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Abstract: In the last decade, seizure prediction systems have gained a lot of attention because of
their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy
of the prediction algorithms to detect seizure in real-world applications is largely limited because
the brain signals are inherently uncertain and affected by various factors, such as environment, age,
drug intake, etc., in addition to the internal artefacts that occur during the process of recording the
brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects
the ambiguous data to be annotated by an expert and updates the classification model dynamically.
However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an
expert is still a challenging problem. In this paper, we propose an active learning-based prediction
framework that aims to improve the accuracy of the prediction with a minimum number of labelled
data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model
(BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert.
By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We
evaluate seven different classifiers in terms of the classification time and memory required. An active
learning framework built on top of the best performing classifier is evaluated in terms of required
annotation effort to achieve a high level of prediction accuracy. The results show that our approach
can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20% of the
labelled data and also improve the prediction accuracy even under the noisy condition.

Keywords: implantable body sensor networks; health-care; EEG; epilepsy; signal processing; machine
learning; seizure prediction

1. Introduction

According to the World Health Organization (WHO), chronic diseases kill 40 million people each
year, contributing to 70% of the global mortality rate [1]. Epilepsy is one of the chronic neurological
disorders characterized by the occurrence of sudden and recurrent abnormal neuronal activity in the
brain called seizures [2]. The seizures may vary from being undetectable episodes to long episodes of
vigorous shaking of the body [3]. The morbidity and mortality of epilepsy are largely associated with
the sudden loss of consciousness, fatal injuries caused by unforeseen seizures, and status epilepticus,
where a life-threatening seizure lasts for more than five minutes [4].Epilepsy affects 50 million people
globally, and 30–40% of this group cannot be treated with any available medicinal therapy [4].

Advanced Implantable Medical Devices (IMD) such as Deep Brain Stimulator (DBS) [5] and Vagus
Nerve Stimulator (VNS) [6] have been extensively researched and developed to significantly reduce
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the seizure frequency for the patients who do not respond to Anti-Epileptic Drugs (AED) [4,7,8]. IMDs
deliver electrical impulses through brain-implanted electrodes to a specific target area in the brain
in order to reduce the seizure frequency. However, these IMDs deliver chronic therapy rather than
acute targeted therapy, and also lack physiological feedback, which limits their efficacy [8]. For the last
80 years, analyzing the electrical signals from the brain, namely ElectroEncephaloGraphy (EEG) and
ElectroCorticoGraphy (ECoG), is a well-established method to describe the physiological process of
the seizure development and its impact over different parts of the brain [9]. EEG is a non-invasive
method of measuring the electrical signals with electrodes that are placed on the surface of the scalp,
whereas ECoG is an invasive method with electrodes that are placed directly on the exposed surface
of the brain [10]. The advantages of ECoG over EEG are: (i) the Signal-to-Noise Ratio (SNR) of brain
signals in ECoG is higher due to the use of electrodes implanted directly on the brain’s surface (unlike
EEG, which uses electrodes mounted on the scalp); (ii) collecting ECoG signal is more convenient for
the patient than EEG since the patient does not have to be monitored for long periods; (iii) the impact
of artifacts caused by physical movements, electrical activities, and other electrical wearable is almost
negligible in ECoG signal [10,11]. Nonetheless, these ECoG signals are highly patient-specific and
require medical intervention from experts to analyze these signals.

Applying the principles of statistics to automate the analysis of these physiological signals
and to predict the onset of seizure has been researched since 1970 [12,13]. In the last two decades,
extensive use of machine learning algorithms to detect the onset of seizure based on EEG and ECoG
recordings have been reported. Machine learning algorithms such as Artificial Neural Networks
(ANN) and Support Vector Machines (SVM) are used to detect seizure events, given the patient-specific
EEG data analysis [14–16]. The outcome of these algorithms can be effectively used as physiological
feedback to the IMDs, which will then expectantly operate in a closed-loop fashion. As a result, the
efficacy of the treatment will be improved by delivering intense targeted stimulation [14].

However, due to the inherent uncertainty of the brain signals and because EEG and ECoG vary a
lot depending on age, environments, drug intake, etc., it is extremely challenging, if not impossible, to
develop a generic seizure prediction framework for all epileptic patients [17]. In addition, in the case
of epilepsy, seizure patterns for each patient not only are unique but also vary with time [18]. As a
result, a generic machine learning algorithm will not efficiently work for the same patient as well as
for large patient groups [19]. It is evident that constant intervention from a medical expert is required
for the generic algorithms to work with the same accuracy in a large patient group.

A more common way to approach this problem is to collect continuous EEG and ECoG data, which
captures unique seizure patterns and pre-seizure patterns for individual patients. The collected data is
then used to train machine learning algorithms and to develop a patient-specific seizure prediction
algorithm. However, this approach is not scalable to large patient groups as developing patient-specific
machine learning models requires enormous efforts in collecting, labeling, and training the machine
learning algorithms. In addition, a seizure event typically occurs for about 1% of a patients lifetime
and, for 99% of the time, an epileptic patient is seizure free. This infrequency in seizure events makes it
difficult to capture the naturally occurring seizure patterns that are very different from induced seizure
patterns [18].

A notable limitation of the existing methods is the complete exclusion of human-expert in the
real-time seizure detection systems, since the human expertise is only utilized for labelling the recorded
seizure patterns during the pre-development of the patient-specific seizure-detection systems.

The first long-term in-man study for a stand-alone seizure advisory system, which predicts the
onset of seizures, concluded that substantial disparities are found between reported and detected
seizure events, with patient-specific seizure prediction algorithms [19]. (A semi-autonomous operation
of advanced medical therapies such as Deep Brain Stimulator (DBS) shown in Figure 1.)
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Figure 1. Example of a schematic flow of closed loop operation of the DBS process. Inclusion of the
expert is always in loop before any treatment is applied locally. Picture adapted under CC BY 3.0
license from [20].

In order to overcome this limitation, authors of [21] used active learning heuristics aiming to
reduce the enormous efforts of labeling the data during the training of machine learning model.
They developed a scalable and personalized event detection algorithm for infrequent events, like
seizure detection in an epileptic patient. Although their results concluded that active learning
significantly reduced the number of labels required to train a SVM classifier, the accuracy of detecting
an event was not improved.

To this end, in this paper, we propose a lightweight seizure prediction framework that can run on
an off-the-shelf ultra-low power hardware, yet can leverage the expert’s knowledge on handling the
ambiguous ECoG data in a scalable manner. The main contributions of our paper are:

• Analysis and selection of feature set based on computational time and memory usage,
• Performance analysis of seven different classifiers to select the best performing classifier on a

resource constrained platform,
• Application of active learning heuristics and development of a probabilistic seizure

prediction framework,
• Performance evaluation of our algorithm based on seizure predictability through simulations.

The rest of this paper is organized as follows. In Section 2, we present the preliminary background
for our seizure prediction framework, explaining the nature of the brain signals of an epileptic patient,
the main challenges of the online seizure prediction systems, and the related work. In Section 3,
we explain the principles of our seizure prediction framework and its active learning heuristics.
In Section 4, we explain simulation settings, followed by the validation metrics. In Section 5, we
present and discuss the results obtained. Finally, we conclude our work in Section 6.

2. Preliminary Background

In this section, we briefly explain the nature of brain signals of an epileptic patient, the main
challenges in seizure prediction, and the related work.

2.1. ECoGignal

In our study, we use the ECoG signals to design the prediction framework. ECoG is a type of
electrophysiological monitoring that measures the electrical activity on specific locations in the brain
by implanting a surface-electrode-array through invasive brain surgery [10]. Each electrode in the
array is considered as a channel of the measurement. Each channel is sampled at a constant sampling
rate producing a constant number of ECoG samples per second. For example, a sampling rate of
400 Hz will produce 400 samples per second on each channel. We will study ECoG of 16 channels.
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As shown in Figure 2, the ECoG is categorized into four periods, namely ictal period, pre-ictal
period, post-ictal period, and inter-ictal period [22]. The ictal period is when the actual seizure occurs.
The post-ictal is the period shortly after the ictal period when significant spikes in ECoG occur sparsely.
The pre-ictal is the period before the seizure occurrence when a patient feels visual auras. The inter-ictal
is the seizure-free period between two seizure events [12]. The seizure events are detected in the ictal
period. To predict the onset of the ictal period, it is important to detect the pre-ictal period. By doing
so, the clinical measures to reduce the impact of seizure events can be taken. Typically, the pre-ictal
period can vary from 10 min to 1 h depending on different seizure and patient types; however, there is
no straightforward way to define a unique pre-ictal period for future data [23].
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Figure 2. Four states of ElectroCorticoGraph (ECoG) of an epileptic patient [22]. A snapshot of
data captured from an array of 16 brain implanted electrodes of an epileptic patient with generalized
tonic-clonic seizure. The sampling rate is 500 Hz and is recorded for a total duration of 40 h. Duration of
the seizure prediction horizon and the seizure occurrence period are illustrated with respect to the onset
of a seizure alarm. (A snapshot of ECoG signal obtained from intracranial ElectroEncephaloGraphy
(iEEG) viewer [24].)

