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Alzheimer’s disease (AD), a neurodegenerative disorder marked by accumulation of
extracellular amyloid-β (Aβ) plaques leads to progressive loss of memory and cognitive
function. Resting-state fMRI (RS-fMRI) studies have provided links between these two
observations in terms of disruption of default mode and task-positive resting-state
networks (RSNs). Important insights underlying these disruptions were recently obtained
by investigating dynamic fluctuations in RS-fMRI signals in old TG2576 mice (a mouse
model of amyloidosis) using a set of quasi-periodic patterns (QPP). QPPs represent
repeating spatiotemporal patterns of neural activity of predefined temporal length. In
this article, we used an alternative methodology of co-activation patterns (CAPs) that
represent instantaneous and transient brain configurations that are likely contributors
to the emergence of commonly observed RSNs and QPPs. We followed a recently
published approach for obtaining CAPs that divided all time frames, instead of those
corresponding to supra-threshold activations of a seed region as done traditionally, to
extract CAPs from RS-fMRI recordings in 10 TG2576 female mice and eight wild type
littermates at 18 months of age. Subsequently, we matched the CAPs from the two
groups using the Hungarian method and compared the temporal (duration, occurrence
rate) and the spatial (lateralization of significantly co-activated and co-deactivated voxels)
properties of matched CAPs. We found robust differences in the spatial components of
matched CAPs. Finally, we used supervised learning to train a classifier using either the
temporal or the spatial component of CAPs to distinguish the transgenic mice from
the WT. We found that while duration and occurrence rates of all CAPs performed
the classification with significantly higher accuracy than the chance-level, blood oxygen
level-dependent (BOLD) signals of significantly activated voxels from individual CAPs
turned out to be a significantly better predictive feature demonstrating a near-perfect
classification accuracy. Our results demonstrate resting-state co-activation patterns are
a promising candidate in the development of a diagnostic, and potentially, prognostic
RS-fMRI biomarker of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder that
causes progressive loss of learning abilities, memory, and overall
cognitive function. The characteristic features of the disease
are the accumulation of extracellular amyloid-β (Aβ) plaques
and intracellular neurofibrillary tangles. To understand how the
accumulation of plaques could contribute to the development
of AD symptoms, it is important to investigate changes in
neural activities especially at the network or whole-brain level.
Resting-state functional magnetic resonance imaging (RS-fMRI)
has been instrumental in uncovering such global network-level
changes across the whole-brain in several neurological and
neuropsychiatric disorders such as stroke (Carter et al., 2010;
Baldassarre et al., 2014; Siegel et al., 2016), coma (Chennu
et al., 2017; Di Perri et al., 2018), depression (Drysdale et al.,
2017). In the case of AD, the disruption of the default
mode and task-positive networks have been identified as
promising markers of the disease. Specifically, alterations in the
default-mode network (DMN) functional connectivity (FC) have
been correlated with increases in amyloid-β levels (Greicius et al.,
2004; Li and Wahlund, 2011).

Traditional analyses of RS-fMRI signals have involved the
calculation of static (seed-based or pairwise between regions
of interest) FC. FC estimates correlations of BOLD signals
of regions from the entire scanning period disregarding the
variations in FC during the scan. However, recent studies
(Hutchison et al., 2013; Hindriks et al., 2016; Deco and
Kringelbach, 2017) have shown that temporal fluctuations in
FC within the scan can inform on the interplay between
various brain states. Several methods have been proposed to
extract this dynamic information in the resting-state FC. The
most-straightforward one uses a sliding window approach. Here,
whole-brain FC is calculated in a time window of fixed duration
that is then moved over the entire scan to obtain a series
of FC values over the whole scan (Hutchison et al., 2013).
Test-statistics are then calculated using this FC time series and
compared against the null hypothesis of stationarity (Hindriks
et al., 2016). Another approach consists of a point-process
analysis (Liu and Duyn, 2013; Liu et al., 2018) in which fMRI
time frames where the signal of a given region of interest
(i.e., seed) crosses a specific percentile threshold, are clustered
to identify different co-activation patterns (CAPs). Voxel-wise
activation pattern averaged across these selected frames (typically
only 15% of the total) matches very closely with the seed-based
correlation maps obtained using all frames. CAPs represent
transient brain states that are believed to contribute to the
emergence of RSNs found in the static FC estimation (Liu
et al., 2018). Recently, Gutierrez-Barragan et al. (2019) used
a modified approach in which they clustered all time frames
from RS-fMRI scans in mice and found six robust CAPs in
different datasets.

In this article, we used the methodology of Gutierrez-
Barragan et al., to identify CAPs in a cohort of old (18-
months) TG2576 (mouse-model of amyloidosis) mice and their
age-matched control. In this cohort, Belloy et al. (2018) identified
changes in a set of recurring Spatio-temporal patterns of

neural activity of predefined temporal length called the quasi-
periodic patterns (QPPs). We compared the spatial and temporal
components of CAPs between the two groups. Subsequently, we
hypothesized that the CAP properties will accurately distinguish
the transgenic animals from healthy controls and argue that
it could be effective in the development of a biomarker for
Alzheimer’s disease.

