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ABSTRACT
Model organisms with compact genomes, such as yeast and
Caenorhabditis elegans, are particularly useful for understanding
organism growth and life/cell cycle. Organism morphology is a critical
parameter to measure in monitoring growth and stage in the life cycle.
However, manual measurements are both time consuming and
potentially inaccurate, due to variations among users and user
fatigue. In this paper we present an automated method to segment
bright-field images of fission yeast, budding yeast, and C. elegans
roundworm, reporting a wide range of morphometric parameters, such
as length, width, eccentricity, and others. Comparisons between
automated and manual methods on fission yeast reveal good
correlation in size values, with the 95% confidence interval lying
between−0.8 and +0.6 μm in cell length, similar to the 95% confidence
interval between twomanual users. In a head-to-head comparisonwith
other published algorithms on multiple datasets, our method achieves
more accurate and robust results with substantially less computation
time. We demonstrate the method’s versatility on several model
organisms, and demonstrate its utility through automated analysis of
changes in fission yeast growth due to single kinase deletions. The
algorithm has additionally been implemented as a stand-alone
executable program to aid dissemination to other researchers.

KEY WORDS: Fission yeast, Cell counting, Image segmentation,
Morphology analysis

INTRODUCTION
Single-celled organisms at different cell-cycle stages display
characteristic cell size and shape, and thus the morphology of the
single-celled organisms is instrumental in determining the growth
status of the cells. Similarly, the characteristic body plan of
multicellular organisms reflects well the developmental stages of
the organisms. For example, the Fission yeast Schizosaccharomyces
pombe, a rod-shaped unicellular organism with a rigid cell wall,
grows by tip extension and divides at a defined length of ∼14 µm
(Chang and Martin, 2009). Intriguingly, mutant yeast cells bearing
defective genes relevant to the cell cycle, cell polarity, the
cytoskeleton and mitochondria often exhibit abnormal cell shapes:

small, long, bent, and rounded, among others (Hayles et al., 2013).
Thus, morphological measurements of fission yeast are a routine task
in fission yeast studies. However, the shape of the cell primarily relies
on inaccurate and time-consuming manual measurements. As studies
increasingly evaluate large numbers of mutants, with each mutant
requiring morphological measurements of 100s or 1000s of
individual cells the need for a robust and automated algorithm for
cell counting and morphological measurement is urgent. Budding
yeasts and other model organisms such as Caenorhabditis elegans
are similarly intensively studied thanks to their well understood
genomes with sizes tractable for pan-genomic studies.

Automated algorithms for cell segmentation abound in the
literature. In the past several years, several groups have published
automated algorithms applied to budding yeast or other cells. Zhou
et al. analyzed cell growth phase in HeLa cells through adaptive
thresholding, morphological filtering, and a watershed
segmentation process that involves merging over-segmented cell
nuclei (Zhou et al., 2009). However, this method is primarily
focused on fluorescent cell nuclei images, where, due to the
separation between nuclei of neighboring cells, the segmentation
task is relatively straightforward. Alanazi et al. demonstrated a
simple maximum entropy-based thresholding followed by a
watershed segmentation step that effectively segmented bacterial
cells in images acquired by a quantitative phase microscope (QPM)
(Alanazi et al., 2017). However, while the algorithm is simple, with
a nearly 100% success rate, its performance depends critically on
the flat background and minimal halo produced by the specialized
QPM system. Van Valen et al. recently demonstrated the robust and
adaptable use of convolutional neural networks for cell
segmentation problems (Van Valen et al., 2016). Neural networks
have previously been shown to yield excellent segmentation for a
wide range of problems (Ronneberger et al., 2015; Kraus et al., 2015
preprint; Ciresa̧n et al., 2013, 2012), but have not yet been applied to
fission yeast. Furthermore, they require substantial training, where
users must manually annotate images for hundreds of examples of
each potential cell shape or cell type in order to achieve reliable
performance (Sommer and Gerlich, 2013).

Results on yeasts have primarily focused on budding yeast, where
the circular nature of the yeast is critical to the performance of the
algorithms. For example, Kvarnstroem et al. used an innovative
adaptive threshold to binarize yeast images, followed by a circular
Hough transform to find each cell’s center, and finally employing
dynamic programming to extract cell contours (Kvarnström et al.,
2008). However, through the use of the Hough transform, this
method is exclusive to cells whose shape is highly circular. Versari
et al. have also generated a complex algorithm for monitoring
budding yeast over long time periods, rigorously benchmarking it
against previous algorithms (Versari et al., 2017). However, as with
the Kvarnstroem method, it is (and the algorithms it benchmarks
against are) optimized for circular cells. Thus these methods have
limited use beyond budding yeasts. Li et al. recently demonstratedReceived 15 August 2018; Accepted 5 February 2019
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that a simple segmentation of S. pombe is possible from a 34-image
focal-stack of bright-field images taken by an automatedmicroscope
(Li et al., 2017). However, this pre-supposes an automated
microscope, and obtaining the z-stack requires a substantial time
investment per field-of-view. Their method also makes use of a
solidity index (related to convexity of each cell) to separate cells
from background objects, which, as we show below, is not valid for
shape-variant cell mutants, or for larger organisms such as
C. elegans where complex, noodle-like shapes yield low solidity
values. Machine learning methods have been gainfully applied to
yeast cell segmentation as well. Peng et al. developed PombeX,
based on machine learning, to segment fission yeast images in
different imaging conditions, such as differing illumination and
focus conditions (Peng et al., 2013). Arteta et al. developed an
algorithm termed CellDetect, biased on support vector machines
(SVM) to correctly segment H&E-stained histology images,
fluorescence images, and phase-contrast images (Arteta et al.,
2012), and were shown to have reasonable performance on fission
yeast images as well (Zhang et al., 2014). However, as with neural
network approaches, this method requires manually annotated
images to train the SVM framework.