By well-established conventions, the Seizure Occurrence Period (SOP) is the time period within
which a seizure is expected and the Seizure Prediction Horizon (SPH) is the time period between the
onset of prediction alarm and the SOP [19,25–28]. A seizure prediction framework should analyze
real-time ECoG and must generate a time series of binary data classification of pre-ictal denoted by (1)
and inter-ictal denoted by (0). These binary classifications can be translated into a seizure warning, and
a necessary medical treatment can be provided in real time before the onset of a seizure event. Note
that SPH is clinically unknown, but it has to be longer than a pre-ictal period [25]. Ideally, the SPH can
be consistently set to the upper bound of the standard pre-ictal period, i.e., 1 h duration, so that SPH
will be persistent even for shorter pre-ictal periods say, 5 or 50 min.

2.2. Challenges in Seizure Prediction

Although there exist numerous research results in the area of the seizure prediction, most of them
are not suitable for real-time detection and execution on low-power devices. It is a well-established
convention that EEG data will be collected at a power-deficient sensor node, and the processing of
signal will be carried out on a power-surplus base station. Recently, this convention is evidently
changing. With the rapid development of the IMDs, the need for seizure prediction algorithm to be
able to locally run on such resource constrained environment is paramount. Most of the existing work
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on seizure prediction arena will neither fit in these resource-constrained hardware platform nor be
able to meet the requirements for clinical applications. To this end, we summarize the limitations of
seizure prediction concerning the ultra-low power IMDs as follows.

2.2.1. Ultra-Low Power Requirement

As the IMDs are continuously shrinking in size, the need for highly reliable data processing
techniques is growing stronger. The physical limitation of resources such as power, and computational
capability, is a barrier to run complex algorithms locally on the IMDs. An overview of the technical
specification of various IMDs is presented in Table 1. In addition, newly developed algorithms
are computationally complex and require more resources to achieve high reliability. An optimum
design should intelligently compromise the power consumption and the performance metrics such as
reliability and accuracy.

Table 1. Technical specifications of implantable medical devices.

Network Parameter
Characteristics of Implantable Medical Devices

Pace-Maker [29] Neural Stimulators [30] Drug-Delivery Systems [31] Cochlear Implants [32] Endoscopy Capsules [33]

Processing duty-cycle up to 25% of the ON time up to 50% of the ON time up to 15% of the ON time up to 75% of the ON time up to 100% of the ON time
Processing CPU clock 10–100 kHz 10–100 kHz 10–100 kHz 10–100 MHz 10–100 MHz
Longevity up to 5 years up to 5 years up to 5 years up to 5 years up to 2 days
Battery up to 5 Ah up to 5 Ah up to 5 Ah up to 5 Ah Ah up to 5 Ah
Memory up to 128 kB up to 128 kB up to 64 kB up to 2 MB up to up to 256 MB
Telemetry Yes Yes Yes Yes Yes

2.2.2. Paradigm Shift from Offline to Online Learning of Seizure Patterns

Neural networks and deep learning have the potential to detect particular seizure related patterns,
by extracting and learning features from EEG data without a priori knowledge of the seizure structure.
However, the use of these advanced learning algorithms on the IMDs is severely limited due to their
large power-hungry computation. With advances in computer architecture such as neuro-morphic
computing [34], which mimics the human brain in computations, complex computations with very
low power consumption were proven to be possible. Nonetheless, these hardware platforms are still
under development to be used for life-critical medical applications. This limits the immediate use of
these online learning algorithms on the IMDs.

2.2.3. Uncertainty of Brain Signals

The underlying cause of seizure dynamics in the brain is still not clear. However, the brain has its
own regulatory mechanism which could stabilize any abnormal activity in the brain [35]. Because of
this, deterministic seizure prediction will not be capable of accurately predicting the onset of seizure,
as the seizure event could have been regulated by the brain itself. To address this issue, authors
in [18] suggest utilizing a more probabilistic approach such as regression, in which brain signals are
continuously filtered through a probability model of seizure events. Moreover, EEG and ECoG are
highly uncertain and are susceptible to noises from other parts of the brain that may closely resemble
seizure events. The use of other bio-markers such as heart rate and blood pressure has been shown to
improve the prediction accuracy [36].

2.2.4. Expert Intervention Is Both Constructive and Destructive

In life-critical seizure prediction systems, where the brain signals are very heterogeneous and
uncertain, an expert intervention is needed to overview the outcome of such systems. However, such
personalized care with close monitoring of the patient by an expert is unscalable to large size of patient
groups. This destructs the purpose for autonomous seizure prediction system, when the outcome of
each event has to be monitored by an expert. Nonetheless, when such an autonomous system can
detect the ambiguity in the signal with high confidence, an expert can intervene to assist the system
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with a further course of action. Minimal intervention can be constructive in cases like generic seizure
prediction systems.

2.3. Related Work

A substantial amount of work has been done in detecting the ictal epochs over the last six
decades [37]. It was not until recent years that the focus of research is being shifted to detect the
pre-ictal epochs, which is proven to be more helpful in prediction of seizure [19]. A significant
number of algorithms have been proposed for seizure prediction at a crowd-sourced seizure forecast
competition in Kaggle, set up in the year 2014 by the American Epilepsy Society [37]. A similar
approach has been followed by the University of Melbourne together with the American Epilepsy
Society in 2016 using a different dataset available in [38]. Most of the top 10 performing algorithms in
this competition used SVM based classifiers and used frequency domain features. The description and
performance of the top 10 performing algorithms are described in [37].

All of these algorithms are designed to perform well on patient-specific data and with an
abundance of labelled data in the pre-ictal class. These algorithms, however, do not focus on the
problem of data insufficiency and scalability to large patient groups, but rather focus on the high
detection accuracy using patient-specific models. In a practical setting, it is difficult, if not impossible,
to collect a large amount of such categorized data in advance for an epileptic patient. A thorough
review of existing seizure prediction techniques is presented in [39] by Gadhoumi et al. Other seizure
prediction algorithms that aim to be adaptive in their seizure prediction are summarized in Table 2.

Table 2. A selective summary of seizure prediction methods.

Name of Machine Learning Dataset Feature Used Validation Method Sensitivity Specificity
the Work Method Used FP/h

Cook et al. [19]
Decision Tree,
k-Nearest
Neighbour

Private
data

Average energy,
Teager-Kaiser energy,
line length

Comparison with
random predictor
based on ground
truth

65–100% Not reported 1

Shiao et al. [25]

Support Vector
Machine,
intuitive data
segmentation

Kaggle.com,
iEEG.org

Band pass filtered
power density,
Power of Fast Fourier
Transform bin.
correlation matrix

Ground truth 89–100% 0–0.3 FP/day

Xiao et al. [26]

Adaptive Linear
Discriminant
Analysis,
Adaptive Naive
Bayes

Private
data

Lyapunov exponent,
pairwise
euclidean distance,
T-statistic,
Pearson correlation,
temporal pattern

Comparison with
random predictor
based on ground
truth

72–82% 0.69–0.93 FP/horizon 2

Parvez et al. [27]
Least
square–Support
Vector Machine,

Freiburg Customized phase
correlation

Comparison
with six existing
methods based on
ground truth

91–95% 2.4 FP/patient

Aarabi et al. [28] Rule based
classification

Freiburg

Lempel-Ziv
complexity,
Lyapunov exponent,
nonlinear
interdependence,
correlation
dimension,
correlation entropy,
noise-level

Ground truth 86.7–92.9% 0.64–4.69 FP/h

Gadhoumi et al. [40]

Discriminant
analysis
based
classification

Private
data

Wavelet energy,
entropy,
state-similarity using
inclusion, persistence,
& distance measures

Comparison with
random predictor
based on ground
truth

85–100% 0.1–0.35 FP/h

1 Authors used a different notion to illustrate specificity; 2 Authors calculated false prediction in a specific
prediction horizon and not uniformly over an hour.

One of the major disadvantages of these adaptive seizure prediction algorithms is that they do
not have any direct mechanism to handle the ambiguous data that cannot be confidently classified
into either pre-ictal class or inter-ictal class. These algorithms aim at changing classifier’s properties
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such as the distance threshold from the classification plane to improve the classification accuracy.
In case of the seizure prediction, in which there is an abundance of ambiguous samples, a simple
increase or decrease in the classifier’s threshold will not only decrease the accuracy, but also increase
the misclassification rate of the minority class.

The first use of active-learning heuristics to handle the ambiguous data was presented by the
authors of [21], where they presented an outlier detector over the results of an SVM classifier and
selected the samples that were far away from classification boundary.

In [41], Gupta et al. compared different techniques for active selection and proposed a
novel output-based active selection (OAS) method for the active learning framework. In OAS, a
meta-classifier called the Bernoulli-Gaussian Mixture Model (BGMM), which combines the base
classifier’s uncertainty along with base classifier’s outputs, is generated. The resulting BGMM model
has a mixture of distributions consisting of the feature set distribution, crisp label distribution, and
soft label distribution. The sub-population of the ambiguous feature set is considered as a hidden
variable and identified from the overall population of feature set by estimating the parameters of
feature set distribution with respect to crisp and soft label distribution. The set of features with the
highest ambiguity is selected using the BGMM.