MATERIALS AND METHODS

All the data analyzed in this manuscript were originally
acquired and published in an earlier manuscript (Belloy et al.,
2018). The acquisition and processing steps are included here
for completeness.

Ethical Statement
All procedures were performed in strict accordance with the
European Directive 2010/63/EU on the protection of animals
used for scientific purposes. The protocols were approved by
the Committee on Animal Care and Use at the University of
Antwerp, Belgium (permit number 2014-04), and all efforts were
made to minimize animal suffering.

Animals
The TG2576 mouse model of amyloidosis overexpresses the
human mutant form of amyloid precursor protein (APP), which
carries the Swedish mutation (KM670/671NL), controlled by
the hamster prion protein promoter (Hsiao et al., 1996). Aβ

plaque development starts at the age of 9–11 months (Hsiao
et al., 1996), while plaque burden increases markedly with age
(Kuo et al., 2000). The cohort used in this study consisted of
10 female TG2576 (henceforth referred to as TG) mice at the age
of 18 months and eight age-matched wild-types (WT) littermates.
RS-fMRI data were collected while the animals were under an
anesthesia protocol comprising 0.4% isoflurane, a bolus injection
of medetomidine (0.3 mg/kg), and a subcutaneous infusion of
medetomidine (0.6 mg/kg/h).

MRI Procedures and Functional Scan
Pre-processing
MRI scans were acquired on a 9.4 T Biospec system,
with a four-element receive-only phase array coil and a
volume resonator for transmission. Structural images were
acquired in three orthogonal directions, using Turbo Rapid
Imaging with Refocused echoes (RARE), for reproducible slice
positioning (repetition time 3,000 ms, effective echo time
33 ms, 16 slices of 0.4 mm). B0 field maps were acquired,
followed by local shimming. RS-fMRI scans were acquired with
a gradient-echo echo-planar imaging (EPI) sequence [field of
view (20 × 20) mm2, matrix dimensions (128 × 64), three slices
of 0.4 mm, flip angle 55◦, bandwidth 400 kHz, repetition time
500 ms, echo time 16 ms, 2,400 repetitions]. High temporal
resolution was required to investigate temporal fluctuations in
the data. Due to resultant technical limitations, the number of
slices was restricted to three. Slices were positioned 0.1 mm
caudally of bregma, according to the Paxinos and Franklin
stereotaxic mouse brain atlas (Franklin and Paxinos, 2013).
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Motion parameters for each functional scan were obtained
using six rigid body parameters. Images were realigned and
normalized to a user-defined reference subject, followed by
smoothing (σ = 2 pixels). During image normalization,
intensities of outer slices are partially lost. Analyses were
thus restricted to the single-center slice (MATLAB2017b).
Motion vectors were then regressed out of the image-series.
These procedures were performed using Statistical Parametric
Mapping (SPM12) software (Wellcome Department of Cognitive
Neurology, London, UK). Images were then filtered using a
0.01–0.2 Hz FIR band-pass filter, quadratic detrended and
normalized to unit variance. Transient time points at the start
and end of the image-series were removed before and after
filtering. For the detection of CAPs, a brain mask was employed
to exclude the contribution of the ventricles. Global signal
regression was not carried out.

Extraction of CAPs
As mentioned in the introduction, we followed the approach
by Gutierrez-Barragan et al. (2019) to obtain the co-activation
patterns in each group (WT and TG). Thus, we first concatenated
the filtered images from each animal in the group to form a
group-level image-series. We then transformed this image-series
into N, m-dimensional vectors where N is the total number
of frames and m is the total number of voxels. We then
clustered all time-frames using the K-means++ algorithm by
assessing their spatial dissimilarity with each other in terms of
correlation distance (1 – Pearson’s correlation) between every
pair of m-dimensional vectors. The algorithm partitions the
vector set into k clusters such that the sum of within cluster-
distance, D =

∑k
k = 1

∑
j∈k d

2 (zj, ck), is minimized. Here, K is
the number of clusters and d denotes the correlation distance
between the centroid ck of the kth cluster and the jth time frame
belonging to the kth cluster. The k-means++ algorithm provides
an optimal choice of initial cluster centroids as seeds so that
distant centroids have a greater chance of getting selected as
initial centroids. We varied K from 2 to 20 clusters and in each
case, we calculated the across-subject variance explained by the
clustering solution as follows (Goutte et al., 1999).

• Within cluster variance, Vw =
1
N
∑k

k = 1
∑

j∈k d
2 (zj, ck)

where N is the total number of observations (time frames);
K is the number of clusters and d denotes the correlation
distance between the centroid ck of the kth cluster and jth
observation belonging to the kth cluster.
• Between cluster variance, VB =

1
N
∑k

k = 1 nkd
2(ck, c);

c =
∑k

k = 1
nk
N ck ; where d is the correlation distance

between the global centroid c and the cluster centroid ck and
nk is the number of observations (time frames) in the kth
cluster.
• Explained variance = VB

VW+VB
.

