is now a commonly used
tool in comparative genomics. Compared to sequencing
and comparing whole genomes, aCGH provides rapid
genomotyping in bacteria [1,2].
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The majority of applications of aCGH is in cancer-
research, where copy-number abberations is the primary
focus [3,4]. Several methods have been suggested to ana-
lyze such data, e.g. [5-7].

In microbial studies of genome diversity, usually one fully
sequenced strain, called index strain, is compared to a set
of unsequenced strains of the same or closely related bac-
terial species, called sample strains. In this setting it is of
interest to characterize the sample strains with respect to
the genes they have in common with the index strain, and
those which are absent or highly divergent.

In theory, every given gene is either present or divergent in
the sample strain. In this respect, a perfect measurement
technology would provide a binary output. For many rea-
sons, this is not the case in aCGH. First, it is complicated
to define relationships between sequence identity and
hybridization signals. Second, hybridization signals arise
both from hybridization with similar genes, as well as
from hybridization with homologs, paralogs, or genes
with conserved domains. Such non-specific hybridiza-
tions may lead to signals even from genes that are truly
divergent. Third, gene divergence is a slow evolutionary
process such that based on nucleotide sequence similarity
alone, in most cases a number of genes will be difficult
difficult to classify as divergent or present. Finally, the
experimental features of aCGH may complicate the inter-
pretation of the hybridization patterns.

Usually, the samples for microbial aCGH are prepared as
follows: genomic DNA is extracted from the index and
from the sample strain. The DNA is then physically
sheared or enzymatically digested, and the resulting frag-
ments are labelled with different fluorescent dyes by ran-
dom priming. The labelled samples are mixed and then
hybridized onto the microarray. In contrast to gene
expression experiments, the preparation of samples for
hybridization by digestion or shearing, gives random frag-
ments that may not match the gene targets on the array as
well as cDNA. The sheared/digested DNA varies in length
and the longer fragments may contain pieces of several
genes.

The common analysis of aCGH data focuses on the so-
called log-ratio Mi = log2(Si/Ii) where Si is the signal inten-
sity of the sample strain and Ii similar for the index strain,
for gene i [2]. A small log-ratio indicates a weak sample
strain signal, and hence the gene is most likely divergent.
Using a t-test statistics or a modified regularized t-test sta-
tistics as for example offered by the SAM [8] is no practi-
cable alternative for this kind of experiments, as in
practise there are mostly no replicate measures at all.
Hence, statistical analysis is limited to finding a high qual-
ity diagnostic score which can be used for a ranking of

candidate divergent genes. This is the reason for focussing
on scores which can be calculated from two signal inten-
sities alone, the photomultiplier intensity readouts for the
labels from index and sample strain respectively. A fixed
cutoff on the log-ratio axis, separating divergent from
present genes, is most likely sub-optimal due to the varia-
tion inherent in microarray experiments. As a conse-
quence, it seems mostly impossible to learn an optimal
fixed cutoff as classifier from a training data set even in the
rare cases where such data set would be available. Discri-
minant analysis approaches will therefore fail in the typi-
cal case. It seems more appropriate to determine such a
cutoff dynamically from the data set in question for each
analysis. To deal with this [9] introduced a method for cal-
culating a dynamical cutoff from the log-ratio distribu-
tion. Considering the histogram in Figure 5, it is natural to
assume that the heavy left tail of the distribution is due to
divergent genes. Based on this assumption [9], suggested
a calculation of the cutoff somewhere around the transi-
tion between the body and the left tail of the sample dis-
tribution. The data analysis tool developed from this
approach is GACK [10].

We will in this paper extend and formalize the idea of [9],
to combine it with the data rotation approach by [11].
This allows us to use both the information inherent in the
distribution of the log-ratios as well as that about the V-
shaped patterns in the MA-plot, as observed by [11].
Finally, from estimated probabilities for each gene to be
absent or present in the sample strain, we calculate what
we call the ROTMIX score for each gene. We use a set of
simulated data sets as well as a set of experimental data
sets from fully sequenced sample strains to validate the
usefulness of the ROTMIX score for ranking and classifica-
tion.