One of the main advantages of using BGMM over other active selection methods is that it combines
the prediction uncertainty with the actual prediction outcome of the classifier to effectively mitigate the
querying of morbid samples to be labelled by an expert [41]. The authors applied this algorithm for the
task of ensemble classification with an array of re-trainable classifiers using active learning heuristics.

2.4. Hypothesis for Our Seizure Prediction Framework

It is a well-established fact that brain signals are inherently uncertain, and pre-ictal signals may
vary for different types of seizures [16,39,42]. Moreover, pre-ictal signals can temporally vary for the
same seizure and even for the same patient. In this study, we hypothesize that,

Gradual accumulation of pre-ictal signals would improve the overall accuracy of seizure
prediction.The inclusion of expert in the system will ensure that pre-ictal signals are labelled correctly
in case of ambiguity in classification. However, selecting ambiguous samples to be labelled by an
expert without diminishing the autonomous property of the seizure prediction system is a crucial task.
By doing so, a seizure prediction system can achieve high prediction accuracy with less number of
initial training samples, i.e., with less number of pre-recorded pre-ictal data.

To this end, we aim to develop a seizure prediction framework that is capable of handling the
ambiguous samples by seeking feedback from an expert. We will adapt the BGMM to be used for
the task of binary classification of pre-ictal and inter-ictal periods from ECoG signals under active
learning heuristics. The core of our active learner is based on this BGMM block, which will determine
the feature samples that have the most ambiguity. In the following section, we present the seizure
prediction framework of which our major contribution is the active learner block and its integration
with the machine learning classifier in a closed-loop fashion.

3. Adaptive Seizure Prediction Framework

The main aim of our seizure prediction framework is to predict the seizure events with a minimum
number of labelled data, and to be scalable for large patient groups. In addition, the complexity of
the framework will be kept minimal so that it can be operated on a resource-constrained embedded
platforms. As shown in Figure 3, our prediction framework receives the raw ECoG signal over which
the set of features will be extracted. The obtained feature set is forwarded to a classification model,
which will classify the feature samples into two different classes of labels, i.e., pre-ictal and inter-ictal,
with a degree of certainty. During initialization of our framework, the classification model is obtained
from minimal labels that are generic to large patient groups. This significantly shortens the initial
training periods to obtain a patient-specific classifier model, which will be used in the online phase.
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To determine whether a sample is so ambiguous that an expert has to manually annotate,
we designed the thresholding block. This block filters the ambiguous samples based on an optimal
threshold tuned during the training phase. The threshold is the percentage of the correctly predicted
labels accumulated during 1 h. If the outcome is above the threshold, a seizure alarm is triggered.
Otherwise, the feature set, the stored labels, and the classification certainty are forwarded to the active
learner block, which operates with a core of Bernoulli-Gaussian Mixture Model (BGMM). Labels for the
ambiguous samples are obtained from an expert, and the classifier model is updated accordingly. This
feedback loop through an active learner would improve the accuracy of the classifier with a minimum
number of initial training labels and also the patient-specific accuracy is enhanced over time. In what
follows, we elaborate on the functionality of the main building blocks of the framework.

Classification 

model

Label

Certainty

Thresholding
Above / Below 

Threshold

Seizure Alarm

Above threshold

Raw Signal 

ECoG Signals

Feature 

Extraction

Below threshold

Active Learner

Update Classifier model

Figure 3. Schematic flow of our seizure prediction framework. The base classifier is expected to output
both soft label (or degree of certainty), which is used to determine the certainty of the classification and
crisp label (or label) to know the class.

3.1. Feature Extraction

The typical approach to analyze the ECoG data using machine learning algorithms is to
pre-process the raw signal by computing features. Using features would enhance the classification
accuracy and reduce the computational burden. Since the signal conversion from time-domain
to frequency-domain consumes a substantial amount of power and considerable processing-time,
we focus on the ECoG temporal signals to achieve low-complexity for running on embedded systems.
To this end, we selected eight features, which can represent well the pre-ictal epileptiform discharges
in the time domain. The features selected are listed below and their definition are stated in [43]:

• "Area—Describes the normalized positive area under the curve.
• Normalized decay—Describes the chance-corrected fraction of signal that is decreasing or increasing.
• Line length—Describes sum of the absolute differences between successive data points.
• Mean energy—Describes mean energy across the data.
• Peak amplitude—Describes the base-10 logarithm of the mean-squared amplitude of the peaks, where a peak

is defined as a change from negative to positive in the signal derivative sign.
• Valley amplitude—Describes the base-10 logarithm of the mean-squared amplitude of the valleys, where a

valley is defined as a change from positive to negative in the signal derivative sign.
• Normalized peak number—Describes the number of peaks present normalized by the average difference

between adjacent data point values.
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• Peak variation—Describes the variation between peaks and valleys across both time and values of the
data." [43].

All the above features are computed based on samples collected during non-overlapping sliding
windows. For example, a window size of 20 s of ECoG will have 8000 raw samples when sampled
at 400 Hz. These time domain features will be extracted from 16 selected channel of the ECoG,
which are the most informative channels [44]. As a result for each sliding window, we will have a
128-dimensional vector (16 channels * 8 features), collectively denoted as sett features.

In order to compare the effect of different time-domain and frequency-domain feature sets on
classification accuracy, we will also compute the frequency-domain features over the ECoG signals.
The frequency-domain set of input features represents the power-in-band properties of the ECoG
signals in the commonly studied Berger’s frequency bands, Standard Delta (0–4 Hz), Theta (4–8 Hz),
Alpha (8–12 Hz), Beta (12–30 Hz), and Gamma (30–100 Hz). We filter 20 s of ECoG data using a
band-pass filter (2nd order Butterworth) with five frequency bands and find the power spectral density
by squaring the signal (based on Plancheral theorem to skip the calculation of FFT over ECoG signals).
Then, we extract a set of 80 dimensional (16 channels * 5 features) features from non-overlapping 20-s
windows of raw ECoG signal, collectively denoted as set f features.

3.2. Classification Model

The classifier is an integral part of the prediction framework as shown in Figure 3.
We focus on binary classification problem to classify the pre-ictal data and inter-ictal data from
patient-specific ECoG. The classification model is generated based on patient-specific ECoG signals.
One of the crucial criteria for selecting the classification method is the memory required and the
classification time of classifiers. We selected seven classifiers, namely,

• k-Nearest neighbour (kNN) with k = 3,
• k-Nearest neighbour (kNN) with k = 5,
• Support Vector Machine (SVM),
• Logistic regression,
• Naive Bayes,
• Linear Discriminant Analysis (LDA),
• Quadratic Discriminant Analysis (QDA).

We chose three and five neighbors in kNN to generate distinct class boundaries, as a larger k
makes boundaries between the classes less distinguishable. The implementation of these classifiers
is fairly standard in MATLAB (2017a, MathWorks, Inc., Natick, MA, USA). The classifier is trained
with features extracted over 20-s non-overlapping time windows of subject-wise ECoG signals. It is
important to note that the entire original dataset will be segmented into 20-s windows and balanced to
train the classifier model for different subjects. This process will be explained in detail under Section 4.

3.3. Thresholding

The main aim of threshold block in our seizure prediction framework is to temporally analyze
the output of the classifier over a period based on a pre-tuned threshold, and to decide if the signal
represents the pre-ictal class or the inter-ictal class. For this, we use the segmentation of classifier’s
outcome in one hour blocks, i.e., for each 20 s of the raw ECoG signals, the classifier model outputs the
class, either pre-ictal or inter-ictal. This outcome is accumulated for 1 h of raw ECoG contributing to
180 classification labels. The threshold is computed based on the ratio between the percentage of the
correctly predicted labels accumulated during 1 h. The threshold is computed based on the ratio of the
number of correctly predicted labels accumulated during 1 h. If a threshold of 70% is set, it means
126 out of the 180 classification labels should be classified as pre-ictal to trigger a seizure alarm. If
it cannot be achieved, the feature set is forwarded to the active learner block together with the soft
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labels (certainty of the prediction) and crisp labels (prediction of the class) from the classifier. In our
experiment, the optimal threshold of 70% was empirically found by varying it using our dataset. As
shown in our experimental evaluation, the choice of 70% indeed improved the classification accuracy.
In real-world scenarios, this threshold can be changed according to the requirements of the patient and
the dataset.

3.4. Active Learner

In general, all pre-ictal signals are believed to be unique for each seizure, so it is impossible
to capture all the expected pre-ictal signal types in a patient’s lifetime [19]. The re-training process
without new labels will not improve the accuracy of the classifier model for unknown pre-ictal signals.
An expert’s knowledge is constantly needed to maintain the high accuracy in seizure prediction
throughout patient’s lifetime. The advantage of applying the active-learning heuristic to the output of
classifier is twofold. One is to improve the prediction accuracy by dynamically updating the classifier
model, and the other is to make it scalable by frequently updating the classifier model to achieve
patient-non-specific detection of pre-ictal periods. Updating the classifier model requires additional
labels and a training phase to derive a model based on the newly obtained labels. In an active
learning framework, these additional labels are provided by an expert (otherwise known as oracle
w.r.t. active learning terminologies) by observing the ambiguous samples. The process of labeling by
the expert and updating the classifier model through training is repeated until a stopping criterion is
met. An important aspect of active learning in addressing the issue of expensive labelling over other
semi-supervised learning is that active learning explores the instances with the most ambiguity or
least confidence, whereas the latter explores the instances with least ambiguity or the most confidence.
However, selecting the samples to be labelled by the expert is a crucial task, which decides the success
of the active learning framework.