We then plotted the explained variance as a function of partitions
of the image-series with an increasing number of clusters (in
the range from 2 to 20) and identified the minimum number at
which the variance reached a saturation level (elbow point) as the
optimal number of clusters. We confirmed the elbow point by
making sure that the fractional gain in the explained variance for

this partition with k clusters when compared to the partition with
k-1 clusters was less than 10% (Gutierrez-Barragan et al., 2019).
Voxel-wise BOLD signal intensities were averaged across all time
frames within each cluster to produce group-level CAPs. We
then performed a one-sample two-tailed T-test to test the mean
activation, across the occurrences of each CAP, of each voxel
against a null hypothesis of zero activation and corrected for
multiple comparisons using the Bonferroni correction (p< 0.01).
The voxels that showed significant activation or deactivation
constituted the one-sample T-statistic maps for each CAP. We
then calculated the temporal and spatial properties of CAPs for
each subject within each group:

1. Occurrence fraction: the ratio, for each CAP, of the number of
time frames labeled with its id to the total number of frames
within a subject. This is a subject-level measure.

2. Duration: number of consecutive frames corresponding to a
CAP, averaged across all occurrences of the CAP within a
subject; also a subject-level measure.

3. Laterality index: difference in the average value of T-statistic
per voxel, between left and right hemispheres, normalized by
the average T-statistic per voxel in the entire brain. Here the
T-statistic for each voxel is obtained by comparing its mean
BOLD signal intensity, across all time frames within each
subject belonging to the CAP, with zero using a one-sample
T-test. Only voxels whose activations (mean BOLD signal
intensities) are significantly different from zero (p < 0.01;
one sample T-test, Bonferroni corrected) were considered.
The laterality index varies between −1 (completely right-
lateralized pattern) and 1 (completely left-lateralized pattern)
with 0 indicating a bilateral pattern with no preference
for any hemisphere. We calculated two separate values of
laterality for co-activation (T > 0) and co-deactivations
(T < 0), respectively.

CAPs extracted from the image-series of both groups were
spatially matched using the Hungarian method (Kuhn, 1955)
with 1 – Pearson’s correlation taken as the distance metric.
The strength of spatial similarity between every pair of matched
CAPs was compared against a null hypothesis that it arises by
chance. Thus, we shuffled randomly the CAP labels of all frames
(thereby preserving the cluster size) from each group’s image-
series and then obtained random surrogate CAPs by averaging
across frames with the same CAP label. We then calculated
the Pearson’s correlation between surrogate CAPs from each
group while maintaining the matching found in the original
datasets. We repeated this procedure 10,000 times and built
a surrogate distribution of correlation values and identified a
threshold correlation value with p = 10E-5. All matched CAP
pairs with canonical correlations falling below this value were not
considered for further analyses/comparisons.

Statistical Comparisons
We compared for every pair of matched CAPs the medians,
across subjects, of the properties mentioned above using
a two-sample rank-sum test, corrected for the number of
comparisons using the Benjamini and Hochberg (1995)
correction for controlling the false discovery rate (FDR). At first,
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we made these comparisons for every pair of matched CAPs
(with Pearson’s correlation higher than the threshold from a null
distribution of correlation values arising by chance) extracted
from a specific partition of image-series with a fixed number of
clusters. Subsequently, we compared the matched CAPs from all
partitions with the number of clusters ranging between 2 and 20.

Extraction of CAPs From a Combined
Image-Series
We also performed the CAP analysis on a combined image-
series formed from a concatenation of both group-level image-
series to avoid the necessity of matching. We compared the mean
temporal and spatial properties between the groups for each
combined CAP.

Classification
Temporal and spatial components of CAPs were used as features
in a supervised learning approach to distinguish TG animals
from WT. We used a multinomial logistic regression (MLR)
as a classifier and trained it on CAP features from 80% of the
subjects (n = 14) and tested its accuracy on the remaining 20%
(n = 4). The regularization parameter in the MLR classifier
was set to 10 to control for over-fitting. We repeated the
accuracy calculation on 100 trials of the randomly sampled
train and validation sets and compared the mean accuracy with
chance-level accuracy, averaged across 100 surrogate trials in
each of which the identities of the subjects were shuffled while
maintaining the size of each group (eight WT and 10 TG
animals). Mean chance-level accuracy was expected to be ∼45%
which is the ratio of the size of the smallest class (WT) to
the total number of subjects. We also computed the confusion
matrices that give the true and false-positive rates for each
class and hence inform about the sensitivity and specificity of
the classifier. The confusion matrices were obtained using the
true and predicted labels pooled from validation sets of all
100 trials.

We used the features of only those CAPs that showed a
Pearson’s correlation of 0.5 and above between the two groups
for training the MLR classifier. From all such CAPs within every
partition, we pooled their: (a) duration and occurrence rate; and
(b) BOLD intensities of voxels whose activations were found to be
significantly different from zero in either the WT or the TG CAP.
Each feature was z-scored across subjects so that their relative
rankings were used for classification.

As CAPs were obtained using all subjects, information
on validation set subjects could bias the classifier to predict
them more accurately than otherwise possible. To avoid this
bias, we extracted the group-level WT and TG CAPs only
from the training set and then spatially correlated them
with the image-series for every subject. Local peaks of the
correlation time series were identified and voxel-wise averaged
to use as initial centroids for the K-means clustering of
all frames in the scan. The frames belonging to the same
cluster were voxel-wise averaged to construct either a WT-like
CAP or a TG-like CAP for every subject. Thus for each
subject, we obtained, for every group-level WT and TG CAP,
two sets of features belonging to a WT-like CAP and a

TG-like CAP. This was necessary to mimic actual situations
in which the identity of a new test subject would not be
known. We then trained the classifier using the WT-like and
TG-like CAPs’ spatial and temporal features of the training
set and tested its accuracy on the validation set. The whole
procedure was repeated for 50 trials and a comparison of
mean accuracy, across trials, with chance-level accuracy and
calculation of confusion matrices were done as described in the
paragraph above.