Results
Analyses of experimental data sets
In order to test and compare our approach to the conven-
tional use of log-ratios as well as the rotation approach
suggested by [11] we performed experiments where
sequences of both sample and index genomes were
known a priori. In a normal experiment only the sequence
of the index strain is known, but this design provides us
with data where aCGH analysis results can be validated by
direct sequence comparisons.

A list of truly divergent genes is essential to validate the
proposed method. For experimental data sets no such list
exists with absolute certainty, even for fully sequenced
genomes. However, from the sequence data it is evident
that there exist two natural groups of genes, either as
present or divergent in the sample strain. Figure 1 shows a
histogram of the identity indices from the BLAST searches
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in one data set. Genes with identity index below 0.7, or
other cutoff if stated, are treated as divergent.

A classifying score's ability to discriminate divergent from
present genes in a given data set can be summarized in a
receiver operating characteristic (ROC) curve [12]. The
trade-off between sensitivity and specificity is captured by
the area under curve (AUC) statistic, where a large AUC
(close to 1) indicates a good separation of the classes.
Table 1 summarizes AUC-values, where we have com-
pared the ranking using the ROTMIX-score to the ranking
by log-ratio M or rotated log-ratio M* from Equation 4.

A ROC curve deals with sensitivity and specificity, which

are estimates of P(  = 0|C = 0) and P(  = 1|C = 1),
respectively, for a given data set. The area under the ROC-
curve indicates a variable's potential for classification, but
the problem remains to actually pick a cutoff. Figure 2

shows specific values for sensitivity and specificity for
three different cutoffs. Once a classification has been
done, it will in most cases also be natural to consider P(C

= 0|  = 0) and P(C = 1|  = 1) in addition to sensitivity
and specificity. Their corresponding estimates from a
given data set we denote Positive Predictive Value (PPV)
and Negative Predictive Value (NPV), and these are also
included in Figure 2.

Figure 3 is an illustration of how the ROTMIX-score sepa-
rates genes in an MA-plot. There are three major zones.
The white zone is where genes will clearly be classified as
divergent and the black zone clearly as present. The gray
zone is a 'doubt' zone, and classification in this zone will
depend largely on the choice of classification cutoff.

Analyses of simulated data sets

A set of 1000 simulated experiments for different random
seeds was the basis for comparing the conventional, data-
rotation and ROTMIX approaches. In the case of the con-
ventional approach, increasing normalized M-values were
used as score to rank genes as candidates for divergent
genes, whereas for the data rotation approach increasing
M* values were used (Equation 4), and for the ROTMIX

analysis,  values (Equation 6).

For each data set and each of the three analysis
approaches; conventional, data rotation and ROTMIX
approach, the ranking score for each gene was taken as a
possible cutoff and rates of true positives, true negatives,
false positives and false negatives recorded to construct
ROC-curves and AUC-values (Figure 4).

Discussion
Array based CGH is a high-throughput biotechnology that
is consolidating itself as a useful tool in microbial com-
parative genomics. Despite many applications of this
technology in analyzing genome-genome similarity, there
is no real consensus on how to analyze the data and draw
conclusions from the experiments. We have in this paper
suggested an efficient method for ranking genes, and sub-
sequently classifying them into two groups, present and

Ĉ Ĉ

Ĉ Ĉ

ρ̂

Table 1: Results of ROC analysis. The area under the ROC-curve (AUC) in each data set. Genes have been ranked according to the 
ROTMIX-score, and by log-ratios M or rotated log-ratios M*.

Ranking variable COL vs N315 COL vs Mu50 TIGR4 vs R6 TIGR4 vs G54

0.91 0.83 0.84 0.82

Mi 0.73 0.62 0.84 0.79

0.90 0.80 0.79 0.78

ρ̂i

Mi
*

Identity index histogramFigure 1
Identity index histogram. A histogram of the identity 
index for each gene in the data set COL versus N315. The 
identity index tend to be either very close to 0 or 1. The 
marked threshold at 0.7 is used to separate divergent from 
present genes unless otherwise stated. The histograms for 
the other three data sets are very similar, see [16].
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divergent. Essentially we calculate a diagnostic score as the
average posterior probability of divergence from the mix-
ture model in (2) when fitted to the data before and after
the rotation. We have demonstrated its usefulness for sim-
ulated validation data as well as for four different hybrid-
izations with only fully sequenced sample strains. Results
were compared to two other proposed analysis
approaches.