There are various techniques to select the ambiguous samples to be labelled. Examples include
the uncertainty-based selection [45], the margin information density criterion [46], and the importance
weighting technique [47]. The total number of labelled pre-ictal samples is often lower than the amount
of the available inter-ictal samples. Outlier based ambiguous sample selection for active learning
will select morbid samplesto be classified in a multi-dimensional feature space, which results in high
misclassification. A morbidset of samples is defined as the set of most uncertain samples, which would
belong to the same class as predicted by a classifier model, despite the fact that they actually belong
to two different classes. Selecting this morbid set of samples to be labelled by an expert will not only
increase the labelling cost, but also show no significant improvement in the detection accuracy.

3.4.1. Bernoulli-Gaussian Mixture Model

To prevent morbid samples from being selected to be labelled by an expert, we use BGMM
as the active selector block. BGMM will create a mixture of three probability distributions namely,
ambiguous-sample and label distributions as Gaussian distributions and their certainty distribution as
a Bernoulli distribution. The ambiguity of new samples will be estimated by identifying the probability
of the new sample to belong to either pre-ictal or ictal class. The sample with the least probability will be
selected to be labeled by an expert. In what follows, we will explain the mathematical modelling of the
BGMM block with respect to our problem of ambiguous pre-ictal sample selection from ECoG signals.

Let the feature space defined by X ⊆ Rd, where d denotes the feature dimension and R denotes
the measurable set of ECoG signals. Let the binary output space defined by Y ⊆ Y. We consider the
problem of estimating the joint probability density PXY given a set of input ECoG observations {xj}N

j=1

and output seizure labels {yj}L
j=1, where L is the total number of available labels and N is the total

number of observed ECoG samples. In our case, the labels do not fully represent the observed samples,
i.e., 0 < L < N, which makes the estimation of PXY semi-supervised [41]. Hence, the uncertain
labels of seizure are defined as {yj}N

j=L+1. Input ECoG observation xj is represented as a marginal
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2-component Gaussian mixture distribution, i.e., the inter-ictal epoch and the pre-ictal epoch, and
defined as follows:

For c = {0, 1},

(xj|yj = c) = N
(
xj; µc, Σc

)
, (1)

where µc & Σc represents the mean and co-variances of the distribution.
The BGMM model also includes the augmented observations {uj}L

j=1 and {vj}L
j=1 where

{uj} ∈ YK and {vj} ∈ {0, 1}K, representing the crisp and soft labels (normalized confidence
probability) of the classifier’s outcome, respectively. K is the maximum number of times an expert can
be queried for the label and is set based on the application requirement. The distributions of (uj, vj)

are defined as follows. For c = {0, 1} and m = {0, 1},(
ujk|yj = c

)
∼ B

(
ujk; πck

)
, (2)(

vjk|yj = c, vjk = m
)
∼ N

(
vjk; λcmk, σ2

cmk

)
, (3)

where ujk and vjkrepresent the kth component of uj and vj, respectively, and B(z; π) denotes a Bernoulli
distribution for variable z with success probability π.

From these individual distributions, the joint distribution of BGMM is defined as p(x, y, u, v) with
parameters c = {0, 1} , m = {0, 1} , αc (mixture proportion) , Σc ∈ Rd×d , µc ∈ Rd , πc ∈ [0 ≤
π ≤ 1] , λcmk ∈ RK×2 , σcmk ∈ RK×2. The estimation of these parameters is carried out using
a an Expectation–Maximization (E–M) algorithm by considering the variables {yj}N

j=L+1 as hidden
variables. The cost function is defined as the error in classification due to non-optimal classifier
model, i.e.,

ε(θ̂) = E(Y, θ̂(X))−E(Y, θ(X)), (4)

where E is the expectation operator with respect to the probability measure PXY, θ is the optimal
classifier model and θ̂ is an estimate of the optimal classifier. The estimation of parameters
θ = (αc , µc , Σc , πc) is done by an E-step and an M-step. The E-step creates a function for the
expectation of the log-likelihood using the current estimate for the parameters. The M-step computes
the parameters by maximizing the expected log-likelihood of the parameters estimated on the E-step,
where the E-step is

Q(θ, θt) =
N

∑
j=1

1

∑
c=0

γ
(t)
j,c

[
log(αc)−

1
2

log|Σc| −
1
2
(xj − µc)

TΣT
c (xj − µc)

]
, (5)

where in our case, N = L + U, γ
(t)
j,c is defined by

γ
(t)
j,c =

I(yj = c), if 1 ≤ j ≤ L,

T(t)
j,c , if (L + 1) ≤ j ≤ N,

(6)

and the Tt
j,c is given by

T(t)
j,c =

N (x̃j; µc, σc)B(uj; µ
(t)
c )α

(t)
c

1
∑

c=0
N (x̃j; µc, σc)B(uj; µ

(t)
c )α

(t)
c

. (7)
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The M-step is given by

π
(t+1)
c =

N
∑

j=1
γ
(t)
j,c uj

N
∑

j=1
γ
(t)
j,c

, µ
(t+1)
c =

N
∑

j=1
γ
(t)
j,c x̃j

N
∑

j=1
γ
(t)
j,c

, (8)

Σ(t+1)
c =

N
∑

j=1
T(t)

j,c

[
x̃j − µ

(t+1)
c

] [(
x̃j − µ

(t+1)
c

)T
]

N
∑

j=1
T(t)

j,c

, α
(t+1)
c =

N
∑

j=1
γ
(t)
j,c uj

N
∑

j=1

1
∑

c=0
γ
(t)
j,c

. (9)

The output from the BGMM is then forwarded to a selector block, which selects the samples
with least confidence or the most ambiguity, in order to be labelled by an expert. The least confident
sample φLC{xj} is selected by φLC{xj} =

(
1− Pθ(yj|xj)

)
[48].

3.4.2. Stopping Criterion

The vital step in active learning is to know when to stop querying the expert; otherwise, it will
increase the labelling effort and makes the system unscalable for large patient groups. An active learner
must be aware of when to stop the expert querying. For this, we monitor the confidence samples that is
observed after the selector block in the active learner (Figure 4). This confidence samples are then used
as active feedback to exhibit the confidence in classification accuracy and to stop the active learner
from querying the expert.

In order to achieve this, the confidence samples are monitored for each iteration of the active
learner block. Querying the expert is stopped when the confidence of the samples remains the same for
consecutive iterations of the active learner block. This constant confidence samples directly reflects the
accuracy of the base classifier model i.e., the new labels from the expert have improved the classifier
model and there are no ambiguous samples to be labelled by an expert. Thus, querying the expert
must be stopped immediately.

Active samples

ExpertActive labels

Certainties

Bernouli-

Gaussian 

Mixture Model

Selector
Confident 

samples

Stopping 

Criterions
Ambiguous 

samples

Labels

Above / Below 

Threshold

Below Threshold

Active learner block of SPA

Classification 

model

Update Classifier model

Figure 4. Schematic flow of active learner block based on Bernoulli-Gaussian model. This model takes
the ambiguous samples along with the base classifier’s label prediction with its certainty as inputs.
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3.5. Seizure Prediction Framework

Our prediction framework is implemented using four main functional blocks, namely,

(i) EXTRACT FEATURE (Secog,X ): where the n dimensional feature-set (X ) is extracted over 20 s
time window of raw ECoG signals (Secog),

(ii) THRESHOLD(Ŷ , PA): where a prediction alarm PA is set, if 70% of the accumulated labels (Ŷ) are
classified as pre-ictal state,

(iii) CLASSIFY(X ,Y ,V ,U ): where a trained semi-supervised classifier model is used to obtain the
set of soft-labels (Y) and crisp-labels (V) , from the input feature-set (X ). In addition, the
set of uncertain feature samples (U ) is obtained based on the soft and crisp-labels of the
classifier model,

(iv) ACTIVE LEARNER(X ,U ,Y ,V ,A): where a BGMM model based on the feature-set (X ), uncertain
sample-set (U ), soft-label set (Y), and crisp-label set (V) is generated. An E-M algorithm is used
to obtain the sample-set (Z) where the confidence of classification of each sample is determined
by the probability p(Z). An active sample (A) is selected from the samples of Z , which has the
smallest p(Z). The pseudo-code of these individual functional blocks are shown in Algorithm 1.