RESULTS

Identification of Group-Level CAPs
We began by partitioning the concatenated image-series of each
group with the number of clusters ranging between 2 and
20. Following Gutierrez-Barragan et al. (2019), we calculated
the across-subject variance explained by each partition and
calculated the elbow point. As Figure 1A shows, the elbow
point turned out to be a partition with seven clusters as this
was the first partition at which the fractional gain in explained
variance fell below 10% for both groups (Figure 1B). We then
took voxel-wise averages of BOLD signal intensities across all
time frames belonging to each of the seven clusters to obtain the
group-level WT and TG CAPs. Figure 2 shows the T-statistic
values for significantly (p < 1E-5, one-sample T-test, Bonferroni
corrected) co-activated (T > 0) and co-deactivated (T < 0) voxels
for each of the seven CAPs matched using the Hungarian method
between groups. CAPs were ordered in the descending order of
spatial correlation between WT and TG groups.

CAP 1 was characterized by co-deactivations of cingulate
(CG) and motor (MT) cortices and activations of dorsal
and ventral caudate-putamen (Cpu) of the striatum. CAP
2 on the other hand was characterized by co-activations of
mainly the CG and MT cortices along with co-deactivations of
somatosensory (SS) cortices. Pearson’s correlation between CAP
1 and 2 was−0.36. CAPs 3 and 4 were similarly an anti-correlated
pair of patterns (r = −0.4) characterized by simultaneous
co-activations and co- deactivations, respectively, of CG, MT
as well as the CPu that were anti-correlated with activations
of somatosensory cortex. CAPs 5–7 displayed less commonly
observed physiological configurations. Thus these CAPs (CAPs
1 and 2, in particular) featured characteristic regions—the CG
and SS, respectively, that typically constitute the mouse DM-like
and lateral-cortical RSNs (Liska et al., 2015; Gozzi and Schwarz,
2016), respectively.

Comparisons of Properties of Matched
CAPs
One-sample T-maps of CAPs in Figure 2 showed that while the
matched CAPs had a high spatial similarity, the co-activations
and co deactivations were not necessarily symmetrical across
hemispheres. Therefore, we used lateralization of co-activation
and co-deactivation of voxels as a quantifiable metric to
assess the spatial dissimilarity of CAPs between groups.
Figure 3 shows the comparison of temporal and spatial
properties of matched CAPs between the WT and TG.
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FIGURE 1 | (A) Across-subject variance explained as a function of the number of clusters in the partition of group-level image-series without global signal
regression. The elbow point here beyond which the explained variance saturates is found to be at the partition with seven clusters. (B) The fraction of gain in the
explained variance as the number of clusters in the partition increase from k to k + 1, as a function of partitions. The elbow point of seven clusters is the first
instance for both groups at which the fractional gain in explained variance falls below 10%.

FIGURE 2 | One-sample T-test maps showing significantly (p < 1E-5; Bonferroni corrected) co-activated (T > 0) and co-deactivated (T < 0) voxels for seven WT
co-activation patterns (CAPs) and their corresponding matched patterns in the TG. CAPs are ordered in the descending order of spatial similarity between matched
CAPs expressed in terms of Pearson’s correlation mentioned in the title of each pattern. CG, Cingulate cortex; CPu, Caudate Putamen; VP, Ventral Pallidum; SS,
Somatosensory cortex; MC, Motor cortex.

Only the first CAP displayed a higher median occurrence
in the TG as compared to WT while the duration and
occurrence rates of all other CAPs did not show any significant
difference. CAPs 2, 3, 5, and 6 showed a significantly altered
lateralization of average positive activation per voxel between
the groups.

Next, we wondered whether specific CAPs occur during
the occurrences of QPPs which were identified in the
earlier manuscript on this dataset (Belloy et al., 2018). QPPs
represent recurring neural activity patterns of a fixed temporal
length. Belloy et al. (2018) identified the most-frequent QPPs
of 3-s (6 TR) duration occurring in the WT and TG
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FIGURE 3 | Comparison of median occurrence rate (A) duration (B) hemispheric lateralization of average positive activation per voxel (C) and hemispheric
lateralization of average negative activation per voxel (D) between WT and TG for each of the seven CAPs extracted from group-level image-series. The black
asterisk indicates a significant difference [p < 0.05, two-sample rank-sum test; False Discovery Rate (FDR) corrected for multiple comparisons with
Benjamini-Hochberg correction]. Most significant differences are found for the lateralization of co-activation (T > 0) in the case of four out of seven CAPs.