Log-ratio based ranking is by far the most common in
papers dealing with microbial aCGH data. In some micro-
bial aCGH analyses the cutoff log-ratio separating diver-
gent and present genes is held constant at -1.0 (or 1/2 for
ratios) [13,14]. Others use a cutoff relative to the distribu-

tion of all data, e.g. [15], who treated all genes with log-
ratio more than 2 standard deviations below the overall
mean as putative deletions. Log-ratio based ranking is also
the fundament for [9] and the data analysis tool GACK
[10]. An alternative way of ranking was introduced by
[11], using the data rotation. From Figure 1 as well as from
Table 1 it seems that the ROTMIX-score separates diver-
gent from present better than the two other ways of rank-
ing genes. In all cases, the AUC-value for the ROTMIX-
score is as good or better than the other two. The differ-
ences are, however, small, and based on only four inde-
pendent experimental validation sets, the differences are
not significant. The simulations, however, indicate a sta-
ble difference since every ROTMIX-result is better than all

Varying classification cutoffFigure 2
Varying classification cutoff. The effect of varying the classification cutoff. The bars mark different data sets, COL versus 
N315 (black) and Mu50 (dark gray), TIGR4 versus R6 (light gray) and G54 (white). In the upper panels classifications are done 
using the log-ratio based posterior probability, and in the lower panels the ROTMIX-score.
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other results. The AUC-values for the ROTMIX-score are
comparatively high, ranging from around 0.8 to well over
0.9 depending on data set and identity threshold.

Our experimental validation data are from experiments
with fully sequenced strains, but still there is some degree
of uncertainty regarding which genes are truly divergent.
We have based our analysis on nucleotide sequence iden-
tity, since this is what a microarray can measure. Using an
identity threshold of 0.7 gives 12–16% divergent genes,
which is a likely number, compared with other aCGH
studies [2]. We have performed analyses with other
choices of identity threshold (0.5–0.9), and the results are
similar to those in Table 1 (see [16]).

When we interpret the classifying variable as a posterior
probability of divergence (or presence) a natural cutoff for
classifying divergent and present genes is 1/2. Figure 3
illustrates the effects of different cutoffs. For the log-ratio
based classifications (upper panels) there is little effect of
a varying cutoff within the range shown. This is because
when fitting a two-component gaussian mixture to data
like those in Figure 5 the major peak will give a rather nar-
row density describing the present genes, i.e. almost all
genes will have a posterior probability of divergence very
close to 0 or 1. From the lower panels of Figure 3 we notice
that the results of the ROTMIX-classification is sensitive to
a varying cutoff. As expected, a gradually increased cutoff
will produce higher PPV and specificity but lower sensitiv-

Heatplot of ROTMIX in the MA-planeFigure 3
Heatplot of ROTMIX in the MA-plane. ROTMIX-classification in the data set COL vs. N315 in the MA-plane. Divergent 
and present genes are marked by black circles and white crosses, respectively. The underlying shading illustrates how the ROT-
MIX-score varies over the plane, numerical values given by the gray-scale bar at the right. The ROTMIX score is an average of 
two posterior probabilities using plain and rotated data, for details refer to equation 6 in the Methods part.
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ity. This means that if a gene has a large ROTMIX-score it
is also more likely to be divergent.

Fixing the cutoff at 1/2 gives a significant improvement of
PPV for the ROTMIX case compared to the log-ratio clas-
sification in the upper panels (p-values below 0.05 for all

data sets in a significance test of proportions). This trans-
lates to a relevant reduction in the false discovery propor-
tion for the genes ranked first using the ROTMIX-score.
Thus, time and costs for subsequent proving low-through-
put experiments are considerably lowered. For sensitivity
and NPV there is no significant difference, and for specif-
icity ROTMIX gives a significant, but in practice not
important, improvement.