Algorithm 1 Pseudo-code of individual functions

1: function EXTRACT FEATURE(Secog,X )
input: Secog = 20 s; all channels
output: X ∈ RK

2: X = {x1, x2, ....xN}
3: end function

4: function CLASSIFY(X ,Y ,V ,U )
input: X ∈ RK

output: Y ,V ,U
5: for each sample in X do
6: (Y ,V) = θ(X ) (acquire soft and crisp labels)

7: end for
8: return U =

{
X
(

PY|V < 80%
)}

(obtain ambiguous samples)

9: end function

10: function THRESHOLD(Ŷ , PA)
11: if 70% of Ŷ is classified as pre-ictal state then
12: return PA = 1
13: else
14: return PA = 0
15: end if
16: end function

17: function ACTIVE LEARNER(X ,UY ,V ,A)
input: X ,U ,Y ,V
output: A

18: θBGMM = BGMM (X ,U ,Y ,V) (Obtain BGMM model)

19: for each sample in U do
20: (Z , p(Z)) = E_M [θBGMM (X ,Y ,V)]
21: end for
22: A = (Samples in Z with smallest |p(Z)|)
23: end function

As shown in Algorithm 2, our prediction framework sequentially utilizes these functional
blocks such that, for every 20 s window of raw ECoG signals, the EXTRACT FEATURE (Secog,X )

function generates the set of feature vectors. This feature-set is input to the CLASSIFY(X ,Y ,V ,U )
function, in order to obtain the soft and crisp-labels together with the uncertain feature-subset.
Based on these labels, THRESHOLD(Ŷ , PA) function triggers a prediction alarm (PA) if more than
70% of the samples are labelled as pre-ictal state. If less than 70% of the labels are classified as
pre-ictal, the feature-set together with soft and crisp-labels are forwarded to the active learner. The
ACTIVE LEARNER(X ,UY ,V ,A) function then selects the samples with most ambiguity and obtains
the label from an expert. The classifier model (θ(X )) is updated based on the newly obtained label
and the whole procedure is repeated until the end of the ECoG signal.
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Algorithm 2 Pseudo-code of seizure prediction framework

1: procedure PREDICTION(Secog, PA)
2: input:Secog
3: output:PA (prediction alarm)

4: repeat
5: for every 20 s window of Secog do
6: X = EXTRACT FEATURE(Secog)
7: (Y ,V ,U ) = CLASSIFY(X )
8: end for
9: while !(time == 60 mins) do

10: Ŷ = Y (accumulate the labels for 1 h)
11: end while
12: if !(THRESHOLD(Ŷ)) then
13: A = ACTIVE LEARNER(X ,U , Ŷ ,V)
14: Y = expert {A}(Obtain labels)
15: update θ(X )(Update base classifier model)
16: else
17: return PA
18: end if
19: until End of Secog
20: end procedure

4. Material and Methods

4.1. Dataset

The ECoG data used in our work is an open-access data, obtained from the Mayo
Systems Electrophysiology Laboratory (MSEL) [49] and intracranial ElectroEncephaloGraphy (iEEG)
database [23]. The ECoG data is segmented and labelled as pre-ictal or inter-ictal by human experts.
Data is obtained in segments of 10 min sampled at 400 Hz and the total duration is summarized in
Table 3.

Epileptic data is obtained from 5 canine and 2 human subjects. The canine epileptic data reflects
continuous long-term recordings of dogs with naturally occurring epilepsy. The human patients’
medication was lowered to promote seizures for 7–14 days and the ECoG signals are recorded for
a much lower duration in time than the canine subjects. The canine epilepsy is claimed to be an
excellent analog for naturally occurring epilepsy in humans [25]. The canine subjects’ dataset contains
16 channels of raw data from implanted electrodes, and human subject Patient 2 has 24 channels
of ECoG. Lead seizures are seizures that are recorded without a preceding seizure for more than 7 days
for canine subjects and more than 4 h for human subjects. Although inter-ictal data is chosen randomly
from a much longer recording, contamination of inter-ictal data by the pre-ictal data is prevented by
choosing inter-ictal epochs a week away from the pre-ictal epochs of canine subjects and more than 4 h
away from that of human subjects.

Table 3. Data characteristics used in our study accessed from [49]. Source: [37].

Subject Sampling Rate # of Inter-ictal # of Pre-ictal # of Lead %of Pre-ictal %of Inter-ictal Total Duration of
in Hz Segments #(h) Segments #(h) Seizures Segments Segments Labelled Data (h)

Dog1 400 480 (80 h) 24 (4 h) 8 4.8% 95.2% 84 (hours)
Dog2 400 500 (83) 42 (7) 40 7.8% 92.2% 90
Dog3 400 1440 (240) 72 (12) 18 4.8% 95.2% 252
Dog4 400 804 (134) 97 (16) 27 10.8% 89.2% 150
Dog5 400 450 (75) 30 (5) 8 6.2% 93.8% 80

Patient1 5000 50 (8) 18 (3) 4 26.5% 73.5% 11
Patient2 5000 42 (7) 18 (3) 6 30.0% 70.0% 10
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Imbalanced Dataset and Classification Model

It is important to note that the long hours of data have a very small percentage of pre-ictal
segments and a large percentage of inter-ictal segments. As shown in Table 3, we have an imbalance
ratio ranging from 20:1 (Dog1 and Dog5) to 2:1 (Patient2) for the inter-ictal and the pre-ictal data.
Modelling a classifier on such an imbalanced dataset will result in large classification biases towards
the majority class, which is inter-ictal. However, an efficient approach to overcome this problem by
modelling a SVM classifier with an unbalanced ECoG dataset [25].

We train the classifier using the balanced dataset, whereas the validation and model selection
will be done using the original dataset, which is unbalanced. As we explained earlier, we follow 1 h
accumulated windows for seizure prediction based on pre-ictal data. Thus, we split available data into
blocks of 1 h and iterate the validation for the number of available pre-ictal blocks, as shown in Table 4.
For example, in the Dog5 dataset, we have 5 blocks of pre-ictal data, so the classifier is validated with
five-fold cross-validation and iterated 5 times as shown in Table 4. This will ensure that validation is
always performed on an out-of-sample dataset, yet each classifier model is validated with its dataset.
In addition, the accuracy of the model will be validated based on individual test segments of 1 h rather
than extremely short segments, which is clinically relevant [25].

Table 4. Separation of 1 h blocks of data for a fair training and validation for Dog1. Each number
represents the sequence number of the 1 h blocks [25]. Tables 5–10 present the separation of 1 h blocks
of data for each subject. However, all iterations are not shown due to their repetitiveness.

Subject Training Set Validation Set

Inter-Ictal Pre-Ictal Inter-Ictal Pre-Ictal

Dog1 (Iteration1) 2–80 2,3,4 1 1
Dog1 (Iteration2) 1,3–80 1,3,4 2 2
Dog1 (Iteration3) 1,2,4–80 1,2,4 3 3
Dog1 (Iteration4) 1–3,5–80 1,2,3 4 4

Table 5. Dog2.

Subject Tra.–set Val.–set

I . I P.I I.I P.I

Dog2 (It.1) 2–83 2–7 1 1
Dog2 (It.2) 1,3–83 1,3–7 2 2

...

...
Dog2 (It.7) 1–6,8–83 1–6 7 7

Table 6. Dog3.

Subject Tra.–set Val.–set

I . I P.I I.I P.I

Dog3 (It.1) 2–240 2–12 1 1
Dog3 (It.2) 1,3–240 1,3–12 2 2

...

...
Dog3 (It.12) 1–11,13–240 1–11 12 12
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Table 7. Dog4.

Subject Tra.–set Val.–set

I . I P.I I.I P.I

Dog4 (It.1) 2–134 2–16 1 1
Dog4 (It.2) 1,3–134 1,3–16 2 2

...

...
Dog4 (It.16) 1–15,17–134 1–15 16 16

Table 8. Dog5.

Subject Tra.–set Val.–set

I . I P.I I.I P.I

Dog5 (It.1) 2–75 2–5 1 1
Dog5 (It.2) 1,3–75 1,3–5 2 2

...

...
Dog5 (It.5) 1–4,6–75 1–4 5 5

Table 9. Patient1.

Subject Tra.–set Val.–set

I . I P.I I.I P.I

Patient1 (It.1) 2–8 2,3 1 1
Patient1 (It.2) 1,3–8 1,3 2 2
Patient1 (It.3) 1,2,4–7 1,2 3 3

Table 10. Patient2.

Subject Tra.–set Val.–set

I . I P.I I.I P.I

Patient2 (It.1) 2–7 2,3 1 1
Patient2 (It.2) 1,3–7 1,3 2 2
Patient2 (It.3) 1,2,4–7 1,2 3 3

4.2. Validation Metrics

The validation process has 3 main goals, which are to evaluate: (i) the performance of the
classifiers; (ii) the performance of the active learner, and (iii) the overall seizure prediction accuracy of
the framework.

4.2.1. Performance Metrics for the Classifier

The classifier performance is traditionally evaluated using the False Positive Rate (FPR)
and False Negative Rate (FNR). Since the goal of the classifier is to classify the pre-ictal class
from the inter-ictal class, true positive means correctly classified pre-ictal epoch and true negative
means correctly classified inter-ictal epoch.Thus, FPR corresponds to the number of inter-ictal epochs
incorrectly classified as pre-ictal epochs, which also results in overall reduction in accuracy of seizure
prediction. FNR corresponds to the incorrectly classified pre-ictal epochs as inter-ictal epochs, which
also contributes to the overall accuracy, but it is clinically desirable to have very low FNR at the
expense of high FPR [25]. The FPR and FNR are calculated over a 1 h time period, in order to match
the constraint of prediction horizon and pre-ictal period, i.e., SPH (3–16 h) > pre-ictal period (1 h)
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(SPH of 3–16 h is based on the range of pre-ictal data available for different patients [refer Table 3]).
Nevertheless, we also evaluate performance of the classifiers in terms of the accuracy (A). The accuracy
is defined as the ratio of the sum of true positives (correctly classified pre-ictal epoch) and true negatives
(correctly classifier inter-ictal epoch) to the sum of real positives (the number of pre-ictal epoch) and
real negatives (the number of inter-ictal epoch).