animals. They showed that these highest occurring, short (3-s)
QPPs extracted from the WT and TG groups’ image-series
were not identical and occurred significantly less frequently
when projected onto the image-series of the other group.
Therefore, we calculated, in each subject, the overlap between
the time-frames corresponding to the occurrences of these

group-specific QPPs and those corresponding to each of
the seven CAPs and normalized it by the total number
of QPP frames. This yielded a measure of the relative
incidence of each CAP, limited to the QPP occurrences, in
each subject. While the TG-specific QPP saw a dominant
representation of CAP 1 in its occurrences in both WT
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FIGURE 4 | Subject-level occurrence percentage of each of the seven WT CAPs (A,C) and seven TG CAPs (B,D) during the occurrences of representative (highest
occurring) WT-specific and TG-specific QPPs in their image-series (A,B, respectively) and when projected to the other group image-series (C,D, respectively). In
panels (A–D), the objective is to identify the most representative CAP(s) for each QPP, hence the occurrences of each CAP during QPP occurrences are normalized
by the total number of time frames corresponding to the QPP occurrence in each subject. Thus the percentages for all seven CAPs in (A–D) add up to 100%. While
CAP 1 is represented significantly more than other CAPs in the occurrences of TG-specific QPP in both groups’ image-series, WT-specific QPP has prominent
representation from CAPs 2 and 3 in both groups. (E,F) The comparison of overall occurrences (normalized by the total number of frames in each subject), of the
most frequent CAP in the occurrence of WT and TG QPPs in the WT image-series (E) and in the TG image-series. (F) Here, the occurrences are normalized by the
total number of frames in the scan of each subject since the objective is to compare the overall frequency of occurrence and not the relative representation, vis-à-vis
other CAPs, of the representative CAP. In the case of (E), we averaged the occurrence of CAPs 2 and 3 for each subject. As QPP WT (TG) occurs significantly more
often than QPP TG (WT) in the WT (TG) image-series, the corresponding CAP occurrence, limited to the QPP occurrences, also demonstrates a significant difference
(p < 0.05; unpaired T-test, marked by a black asterisk).

and TG group image-series (Figures 4B,C), WT-specific QPP
occurrences in both groups overlapped with occurrences of
CAPs 2 and 3, significantly more than those of the rest of
the CAPs, and, without a significant difference between them
(Figures 4A,D). As both the group-specific QPPs occurred less
frequently in the other group’s image-series, overall occurrence
percentages of the CAPs with the highest overlap, normalized
by the total time frames in each subject, replicated this
finding (Figures 4E,F).

Next, we compared the properties of matched CAPs
between the two groups in all partitions with the number
of clusters ranging between 2 and 20. Figure 5 plots the
p-values of comparison of temporal (Figures 5A,B) and
spatial (Figures 5C,D) properties. While very few CAPs,
across partitions, showed a significant difference in either the
duration or the occurrence, 57 and 52 CAPs across multiple
partitions showed a significant between-group difference in the
lateralization of the average positive and negative activation
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FIGURE 5 | P-values of comparison of median duration (A) occurrence rate (B) laterality of average positive activation per voxel (C) and, laterality of average
negative activation per voxel (D) between WT and TG groups for each CAP in each partition with the number of clusters ranging from 2 to 20. Here, CAPs are
extracted from the group-level image-series. Each black marker represents a CAP. The red dashed line represents a p-value of 0.05, uncorrected. The green marker
represents Bonferroni corrected threshold p-value for each partition (0.05/# of clusters within the partition). The blue dashed line represents the Bonferroni corrected
threshold p-value across partitions (0.05/# of clusters across all partitions) and corresponds to the case when all hypotheses are independent across models. Here,
since the same image-series is partitioned into different numbers of clusters, spatially similar CAPs can be found, and hence the hypotheses are not necessarily
independent, across partitions. Therefore, we corrected for the # of comparisons within each partition in selecting CAPs for which WT-TG difference of median values
was statistically significant (all black markers close to or below green circles) and then grouped them, based on spatial similarity, into prototypical patterns (Figure 6)
that show robust WT-TG difference across multiple partitions.

per voxel respectively (p < 0.05, FDR corrected for the
number of comparisons within each partition). We corrected for
multiple comparisons within each partition but not across all
partitions because the hypotheses tested across partitions are not
independent. Hence, we looked for spatially similar prototypical
patterns across different partitions that showed significant inter-
group differences in hemispheric lateralizations. We identified
two prototype patterns with spatially similar representations
in seven different partitions that showed significantly higher
right-hemisphere lateralization of positively activated voxels in
the TG group (Figure 6). CAP 3 of 7 (Figure 2C) belonged
to the first prototype pattern (Figure 6A) while CAP 2 of
7 belonged to the second group (Figures 2B, 6B). Similarly,
two prototype patterns with spatially similar representations
in six different partitions displayed significantly higher right-
hemisphere lateralization of co-deactivated (T < 0) voxels
in the TG animals in comparison with WT (Figure 7).

The first prototype pattern (Figure 7A) was highly similar
to CAP 3 of 7 (Figure 2C) while the second pattern
closely matched CAP 1 of 7 showing co-deactivation of
DM-like network.