Using a score-based approach rather than an established
statistics like for example a t-test or a regularized modifi-
cation thereof (e.g. SAM, [8]) is necessary because of the
usual absence of replicate measures in aCGH screenings.
Moreover, a mixture model score is more robust against
normalization problems. Any t-test like statistic, using a
null hypothesis of equal signals for index and sample
genome, would classify all genes with significant devia-
tion in signals as divergent. The mixture fit, however,
searches for two distributions of signals, and there is no
need to assume that present genes always produce equal
signals in the sample and index strain.

MA-plots should always accompany any analysis using
the ROTMIX-procedure. It is in this space the ROTMIX-
procedure operates, as illustrated in Figure 4. It is of
course essential that the MA-plot graph more or less has
the V-shaped form. If not, the ROTMIX-score may give
dubious results, but of all microbial aCGH data sets we
have seen, a majority has this characteristic pattern. As
more and more bacterial strains are sequenced, we will see
more multi-genome arrays in the future. From such arrays
we can also detect genes that are present in the sample

Typical histogram of microbial aCGH log-ratiosFigure 5
Typical histogram of microbial aCGH log-ratios. A 
typical histogram of log2-ratios for a microbial aCGH experi-
ment. The data are for Enterococcus faecalis, index strain 
V583 against sample strain MB143.
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strain but not in the index strain. Following the reasoning
behind the data rotation of [11], we expect such genes to
be found around a line of slope +2 in the MA-plot. Exper-
iments on such arrays could also be analyzed by our pro-
cedure, with some natural adjustments, given that such
data show a corresponding W-shaped pattern. We have
seen some data confirming this, but more research should
be done before we can be conclusive.

The current validation data indicate that the most severe
problem faced is the rather low sensitivity, (between 0.4
and 0.6, see Figure 3) when using a classification cutoff
around 1/2. This is not surprising, since divergent genes
are in general grossly outnumbered by present. Future
efforts should, however, probably focus on this. One
approach could be to make better use of extra information

sources. We are actually facing a classification problem,
but with no training data available. A partial training of
the classifier could however be done using genes known
to be present, i.e. the core minimal genome genes [17].
Experiments with cDNA microarrays still lacks the repeat-
ability needed to transfer actual parameter estimates from
one experiment to another. To achieve this, highly special-
ized arrays are required [18], at high costs and reduced
versatility.

Conclusion
We have devised an efficient, sensitive and specific proce-
dure for detecting divergent genes from microbial aCGH
experiments. A simple procedure based on gaussian mix-
ture models and data rotation provides a score for each
gene, which is an average of two posterior probabilities of

MA-plots for different aCGH experimentsFigure 6
MA-plots for different aCGH experiments. Plots of log-ratio (M) against average log-intensity (A) for four aCGH data 
sets from four different bacteria. The characteristic V-shaped pattern is most clearly visible in the upper left panel, but is also 
more or less present in the other MA-plots.
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divergence. When tested on simulated data as well as on
four different experimental validation data sets with only
fully sequenced strains, this ROTMIX-score seems to be an
improvement of the standard log-ratios for ranking and
classifying genes into divergent and present.

Methods
Pre-processing and conventional analysis
Data acquisition and preprocessing is as in cDNA micro-
array experiments, except for the normalization step. Most
normalization procedures have an underlying assump-
tion of (locally) symmetric distribution of log-ratios. In
expression experiments this is usually an acceptable
assumption, but as seen from Figure 5, clearly not for
microbial aCGH data. All experimental data sets we con-
sider are from dye-swap experiments with multiple spots
(three or four) for each gene on each array. We have there-
fore implemented a normalization procedure essentially
similar to the 'self-hybridization' suggested by [19].

Ranking genes according to the normalized log-ratio cor-
responds to the conventional approach for analyzing
aCGH data.

Mixture model
Classifying genes of the index strain as present or diver-
gent with respect to a sample strain is not a typical classi-
fication problem, as training data in the narrow sense are
not available for every single experiment. On the other
hand, some knowledge about the log-ratios of the diver-
gent genes is available, and we try to make use of this prior
knowledge in our proposed analysis. We build our analy-
sis upon a two-component mixture model framework.