Several studies have accurately profiled C. elegans, using
complex and costly commercial software (Gosai et al., 2010), or
self-developed code, including highly accurate worm segmentation
using the free CellProfiler toolbox (Moy et al., 2009; Wählby et al.,
2012). However, while these methods provide accurate image
segmentation of both bright-field and fluorescence images, their
performance on other model organisms has not been explored.

Considering that even single cells display a wide range of
morphologies, ranging from roughly circular to rods to convex-
curved or noodle-like structures, a simple and robust algorithm that
can successfully segment bright-field images from non-convex cells
without intensive manual image annotation is still an unmet need. In
this paper we report a new algorithm based on marker-controlled
watershed segmentation that effectively analyzes bright-field
images of fission yeast, budding yeast, and C. elegans.

RESULTS
Segmentation of fission yeast, budding yeast and C. elegans
Our algorithm is optimized for bright-field images (graphical
depiction in Fig. 1, example bright-field image shown in Fig. 2A),
with an optional module, for the case of yeasts, to incorporate

Fig. 1. Graphical depiction of the bright-field image algorithm. The algorithm roughly includes three steps: preprocessing, foreground and background
marking, and segmentation.
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Calcofluor-White fluorescence information if available (example
image shown in Fig. 2B, graphical depiction of algorithm shown in
Fig. S1). While the results of the two algorithms are similar (Fig. S2),
the fluorescence information increases the robustness of the
algorithm to changes in focus or other user errors that may occur
during standard image acquisition. Here we focus on the bright-field-
only analysis, as this is the simplest to acquire experimentally.
Briefly, our approach to cell identification is marker-controlled

watershed segmentation, where foreground and background markers
aid traditional intensity-based watershed segmentation. As shown in
Fig. 1, the algorithm roughly includes three steps, preprocessing, cell
marking, and segmentation. The most critical step is obtaining
foreground markers, which roughly identify each cell. Each cell
should contain one and only one foreground mark. In order to
obtain robust foreground markers, we use a logical procession of
morphological processing steps. As described below, the steps are
identical no matter which species we are segmenting, with the only
variation being slight differences in image preprocessing and varying
the exact size parameters inputted into the morphological operations,
reflecting the varying size scales of the different model organisms.
As shown in Fig. 1, for fission yeast we start from a standard RGB

bright-field image in the preprocessing step. Next we use the blue
channel, which experimentally had the highest contrast, to perform
the segmentation. We invert the single channel image such that the
cell walls are bright against a dark background, adjust the contrast to
more effectively use the dynamic range, and use a 2-D Gaussian

smoothing kernel with standard deviation specified by 0.5 pixels
to denoise the image. We then use Bradley and Roth’s adaptive
thresholding algorithm with a sensitivity scale of 35% (how
different a pixel can be from its local mean to determine if it
should be set to 1 or 0) to effectively binarize the image even under
slightly non-uniform illumination (Bradley and Roth, 2007).
Background objects with areas smaller than 150 pixels are
removed. A morphological closing (dilation followed by erosion
with a 2-pixel disk-shaped kernel) then ‘closes’ small gaps in the
cell wall. This effectively creates a binary mask only containing the
cell walls. Any cells touching the image boundary are removed.
Using the cell wall image we begin to do the second step, obtaining
markers. To mark the cell interiors (which will ultimately be our
foreground markers), two copies of the cell wall mask are generated.
In one, the holes in the image are filled, while the other is inverted.
A logical AND operation is performed pixel-wise between the two
images, yielding an image identifying only the ‘holes’ in the cell
wall image, representing the cytoplasm. These are the foreground
markers in our image. Background markers are produced through
Skeleton by influence zones on the cell wall image (Vincent and
Soille, 1991). The final watershed segmentation step is performed
on the original contrast-adjusted and denoised bright-field image,
with the image altered such that areas containing foreground and
background markers are set to zero. The final segmentation result
for a typical wild-type fission yeast image is shown both in Figs 1
and 2C. Notably, our algorithm can precisely segment images with