Finally, we tested an alternative strategy to extract
CAPs. Instead of extracting CAPs separately for each
group’s image-series, we concatenated both group-level
image-series into a single one and applied the clustering
algorithm to it. The rationale behind this data-driven
approach was to identify CAPs without specification of
group identity. This approach didn’t require any matching
as each CAP would have representations in each group.
After extracting the CAPs in this manner we compared their
properties between groups as before and found that both
the temporal and the spatial properties of most CAPs didn’t
show any significant difference (Figure 8). The failure of
this approach to identify any inter-group differences can
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FIGURE 6 | One-sample T-test map of an example CAP for two patterns (A,C, respectively) with representations in seven different partitions that show significantly
higher right-lateralization (B,D, respectively) of significantly (p < 1E-5; Bonferroni corrected; marked by a black asterisk) co-activated (T > 0) voxels.

be attributed to the low statistical power in our dataset
and to the fact that the clustering puts relatively more
emphasis on capturing the inter-group variance than the
within-group variance.

Classification Using CAP Metrics
Finally, we turned our attention to investigating the predictive
power of CAP metrics to distinguish TG animals from WT. As
mentioned in the methods, at first, we considered the properties
of training subjects’ CAPs, extracted from the image-series of all
subjects, as features to train the classifier. Figures 9A,B shows the
mean classification accuracy with temporal and spatial properties
of CAPs, respectively and their comparisons with mean chance-
level accuracy as a function of partitions of the image-series.
Occurrence rates and durations of strongly (r > 0.5) spatially
matched CAPs performed better than the chance-level only in
a few partitions. On the other hand, the spatial component
performed significantly better than the chance level for all
partitions with an average accuracy of 90% in all cases barring
two partitions. Figures 9C,D shows the confusion matrices for
each of the 19 partitions. We find that the significantly greater
than the chance-level accuracy observed with the temporal
features of matched CAPs in eight partitions can be attributed to
primarily the WT class being better predicted. In these partitions,
the prediction scores for the transgenic animals is typically lower
than that for WT. On the other hand, the high classification

accuracy of the spatial component of matched CAPs is due to
excellent predictions of both classes, albeit, it is the TG that is
predicted perfectly while some of the WT subjects are incorrectly
predicted as TG. This observation could be explained by the
fact that these animals are very old and hence, the some of WT
animals could show patterns that are spatially very similar to the
TG subjects.

The fact that spatial features of CAPs predicted the class
identity of test-set subjects well made us wonder whether
it could be attributed to non-dynamic characteristics of the
disease. Therefore, we tested whether the voxel-wise variance
of BOLD signals could perform an accurate classification. The
images from each subject that we used for CAP analysis
were z-scored voxelwise (see ‘‘Materials and Methods’’ section);
hence each voxel had unit variance. Therefore, we included,
as features, the variance of all voxels after motion correction,
smoothing, and filtering of subject images but without doing
the z-score normalization. As Supplementary Figure 1 shows,
the classification accuracy was very low and not significantly
different than the chance-level. Another possible confound could
be anatomical changes due to the disease. Unfortunately, we did
not have appropriate structural images to identify anatomical
features for this dataset which could be a potential confound in
the observation that spatial features of CAPs predict the class-
identify well and whose predictive power should be investigated
in future studies.

Frontiers in Neural Circuits | www.frontiersin.org 9 January 2021 | Volume 14 | Article 612529

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Adhikari et al. CAPs in Alzheimer’s Disease

FIGURE 7 | One-sample T-test map of an example CAP for two patterns (A,C, respectively) with representations in seven different partitions that show significantly
higher right-lateralization (B,D, respectively) of significantly (p < 1E-5; Bonferroni corrected; marked by a black asterisk) co deactivated (T < 0) voxels.

As described in the ‘‘Materials and Methods’’ section, the fact
that all subjects’ image-series were used in the extraction of the
CAPs could influence the classifier to predict the validation set
subjects more accurately than in the case when only training
set subjects’ images were concatenated to extract the CAPs.
Therefore, we extracted the WT and TG group-level CAPs
from the image-series of only the training set subjects and
then, for every group-level CAP, obtained the WT-like and
TG-like CAP for each subject (see ‘‘Materials and Methods’’
for details). Taking the spatial and temporal components of
WT-like and TG-like CAPs as features we trained the classifier
and tested it on the validation set. As Figure 10A shows, the
classification accuracy with temporal features of WT-like and
TG-like CAPs was close to the chance level for all partitions.
Only in six partitions, the mean accuracy was significantly
higher than the chance-level while never crossing a 60%
mark. In contrast, the prediction accuracy of spatial features
was near 100% in the case of all partitions except the first
two (Figure 10B).

DISCUSSION

In this article, we investigated the spatial and temporal properties
of resting-state co-activation patterns extracted in a mouse
model of Alzheimer’s disease at a very old age. We found

very few inter-group differences in the temporal component of
CAPs. More robust differences were found in the hemispheric
lateralization of co-activations and co-deactivations of brain
regions in multiple CAPs. Typically, both the co-activations
and co-deactivations were significantly more right-lateralized
in the diseased animals as compared to the healthy ones.
These differences, especially in the spatial features of CAPs,
suggested that they could serve as accurate predictors of
the disease. We, therefore, tested the predictive ability of
both the spatial and temporal features of CAPs using a
supervised learning approach. The prediction accuracy of
temporal features was near the chance level while the spatial
features distinguished the diseased animals from healthy control
with near perfection.