Let Ci be the class variable for gene i, i.e.

The unconditional probability of gene i being divergent is
P(Ci = 0) = π. Let Mi be the observed log-ratio, or some
transformation of it (see below), for gene i. For divergent
genes we assume this log-ratio is distributed according to
the density f0(M), and similar, f1(M) is the density for
present genes. Thus, the joint density fC, M (C, M) is
defined, and its marginal in M is the mixture model

fM(Mi) = πf0(Mi) + (1 - π)f1(Mi)  (2)

From the joint and marginal density we also get the con-
ditional density fC|M (Ci|Mi = fC, M (Ci, Mi)/fM (Mi). The
posterior probability of divergence for gene

i, P(Ci = 0|Mi) = p0(Mi) is then given by this density as

Assuming fk ~ N(μk, ), k = 0,1, all parameters can be

estimated from Equation (2) without any knowledge of
Ci. Either maximum likelihood estimation using the EM-

algorithm or a Bayesian approach using the Gibbs-sam-
pler will do this job satisfactory [20].

Data rotation
In our novel analysis approach, we are aiming at combin-
ing the conventional analysis together with the data rota-
tion approach [11].

The data rotation approach is based on the presumption
that divergent genes will tend to populate around a line of
slope -2 when their log-ratio (M) is plotted against their
average log-intensity (A). The observation of a V-shaped
pattern in the MA-plots for microbial data sets is common
(Figure 6). The lower 'arm' of this V will in general have a
slope of -2, which is explained as follows:

Each of the two intensities obtained per gene can be seen
as a combination of two components

Si = bi + 

Ii = bi + 

where bi is some baseline intensity due to non-specific

hybridization, and  and  are signal intensities for

sample and index strain, respectively. The baseline inten-
sity is expected to be small if compared to a signal for a

gene present in the index strain. For divergent genes, 

should ideally be zero, while  must still be expected to

be comparatively large. Thus, for divergent genes Si ≈ bi

and Ii ≈ , and we get

Mi = log(Si/Ii) ≈ log(bi) - log( )

Ai = (log(Si) + log(Ii))/2 ≈  (log(bi) + log( ))

and hence Mi ≈ 2 log(bi) - 2Ai. This suggests that divergent
genes should, when plotting Mi versus Ai, propagate
around some line with slope -2.
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As proposed by [11], we will use a rotation of the axes (A,
M) → (A*, M*) as described by the linear map

where

and where γ = arctan(-2).

Ranking genes by their M*-value rather than by their M-
value gives an alternative way of separating divergent from
present, as illustrated in Figure 7. In [11] a reduction in
false positives is reported as the main advantage of this
procedure.

The ROTMIX-score
To further improve the classification, we propose a rank-
ing of the genes according to a score which is the average

posterior probability of divergence from (3) when fitting
the mixture model to both M and M* values, respectively.

First, fit the two-component gaussian mixture model from
Equation (2) to the log-ratios, and let

 (Mi) be the

estimated posterior probability of divergence for gene i
found from Equation (3). The density describing the
major peak of the data, f1, is very well estimated in this

case. The divergent genes are, however, most likely
smeared out over a large range of log-ratios, and f0 is prob-

ably not very well approximated. This may lead to genes

with very large log-ratios having a large  (Mi) if  is

very wide. To avoid this artifact we require that

where  is the estimated location of f1.

Second, we perform the data rotation from Equation (4)
and fit the two-component gaussian mixture to the

rotated log-ratios . The mixture estimation can be

based on all data, but as suggested by [11], we use a trun-
cated data set, where only genes having log-ratio smaller

than  from the first mixture model, are used. In this

truncated data set the peak of the presumably divergent
genes is more pronounced and hence easier to estimate.
Nevertheless, this gives us another set of estimates

( ) for every gene. In this case f1 may be poorly esti-

mated, and hence, we make a similar requirement as we
did for the first estimates

and  is the estimated location of f0.