4.2.2. Performance Metrics for the Active Learner

The performance of the active learning process is measured in terms of accuracy (A) of the base
classifier, or its complement, error rate (ε), with respect to the number of available labels. This is known
as the label complexity [41].In general, an ideal active learner will have a label complexity of O(ln 1

e ).
In our case, a decline in classification accuracy occurs when the ambiguous feature-samples close to
the hyperplane are selected improperly for the active-labelling process.

To evaluate the performance of our active learner with the minimum number of labels, we use a
validation method, which is slightly differently from ones of evaluating the performance of the base
classifier as shown in Table 11. It is important to note that the base classifier model is not generic for
all patients. A personalized training of base classifier model is carried out with each individual subject.
Validation of this base classifier model with the active-learning block is carried out still with balanced
data, but using different label fractions as shown in Table 11. The expert in our evaluation case is a
databaseof labelled feature samples of pre-ictal class, which was not used for training the model. Thus,
every time the active learner block is triggered, the database is queried for labelling the unknown
samples. In reality, this database will be a trained medical expert. A label fraction is the ratio of the
labelled data and the sum of labelled and unlabelled data that is used for validation. In general, if there
are n pre-ictal epochs available for a subject, a benchmarking of the classifier model is done using n
pre-ictal epochs, and (n− 1) iterations of validation is carried out using sequentially decreasing label
fractions. This way, label complexity is measured as a function of classifier accuracy (A).

Table 11. Selection of data blocks for validating active learners.

Subject Training Set AL-Validation Set

Inter-Ictal Pre-Ictal Inter-Ictal Pre-Ictal

Dog5 (benchmark) 1-75 1,2,3,4,5 71,72,73,74,75 1,2,3,4,5
Dog5 (Iteration1) 1-74 1,2,3,4 75 5
Dog5 (Iteration2) 1-73 1,2,3 74,75 4,5
Dog5 (Iteration3) 1-72 1,2 73,74,75 3,4,5
Dog5 (Iteration4) 1-71 1 72,73,74,75 2,3,4,5

Misclassification can occur in the base classifier model with real-world data. This misclassification
of the base classifier is considered as the noise to the input of active learners. The sensitivity of
the active learners in the presence of such random noise in the dataset is measured using noise
sensitivity [41]. Noise sensitivity is the measure of error rate ε as a function of noise rate η for
a fixed label fraction. In the case of subject dog5, we will choose iteration 3 in Table 11 as the
validation case, where out of 5 pre-ictal epochs, only 2 pre-ictal epochs are used for training and
3 pre-ictal epochs are used for validation. In general, if there are n pre-ictal epoch available for a
subject, n

2 − 1
(

n+1
2 − 1 if n is odd

)
is used for training and the noise sensitivity is calculated on the

remaining epochs by adding random noise.

4.2.3. Performance Metrics for Seizure Prediction Framework

As mentioned earlier, the seizure alarms are generated after the classification based on the
threshold of 70% of the 20 s epochs in 1 h period is classified as the pre-ictal epochs. To compare the
performance of our framework with random prediction, we used the Poisson prediction scheme. This
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Poisson prediction scheme will issue the seizure warning according to an exponentially distributed
random time interval with a fixed mean λran, which is chosen for each subject based on the available
dataset according to the time-interval between the lead seizures. For example, in a period of 5 h, if
a patient has three events of lead seizure occurring at 1.4, 2.3 and 3.6 h, then λran = 1.1 (averaged
inter-seizure duration). With this method, we assume that a priori knowledge of the seizures is
randomly compared with our prediction framework. We will use real ECoG data without the balancing
process to evaluate the performance of our seizure prediction framework. This will ensure that our
classifier model can detect seizures in real unbalanced ECoG data. To evaluate the performance
of the prediction framework, we will use the TPR and FPR measures. TPR is defined as the ratio
between the total number of correctly predicted seizures and the total number of seizures. The FPR
of the prediction framework is defined as the total number of falsely predicted seizure in the total
duration of the ECoG signals for each subject. It is important to note that the FPR does not reflect
the correctly prediction inter-ictal period, which is true negative. Measuring the TPR and FPR of the
framework with the minimum number of labels will emphasize the impact of the active learner in
seizure prediction framework.

4.2.4. Platform for Evaluation

All of our algorithms were implemented and validated using existing machine learning libraries
in MATLAB2017a installed on a Windows 7 laptop with Intel Core i7 (Santa Clara, CA, USA)
4800MQ @ 2.7GHz CPU and 8 GB RAM. We used the machine learning classifiers with their default
implementation and no optimisation of individual classifiers was done, as our work focuses on the
relative performance evaluation and not on individual classifiers’ performance. It is important to note
that the reported absolute accuracy of the classifier may not be the best possible outcome and can be
improved further by optimising the implementation of the classifiers.

5. Results and Discussion

In this section, we present and discuss the results.

5.1. Feature Selection

We selected two sets of features representing the time-domain characteristics and spatial-domain
characteristics of the ECoG signals. We compared the performance of seven classifiers with three
different feature sets, sett , setn , and a combination of sets t and f . It is apparent from the results
shown in Figure 5 that the combination of the feature set has the highest accuracy in all the classifiers.
However, sett has low performance when compared to the features of set f .
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Figure 5. Performance of classifiers for different sets of features.
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For further evaluation of our seizure prediction framework, we intend to use sett, mainly for two
reasons: firstly, to measure the impact of the active learner on classifier accuracy. With low accuracy,
the results of classifiers are not always reliable. With these empirical results, it is known that these
features are not completely capable of representing the ECoG signal in higher dimensional feature
space, which will result in a large number of ambiguous feature samples close to the classifier’s
hyper-plane. Secondly, the calculation of these features is less complex than the other two sets. These
features can be implemented in ultra-low power hardware and the power consumption can be greatly
reduced when compared to the implementation of other feature sets [50].

Feature Extraction on the Dataset

The feature extraction is done on non-overlapping 20 s time windows of raw ECoG signals. Due
to the decision of non-overlapping time windows, it is possible that various window sizes will have a
significant impact on the classification accuracy (A). We compared the impact of different window
sizes on the classification accuracy over different window sizes ranging from 1 s until 100 s in 10 steps.
The accuracy in Figure 6 is calculated using a balanced dataset with respect to pre-ictal duration, in a
two-fold cross-validation setting.
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Figure 6. Accuracy (A) of a linear Support Vector Machine classifier as a function of window sizes.

A SVM classifier with a linear kernel (cost C = 5) is used with features from sett to evaluate the
performance of time windows. This accuracy measure is not to reflect the classifier performance,
instead to reflect the impact of different choices of window sizes ranging from 1 to 60 s on the classifier
performance for different datasets. We found that with our selection of features the classification
accuracy of the selected classifiers did not improve after 20 s as shown in Figure 6. Based on these
results, we select the 128-dimensional (sett) feature vector, which is obtained over a 20 s time window
for further evaluations of classifier and active learning framework.

5.2. Evaluation of Classifier

In this section, we present and discuss the evaluation and selection of the base classifier model for
our seizure prediction framework.
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5.2.1. Time and Memory Consumption

We evaluate the performance of seven classifiers with the feature set sett in terms of classification
time, i.e., the total time required to classify a 1 h block of raw ECoG signals, using the tic and toc
functions of MATLAB. This timing method includes the overhead of the laptop’s background process;
however, profiling of all the classifiers is carried out at the same time, with an assurance that the
overheads are commonly present during all the timing measurements.

From Figure 7, it is known that k-NN classifiers require the least time for the classification process
because of the minimal computation, but they have the most memory consumption. The most suitable
classifier among the list is the SVM, as it requires less memory and requires the least classification time.
Based on this result, for further evaluation of the prediction framework, we choose the SVM classifier
with sett as the feature set extracted from 20 s of non-overlapped ECoG signals.

In SVM, together with the crisp-label, a degree of certainty, i.e., probability of the output, is also
extracted after the classification process using the Platt’s scaling method [51]. In this way, the classifier
block outputs a soft-label and a crisp-label after each iteration of the feature set. These labels are
forwarded to a threshold block in our prediction framework, which decides whether the classification
outcome is eligible for a seizure alarm and can be used for post-processing or if the classifier model
needs to be retrained through an active-learning framework.
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Figure 7. Classification time for 20 s of Electro Cortico Graphy data from 16 channels using sett feature
set, timing with Dog5 data.

5.2.2. Evaluation of the Base Classifier Model

In order to evaluate the performance of the classifier with respect to our segmented data, we
calculate the performance in each class (pre-ictal and inter-ictal) separately. This ensures that the
performance of the classifier is valid for each class. In addition, in this way, we will be able to know how
much data from each class is classified as unknown for each subject. For this performance evaluation,
we used the segmented data as shown in Table 4. We discuss the results from all iterations for Dog5
dataset in this section.