Methodological Considerations
CAPs were obtained using a recently developed approach
(Gutierrez-Barragan et al., 2019) in which all time-frames, as
opposed to only those corresponding to the supra-threshold
BOLD signal in a seed region, are clustered in each group
separately, followed by identifying the optimal number of clusters
at which the across-subject variance saturates. In our case, the
identification of elbow point in the plot of explained variance
vs. the number of clusters was sub-optimal as the variance
increased monotonically with the number of clusters and the
fraction of variance gain did not drop significantly after a specific
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FIGURE 8 | Each panel shows the p-values of comparison of median duration (A) occurrence rate (B) laterality of average positive activation per voxel (C) and,
laterality of average negative activation per voxel (D) between WT and TG groups for each CAP in each partition with the number of clusters ranging from 2 to 20.
Thus each black marker represents a CAP. The red dashed line represents a p-value of 0.05, uncorrected. The green marker represents Bonferroni corrected
threshold p-value for each partition. The blue dashed line represents the Bonferroni corrected threshold p-value across partitions. Here, CAPs are extracted from a
single image-series formed by concatenating both group-level image-series. Unlike Figure 5, here very few CAPs showed significant WT-TG difference after
correcting for multiple comparisons within the partition.

partition as was the case in the article by Gutierrez-Barragan
et al. (2019). This could be due to lower statistical power in
our cohort (eight WT and 10 TG animals). We, therefore,
continued identification of CAPs for all partitions with several
clusters ranging between 2 and 20 and compared the properties
of only those CAPs that showed significantly higher spatial
similarity between the WT and the TG group than that arising
by chance.

We also extracted CAPs in the same range of partitions
from a combined image-series formed by concatenating images
from animals of both groups. Here, we did not find significant
differences in either the temporal or spatial features of CAPs.
This finding could be attributed mainly to the nature of
the clustering algorithm; K-means appears to identify clusters
that are similar across both groups thereby putting more
emphasis on explaining across-group-variance than a within-
group variance. Low statistical power in each group could also
explain this observation as insufficient variability within-group

would mean the clustering would fail to find a group-
specific pattern as a separate cluster and combine it instead
with a larger cluster of similar observations across groups. It
would be interesting to test, in a cohort of sufficiently large
datasets, if both group-level and combined approaches yield
similar results.

To do the classification we used, as a classifier, MLR with
regularization. MLR is an efficient classifier for categorical
variables as was the case in this study (Pallarés et al., 2018).
At first, we performed the classification by using just the
representations of group-level CAPs, obtained by analyzing data
from all subjects, in each subject. However, to mimic a more
clinical setting in which only the training data would be available
to identify group-level CAPs and the purpose of the marker
would be to diagnose a new participant, we used only the training
set animals’ data to extract the group-level WT and TG CAPs.
Subsequently, we obtained the subject-level CAPs in training as
well as the test-set subjects by seeding the clustering algorithm
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FIGURE 9 | (A,B) Mean accuracy of classification (blue) and mean chance-level accuracy (gray) as a function of partitions with the number of clusters ranging
between 2 and 20. Multinomial Logistic Regression (MLR) classifier is trained using duration and occurrence rates of matched CAPs (with Pearson’s correlation
higher than 0.5; A), and, blood oxygen level-dependent (BOLD) signal intensities of voxels with activations significantly different from zero found in the group-level WT
or TG CAP (B). The red asterisk indicates significantly higher mean accuracy than the chance level, FDR corrected for 19 comparisons using Benjamini–Hochberg
correction. (C,D) Confusion matrices showing the scores of prediction of validation set labels of each group, pooled across 100 validations sets, for each of the
19 partitions with temporal (C) and spatial (D) aspects of CAPs.

FIGURE 10 | (A,B) Mean accuracy of classification (blue) and mean chance-level accuracy (gray) as a function of partitions with the number of clusters ranging from
2 to 20. MLR classifier is trained using duration and occurrence rates of WT-like and TG-like CAPs (A) and, their BOLD signal intensities of voxels with activations
significantly different from zero found in the group-level WT or TG CAP (B). The red asterisk indicates significantly higher mean accuracy than the chance level, FDR
corrected for 19 comparisons using Benjamini-Hochberg correction. Here the group-level WT and TG CAPs are extracted from group-level image-series formed from
only the training set of subjects.
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with initial centroids formed by averaging over local peaks of
correlation of group-level CAPs in the subject’s image-series.

CAPs Topology
Out of the seven CAPs, we found two pairs of spatially
anti-correlated CAPs. The first pair showed co-activation and
co-deactivation of cingulate and motor cortices that were
anti-correlated with activations and deactivations of the striatum
and somatosensory cortices. Both these pairs of CAPs were
similar to the first four CAPs obtained by Gutierrez-Barragan
et al. (2019) although the extent of significantly co-activated
voxels was much less. This observation could be attributed
to the lower statistical power in our cohort. The cingulate
cortex is a prominent region in the mouse DM-like network
while somatosensory cortices belong to the LCN (Gozzi and
Schwarz, 2016). The explanation for co-activation of motor
cortices with DM-like network, also found in the QPPs extracted
in this cohort (Belloy et al., 2018), could lie in the age of
the animals as human studies have shown that resting-state
network segregation is reduced with aging (Chan et al., 2014;
Vidal-Piñeiro et al., 2014).