Finally, the ROTMIX-score is the average of the two esti-
mates

Classification

We classify genes based on the ROTMIX-score, using a cut-
off between 0 and 1. A natural choice is 1/2, which is
according to the Bayes rule [21], but other choices may be
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The data rotation. An illustration of the data rotation. 
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-2 (broken line). After rotation the A* axis will be parallell to 
this line, and genes can be ranked according to their M*-
value.
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made. This means  = 0 if the probability is larger than

the cutoff and  = 1 otherwise. The choice of cutoff will
depend on the focus of the analysis. If we are primarily
searching for divergent genes, e.g. looking for characteris-
tic divergent regions on the chromosome, it is probably
wise to choose a larger cutoff to avoid too many false pos-
itives (genes misclassified as divergent). On the other
hand, if the focus is on the present genes, e.g. estimating
the minimum genome over all strains, we would naturally
avoid false negatives (genes misclassified as present), and
choose a smaller cutoff. We could also introduce a doubt-
zone, i.e. only classify genes who are below a lower
threshold or above an upper.

Data
Experimental data
In order to compare aCGH analysis approaches we con-
ducted aCGH experiments with fully sequenced strains,
i.e. both index and sample strains' gene contents are avail-
able as gold standards. Microarrays for Staphylococcus
aureus index strain COL, were used in aCGH analyses
against strains Mu50 and N315 and similar for Streptococ-
cus pneumoniae index strain TIGR4 against R6 and G54.
Full genomes as well as identified gene sequences for
these strains can be downloaded from the Comprehensive
Microbial Resource (CMR) at TIGR [22], the Streptococcus
strain G54, is available at the Spanish National Cancer
Centre [23].

Due to allele differences, silent mutations and possible
sequence errors in the databases we cannot expect a gene
from one strain to be found with exact similarity in
another strain even if it is truly the same gene. High
hybridization signals are based on similarity at the
nucleotide sequence level. To establish a quantification of
this similarity, each index gene was locally aligned against
a database consisting of the sample strain sequences for
each experiment.

To reduce the element of randomness in the choice of
BLAST parameters, we made several BLAST searches for
every gene, keeping the match score constant at 1 and var-
ying the remaining parameters systematically around
their default values. In all cases the DUST low-complexity
filter was turned off. For each search the best hit for index
gene i was recorded, and an identity index was calculated
as the number of exact matching residue-pairs divided by
the number of residues in the index gene. The median
identity index for gene i, was used as the identity-score for
that gene.

For a chosen threshold we predicted gene i to be divergent
if the corresponding identity index is below this threshold

and present otherwise. Unless otherwise stated, in the
downstream analysis we used the threshold 0.7 to estab-
lish a list of divergent genes from each data set.

Simulated data
In addition to using the experimental data sets for pur-
pose of methods comparison, we also used a set of simu-
lated data sets according to [24] and [11]. The underlying
model is

Si = αS + βSXSi · exp(ui + vSi) + ei + wSi

Ii = αI + βIXIi · exp(ui + vIi) + ei + wIi

together with the following variable explanations and
parameter settings: Si and Ii denotes simulated measured
fluorescence intensity for gene i from the sample and
index strain, respectively. Each simulated experiment con-
sisted of 3000 genes, where i = 1,..., ndiv were divergent. We
modeled scenarios for different proportions of divergent
genes, 0.05 ≤ ndiv/3000 ≤ 0.5. XSi and XIi model the true
values for the expected fluorescence signals. Intensities of
present and absent genes are

i.e. expected sample intensities for divergent genes are
modeled with 12.5% of the sample intensity of present
genes.

Moreover, fixed background parameters are

αS = αI = 300

βS = βI = 0.5.

Remaining quantities are gaussian variables with zero
expectation and variance equal to 0.25, chosen as recom-
mended by [24] and resulting in simulated data with sim-
ilar distributions of data points in the MA-plot as in our
laboratory experiences. The random variables are inter-
preted as in [11]: ui, vSi and vIi are multiplicative error
terms, ui models the gene-specific effects and vSi and vIi the
multiplicative gene-dye-interactions, ei, wSi and wIi refer to
additive errors.
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