In Table 12, FPR and FNR are calculated for one hour period to match our assumption of prediction
horizon. The feature samples that have a degree of certainty of more than 80% in either class is
considered clear samples. These samples can be classified with high confidence into one of the classes.
The remaining samples that have a lower degree of certainty are grouped as ambiguous samples.
Although a perfect classifier model will have a high degree of certainty and less ambiguous samples
near the hyperplane, with this superstitious certainty requirement, we intentionally increase the
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amount of ambiguous data. This setting will replicate the real-world scenario, where the amount
of pre-ictal epochs used for training the classifier will be less than the inter-ictal epochs, naturally
increasing the amount of ambiguous data or unknown classes.

Table 12. Performance of the Support Vector Machine classifier in terms of False Positive Rate (FPR)
and False Negative Rate (FNR) with Dog5 Pre-ictal dataset using sett feature set.

Iteration Classifier Performance Feature Samples (%)

FPR (%) FNR (%) Clear Ambiguous

Dog5 (Iteration1) 2.30 23.2 52 48
Dog5 (Iteration2) 3.62 20.7 63 37
Dog5 (Iteration3) 2.45 13.8 37 63
Dog5 (Iteration4) 1.54 22.5 46 54
Dog5 (Iteration5) 4.47 31.3 22 78

From Table 12, it is observed that each iteration using a Dog5 dataset with different validation data
has different error rates. In addition, the FPR is always lower than the FNR because of the large amount
of inter-ictal data that is used for training the classifier. Iteration5 has the highest number of ambiguous
samples, and it is also reflected in the FPR and FNR. The number of ambiguous samples is very high
i.e., 78% of the whole validation data used is grouped as ambiguous data. We choose the classifier
model, which is developed based on Iteration5 for further evaluation of the active learner block.

In Table 13, we present the performance of the classifier for inter-ictal datasets, with similar
metrics. It is evident that the abundance of inter-ictal data has a positive influence on the classifier
performance in terms of FPR and FNR, i.e., only a negligent amount of samples are misclassified in the
inter-ictal class. In addition, most of the samples are clear and very few samples are ambiguous in all
the iterations. It is observed from these results that all classifier models derived from all five of the
iterations have quite similar performances for the inter-ictal class. Therefore, we choose the classifier
model based on the pre-ictal performance, which is the model Iteration5 for the subject Dog5.

Table 13. Performance of the Support Vector Machine classifier in terms of False Positive Rate (FPR)
and False Negative Rate (FNR) with Dog5 Inter-ictal dataset using sett feature set.

Iteration Classifier Performance Feature Samples (%)

FPR (%) FNR (%) Clear Ambiguous

Dog5 (Iteration1) 0.01 0.12 92 8
Dog5 (Iteration2) 0.41 0.21 93 7
Dog5 (Iteration3) 0.21 0.87 91 9
Dog5 (Iteration4) 0.14 1.01 97 3
Dog5 (Iteration5) 0.37 0.91 96 4

5.2.3. Classifier Model for Each Subjects

A similar process as explained above is used to obtain the base classifier model for each subject.
The number of iterations for each subject depends on the number of available one-hour pre-ictal
segments. For example, the subject Dog4 has 16 pre-ictal segments so the classifier model has been
iterated for 16-fold cross-validation to find the classifier model with the most ambiguous samples as
shown in Tables 5–10. We present only the iteration that has the most ambiguous samples and its
corresponding FPR and FNR are presented in this section. The results of the classifier using datasets of
all subjects are presented in Table 14. It is important to note that subjects Patient1 and Patient5 has the
highest error rate because of the highest scarcity in pre-ictal data. We selected the classifier model that
has the highest amount of ambiguous data in the pre-ictal class.
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Table 14. Performance of the Support Vector Machine classifier in terms of False Positive Rate (FPR)
and False Negative Rate (FNR) for all the subject’s pre-ictal dataset using sett feature set. Classifier
performances of only the best iterations are shown.

Subject Classifier Performance Feature Samples (%)

FPR (%) FNR (%) Clear Ambiguous

Dog1 4.15 34.2 29 71
Dog2 3.74 26.7 24 76
Dog3 3.45 25.8 21 79
Dog4 3.88 29.8 26 74
Dog5 4.47 31.3 22 78
Patient1 8.24 38.5 16 84
Patient2 10.47 41.3 12 88

We also report the performance of the same classifier model with inter-ictal class in Table 15. As
explained in the case of Dog5 dataset, the abundance of data in the inter-ictal class has no influence on
the selection of classifier model, which is true for all other subjects.

Table 15. Performance of the Support Vector Machine classifier in terms of False Positive Rate (FPR)
and False Negative Rate (FNR) for all the subject’s inter-ictal dataset using sett feature set. Classifier
performances of only the best iterations are shown.

Subject Classifier Performance Feature Samples (%)

FPR (%) FNR (%) Clear Ambiguous

Dog1 0.19 0.18 94 6
Dog2 0.12 0.23 95 5
Dog3 0.02 0.11 98 2
Dog4 0.25 0.62 97 3
Dog5 0.37 0.91 96 4
Patient1 0.54 1.45 91 9
Patient2 0.47 1.32 90 10

5.3. Threshold Value Selection

In order to select the threshold value for our seizure prediction framework, we experimented with
different threshold values and measured the number of missed seizure episodes. As mentioned earlier,
based on the number of classification labels that are classified as pre-ictal episodes in a 1 h period, a
seizure alarm will be triggered. We varied the threshold values from 40% until 90% and calculated how
many seizures are missed during the entire period. We present the results in Figure 8, where at a 40%
threshold, we have 12 missed seizures for the subjects Dog2, and three missed seizures for Patient1. At
70%, only one seizure is missed for three subjects (Patient2, Patient1, and Dog4) and all the seizures
were correctly detected in the other four subjects. At and above 80%, we have correctly detected all
the seizures. We will choose a 70% threshold for the rest of the evaluation because the number of
accurately predicted seizures is cut off at this threshold value, and it is optimal for improving the
classification performance. One may note that step-wise decreasing of the threshold values below
70% results in an increase of missed seizures. Therefore, the use of threshold values lower than 70% is
not meaningful.
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Figure 8. Number of seizure episodes missed from classification as a function of threshold for
all dataset.

5.4. Evaluation of Active Learners

To compare the performance of the Bernoulli-Gaussian Mixture Model based active learners,
we used the Support Vector Machine classifier with semi-supervised setting (or passive setting) and
Support Vector Machine with just our uncertainty sampler as shown in Figure 9.

SVM
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Uncertainty 
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(a). Label complexity of SVM - passive

(b). Label complexity of SVM - uncertainty

(c). Label complexity of SVM - BGMM  

Uncertainty 
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Figure 9. Label complexity of three different settings of the Support Vector Machine classifier. In each
setting, the error rate is measured as a function of label fraction.

The classifier model selected for each subject is validated with different label fractions and the
label complexity is presented for each subject separately, as shown in Figure 10. The ratios of different
label fractions are derived as shown in Table 11. The model selected from the evaluation of the
classifier performance is used to evaluate the active learner block. The error rate is the complement of
accuracy A of the classifier. The performance of an ideal active learning in terms of error-rate ε should
be close to O

(
ln 1

ε

)
, whereas, in the semi-supervised case, it is O

(
1
ε

)
.

From Figure 10, it is evident that, for all subjects, the active learner was able to achieve a much
lower error rate than the semi-supervised SVM classifier. In Figure 10a, BGMM-based SVM was able



Sensors 2018, 18, 1698 24 of 30

to achieve 37% less error rate than semi-supervised SVM, with just 10% of the labels. Although an
uncertainty sampler has reduced the error rate by 17% with just 10% of the labels, the complexity is
still close to O

(
1
ε

)
, which is not desirable. It is evident that the BGMM-based active selection has a

clear improvement in the classification error when the amount of labelled data is very low. In addition,
for the case of BGMM-based SVM, the error rate saturates at around 1% because of the limitation of
the selected classifier model. This complexity is close to O

(
ln 1

ε
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Figure 10. Label complexity of three different settings of the Support Vector Machine classifier. Error
rate as a function of label fraction.

As explained earlier, the base classifier is prone to misclassification because of the nature of
pre-ictal distribution in ECoG signals. We added misclassification noise, i.e., randomly distributed
label proportion, to the output of the base classifier. We used the base classifier model that was chosen
to have the highest ambiguous sample, and the label fraction was fixed in a way that the number of
labelled data segments used for training is always lower than the number of labelled segments used
for validation.

In order to evaluate the performance of the active learner block in the presence of such
misclassification, we measure the accuracy of the base classifier with three different settings as shown
in Figure 11. We measure accuracy of the classifier as a function of different noise proportions η.
In the presence of noise, the base classifier in a semi-supervised setting has poor performance. In
addition, the uncertainty sampler did not improve the accuracy in the presence of noise. BGMM-based
SVM classifiers have significant stability against the misclassification noise. The ability of BGMM to
select the active samples based on the estimation probability distribution results in clear isolation of
the random noise added to the classification results. It is evident that the misclassification costs can
be lowered by the BGMM model; however, choice of classifier model is important to achieve high
accuracy. In addition, at very high noise proportion of above 80%, all the settings of the base classifier
have similar accuracy in classification.
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Figure 11. Noise complexity of three different settings of the the Support Vector Machine classifier.
Accuracy as a function of noise rate (η).