Resting-State Markers of Alzheimer’s
Disease
Human studies of the resting-state in patients with Alzheimer’s
disease have mostly focused on static FC analyses (Badhwar
et al., 2017). Altered DMN FC has been the most consistent
finding in these studies (Mevel et al., 2011). Since regions
constituting the DMN (posterior cingulate cortex, in particular)
are also the targets of AD in terms of deposits of amyloid-beta
plaques, alterations in RSN-FC have been shown to correlate with
these deposits especially in patients with a high amyloid burden
(Sperling et al., 2009; Myers et al., 2014; Koch et al., 2015). These
changes in the DMN-FC of the animal cohort used in our study
were observed and confirmed in the previous work by Belloy et al.
(2018). Going beyond the static FC, Belloy et al. (2018) showed
that short (3 s), Spatio-temporal patterns of recurring neural
activity called the quasi-periodic patterns (QPPs) contributed
to the FC changes. They also found that group-specific QPPs
occurred less frequently in the other group’s image-series and
that the dominant QPPs from each group were anti-correlated
to each other. We investigated the overlap between occurrences
of the seven CAPs, found to explain a saturation-level across-
subject variance, and those of group-specific QPPs. We showed
that the WT-specific QPP had dominant representation from
two CAPs with one of them (CAP 2) showing co-activation
of DM-like network (Figures 4A,D). On the other hand, only
CAP 1, displaying co-deactivation of the DM-like network
constituted the TG-specific QPP (Figures 4B,C). When limited
to the occurrences of these group-specific QPPs, the occurrences
of their constituent CAPs showed reduced occurrence in the
other group’s image-series thereby replicating the results from
the study by Belloy et al. However, QPPs are transient brain
states of fixed temporal length whereas there is no apriori
restriction on the duration of a CAP. Therefore, while its
incidence in specific transient brain states like the QPPs

may, a CAP’s overall occurrence may not show a significant
inter-group difference.

A recent study (Ma et al., 2020) investigated co-activation
patterns in healthy elderly participants, patients with mild
cognitive injury (MCI), and AD patients and found that
average dwell time in the DMN-like CAP showed a decreasing
trend in AD. Further, this study considered a combined
image-series with concatenated data from subjects belonging
to all three groups they consider. In contrast, we used the
approach of Gutierrez-Barragan et al. and performed separate
analyses at the level of each group for the most part. We
found robust differences in the spatial, rather than temporal,
component of CAPs in terms of hemispheric lateralization of
co-activation and co-deactivation. We found significantly higher
right-lateralization in the TG animals for both co-activated
as well as co-deactivated voxels. In humans, several resting-
state networks show lateralizations that depend on age and
gender (Agcaoglu et al., 2015). Significant reduction in the
lateralization of the DMN has recently been reported for groups
of amyloid-beta positive patients of MCI or dementia when
compared with a group of amyloid-beta negative participants
with no cognitive impairment (Banks et al., 2018). In mice, a
strong bilateral organization of resting-state networks, found
using independent component analysis, has been reported
(Grandjean et al., 2020). Our finding in WT mice that
shows mostly bilateral CAPs is in line with this observation.
On the other hand, in mouse models of autism spectrum
disorder, brain lateralization, especially in the striatum, has been
reported using MRI and immunohistochemistry (Grabrucker
et al., 2018). Therefore, the right-lateralization of prominent
CAPs in TG mice is an interesting finding that needs to be
further investigated.

Potential of CAPs in the Development of an
RS-fMRI Biomarker
Spatial features of CAPs, although similar at a group-level, were
sufficiently different at the subject-level as evidenced by inter-
group differences in the hemispheric lateralization of activations.
These differences were robust enough to make CAPs distinguish
the transgenic mice at this late manifest stage from the wild-type
mice with a high degree of accuracy. As mentioned before, we
used two strategies with the latter being more appropriate for
a clinical setting in which the classifier could be trained using
CAPs extracted out of only the training dataset to diagnose new
‘‘un-seen’’ participants. We found that the spatial features of
CAPs predicted the identity of test-set subjects perfectly with
above 99% accuracy. However, we underscore two important
limitations of our study that limit the interpretative value as
well as the significance of this finding. First, our study was
limited to the analysis of resting-state fMRI data. To establish
CAPs as robust biomarkers of AD, measures of behavioral
symptoms as well as histopathological changes will need to
be correlated with CAP-based changes as well as predicted
by CAPs. Second, this was a cross-sectional study at a late
stage of the disease. Both pathological, as well as diagnostic
relevance of these RS-fMRI markers, would be more impactful
if they were found to be predictive at an early stage of the
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disease before the diffuse deposition of amyloid-beta plaques.
A longitudinal investigation would therefore be an important
next step to understand both the changes in the topology and
the temporal features of CAPs with the progression of the
disease as well as to assess their suitability in the development
of a biomarker. Notwithstanding these important limitations,
the high levels of classification accuracy we obtained suggest
that CAPs could also predict more complex scenarios such as
behavioral deficits of patients at different stages or outcomes
of treatments. Therefore, our findings indicate resting-state
CAPs to be promising candidates in the development of an
fMRI-based biomarker for Alzheimer’s disease as well as other
neurodegenerative diseases.
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