5.5. Evaluation of Seizure Prediction Framework

To compare the seizure prediction performance of our framework, we used the sett features, 20%
labelled data with an SVM classifier that has the least memory consumption and shortest execution
time. This setting is a valid representation of a low-power, less complex classifier with minimal training
phase. In addition, in a practical setting, a seizure prediction framework is expected to work with such
a constrained setting. We compare our seizure prediction framework with a Poisson random predictor
in terms of True Prediction Rate (TPR) and False Prediction Rate (FPR). The prediction horizon is the
time period between a true positive seizure warning and the actual seizure episode.

The performance of the random predictor and our seizure prediction framework is presented in
Table 16. The TPR is very low for the Poisson predictor, as it sends the seizure warnings randomly for
the seizure occurrence. However, with the minimal prior knowledge, our seizure prediction framework
has an average TPR of 87%. In addition, in case of subject Dog3, which has the highest number of
seizure events, TPR is very high at 94%.

Table 16. Performance of the Support Vector Machine classifier in terms of False Positive Rate (FPR)
and False Negative Rate (FNR) for the overall dataset using sett feature set.

Subject Random Poisson Predictor Active Learning Predictor

TPR FPR Prediction Horizon TPR FPR Prediction Horizon

Dog1 0.25 0.98 8 (minutes) 0.88 0.12 14.5 (minutes)
Dog2 0.13 0.96 94 0.95 0.08 20.3
Dog3 0.17 0.94 62 0.94 0.11 15.6
Dog4 0.15 0.99 4 0.88 0.03 18.2
Dog5 0.13 0.97 12 0.88 0.13 36.2

Patient1 0.25 0.98 30 0.75 0.30 20.2
Patient2 0.16 0.97 60 0.83 0.16 23.2

The prediction horizon of the Poisson predictor is completely random, as the time to raise a
seizure warning can be at any random time within inter-ictal periods. This results in very high FPR,
which reflects the incorrectly predicted seizure event through the pre-ictal period. In addition, with
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a random Poisson predictor, the prediction horizons are completely random, reflecting the random
seizure events. In our seizure prediction framework, the FPR is very low, reflecting the falsely predicted
seizure events, and the prediction horizon is averaged at 21.7 min for all of the subjects.

In order to evaluate our framework for clinical applicability, we calculated the false positives per
hour (FP/h). Any seizure prediction to be clinically applicable must not have more than 0.15 FP/h [52].
As shown in Table 17, our seizure prediction tool has very low FP/h for five out of seven subjects.
In the case of the Patient dataset, our seizure prediction tool has very high FP/h due to the very low
number of seizures occurring over a long duration, i.e., frequency of the recurring seizures is very
low. This severely limits the initial training of the model and also reduces the statistical significance
between the pre-ictal and inter-ictal data.

Table 17. Performance of active learning based seizure prediction framework in terms of True Prediction
per hour (TP/h) and False Prediction per hour (FP/h) for the overall dataset using sett feature set.

Subject Random Poisson Predictor Active Learning Predictor

TP/h FP/h TP/h FP/h

Dog1 0.05 0.95 0.90 0.10
Dog2 0.09 0.91 0.92 0.08
Dog3 0.06 0.94 0.97 0.03
Dog4 0.02 0.98 0.89 0.11
Dog5 0.04 0.96 0.95 0.05

Patient1 0.02 0.98 0.40 0.60
Patient2 0.03 0.97 0.74 0.26

5.6. Advantages and Limitations of Our Study

In our seizure prediction framework, we enabled an expert-in-the-loop operation, through which
an expert can identify the ambiguous pre-ictal signals based on the inter-ictal and ictal episodes. To
the best of our knowledge, our study is the first to use active learning heuristics to predict the onset of
seizure episodes.We designed our framework to be less complex such that it has very low resource
consumption in terms of memory and power. We have used time-domain features for classification,
which ensures its implementation in resource-constrained IMD, compared to the frequency domain
features. Although we did not present a detailed evaluation of resource consumption analysis of
feature extraction and classifier model on an IMD, we relied on extensive literature to support our
claim [15,24,43]. Our study also has the lowest false prediction per hour measurements as shown in
Table 18 when compared with existing works. For our comparison, we selected the existing works that
report the false positives per hour measurement as listed out in [39]. Our results show that on-time
prediction of seizures using IMD is plausible, and, through close collaboration with medical experts, the
clinical/practical aspects of the approach can be further investigated. Nonetheless, we have indicated
clinical/practical aspects such as FP/h and prediction horizon for our seizure prediction framework.

Table 18. Comparison of our study with existing works.

Parameters This Study Bandarabadi et al. [53] Li et al. [54] Williamson et al. [55] Aarabi and He [56] Kuhlmann et al. [57] Gadhoumi et al. [40]

Feature-type Time-domain Time-Frequency Time-domain Time-domain Time-domain Time-domain Time-Frequency
Database iEEG EPILEPSIAE FSPEEG FSPEEG 1 FSPEEG Freiburg Private
FP/h 0.03–0.60 0.15 0.11–0.15 0.03–0.07 0.11–0.17 0.64–4.69 0.1–0.35
TP/h 40–97% 78.36% 56–72% 86–95% 79.9–90.2% 50–88% 85%
# of Subjects 7 24 2 21 21 21 6 17

1 FSPEEG has been discontinued to be complemented and replaced by the larger EPILEPSIAE database; 2 8 of
24 had intra-cranial EEG recordings.

However, our study also has shortcomings. We evaluated our framework based on a small set of
intra-cranial measurements. Applicability of our framework to a much broader dataset still needs to
be validated. This may result in reiterating the design choices of our framework such as the selection
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of nonlinear time-domain features for classifier training, an adaptable threshold setting depending
on the dataset, and different choices of machine learning classifiers. In the dataset used in this study
little to no artefacts was present. Nonetheless, we evaluated the robustness of our framework using
noise-complexity, which, in reality, could be caused by artefacts. Naturally occurring artefacts are
much more random and might decrease the performance of our framework. The time-domain features
are selected based on prior studies that were used for seizure prediction. Although it works perfectly
in our dataset, it might not hold true for other datasets. A thorough evaluation with other datasets is
needed to overcome these problems.

In this regard, it is important to mention that obtaining the intra-cranial ECoG measurements is not
an easy task. An invasive surgical procedure is required to implant the electrode on the surface of the
brain. Although more and more pre-recorded intra-cranial datasets are becoming available, limitations
still exist in terms of poorly labelled data, lack of information about the method of measurements, and
details of the seizure under study. This renders most of the dataset directly unusable for evaluating
any seizure prediction system. Moreover, practical application of seizure prediction systems might
introduce another set of problems such as the electrode failure, the discrepancy in brain signals, etc.
The design choices must be reiterated by clinical evaluation to foresee these practical problems.

6. Conclusions

In this work, we presented a low-power, less-complex seizure prediction framework, which was
able to achieve almost 95% TPR in seizure prediction with only 20% of the labelled data. An SVM
classifier coupled with active learning heuristics is used as the core of the prediction framework.
We showed that a scalable expert-in-the-loop operation of life-critical medical devices is possible
through our framework. We used openly available intra-cranial ECoG dataset and compared a set of
temporal, spatial and a combination of temporal and spatial features to evaluate the performance of
seven different classifiers. We selected the best performing classifier with lowest time and memory
consumption and used active learning principles to improve the accuracy of the classification with
only 20% of the initial labelled data. Finally, a simple threshold-based prediction framework, which
leverages the expert knowledge through active learning principles, to improve the classification
accuracy is presented and compared with a random seizure predictor. With just 20% of the initial
labelled data, we were able to achieve a 95% accuracy in predicting the seizures. The active selection
method eliminates the random need of expert knowledge, thereby promising the scalability of our
framework. Although we did not evaluate this framework in a clinical setting, we ensured that clinical
reprehensibility is achieved through the different choices of data-segmentation, prediction horizon,
and feature selection during the development of our seizure prediction framework.
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The following abbreviations are used in this manuscript:

DBS Deep Brain Stimulators
WHO World Health Organization
BSN Body Sensor Network
IBSN Implantable Body Sensor Networks
MICS Medical Implant Communication Service
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IMD Implantable Medical Devices
EEG ElectroEncephaloGraph
ECG ElectroCardioGraph
ECoG ElectroCorticoGraph
AED Anti-Epileptic Drugs
ANN Artificial Neural Networks
SVM Support Vector Machines
SNR Signal-to-Noise Ratio
SOP Seizure Occurrence Period
SPH Seizure Prediction Horizon
SPA Seizure Prediction Algorithm
SDA Seizure Detection Algorithm
BGMM Bernoulli-Gaussian Mixture Model
E-M Expectation–Maximization
FPR False Positive Rate
FNR False Negative Rate
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