Fig. 2. Image data, algorithmic results, and comparison with manual analysis. (A) Representative contrast-adjusted bright-field image of wild-type
fission yeast cells. (B) Corresponding Calcofluor-White fluorescent image. (C) Final segmented result, where a false color overlay has been added to identify
segmented regions. Note that same segmented image is also shown in Fig. 4A. (D) Mean cell length comparison between manual and automated analysis.
Each dot represents mean cell length within one image averaged among three users versus mean cell length in that image via automated analysis, blue lines
represent the 95% Conference Interval (CI) of manually-determined mean cell lengths among three different users. (E) Bland-Altman comparison between
the average manually-determined cell length and the automated analysis. Each dot represents the mean cell length within a single image. Scale bars: 10 µm.
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crowded cells, as shown in Fig. 3. In later sections we demonstrate
the effectiveness of our method despite the widely varying
morphology of fission yeast mutants.
For the budding yeast segmentation, the procedure is identical to

the fission yeast described above. However, after image inversion,
we denoise the images using a total-variation constrained denoising
algorithm (Smith et al., 2014). The morphological parameters are
slightly altered to reflect the overall smaller size of the budding yeast
cells. Furthermore, rather than using only the blue channel of the
RGB image, the process is performed on both the green and blue
channels separately. Once the foreground markers for each channel
have been found, a logical OR operation is performed to combine
the markers from both channels.
For C. elegans segmentation, an additional preprocessing step is

included after inverting the image. Due to the large scale of the
worm images, which lead to relatively non-uniform illumination
(seen in Fig. 6A), a tophat operation is performed to ‘flatten’ the
image background and remove the effect of the non-uniform
illumination. Again, due to the varying scales between the yeast
and worms, the parameters for the morphological operations are
adjusted, but the order of operations remains the same, indicating
the high degree of generalizability of our processing pipeline.

Comparison between algorithmic counting and
manual analysis
Once the cells are successfully identified using the algorithms
described above, the morphology of each cell can be easily extracted
from the result of the watershed segmentation. One of the most

important morphological aspects of the cell is the cell length and cell
width. These can be easily extracted frommost yeasts by considering
them as spheroids with a major and minor axis. To compare the
performance of the cell size extractions of our algorithm, we obtained
46 images of wild-type fission yeast across 32 h (eight time points) in
a nitrogen starve-release cycle to capture cells of highly varying sizes;
the time points are nitrogen starve 0 h, starve 4 h, starve 8 h, and
starve 24 h, followed by nitrogen release 2 h, release 4 h, release 6 h
and release 8 h. Generally, yeast cells under nitrogen starvation
undergo two rounds of continuous division within ∼7 h, causing the
cell length to shorten (Yanagida et al., 2011). Cell length is
lengthened again after medium replenishment. All the images were
independently measured by both our automated algorithm and
manual analysis by three users using MetaMorph (Molecular
Devices, LLC. Sunnyvale, CA, USA).

The comparison of cell lengths between manual and automated
analysis are shown in Fig. 2D, the x-axis represents the
manually analyzed cell length, while the y-axis represents the
automatically analyzed cell length. Each dot represents the mean
cell length among all cells in a single image, and the manually
analyzed cell lengths were further averaged among three users. As
we can see from Fig. 2D, the mean manually-determined cell length
and the automated results are quite similar. The correlation
calculated between the mean manual and automated analysis is
0.9916, similar to the correlations between the three users
(r=0.9884, see Table S1 for a complete tabulation of correlation
values between different user groups). As the three manual users
differ in their determination of cell length, we can compute the 95%

Fig. 3. Segmentation comparison between PombeX, CellDetect and our method by Dataset A from ours and Dataset B from the PombeX. (A1-A4)
Segmentation results by PombeX. (B1-B4) Segmentation results by CellDetect. (C1-C4) Segmentation results by our method.
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confidence interval (CI) of agreement between each individual user
and the mean manual analysis value, plotted as the blue lines in
Fig. 2D. We can see that all the dots are located inside or on the blue
lines, indicating that the difference between automated and manual
analysis is similar to the likely disagreement between any two users.
To further compare the agreement of cell lengths analysis results

between manual and automated methods, we performed a
Bland-Altman analysis, as shown in Fig. 2E. The x-axis plots the
mean of the automated and manual determinations, while the y-axis
plots the difference between these methods. The dashed red line
shows the bias between the automated and manual methods
(−0.19 µm). The 95% confidence interval, shown with solid red
lines in Fig. 1E, represents the maximum likely disagreement
between the average manual and automated results. The 95% CI
range betweenmanual and automated analyses is−0.85 to +0.46 µm
(range=1.31 µm), similar to the range of disagreement between the
manual users (CI=−0.68 to +0.68 µm, range=1.36 µm). These
results all demonstrate the reliability of the automated algorithm to
robustly and reproducibly identify the cell lengths and widths,
without the potential variability or bias introduced by manual
counting performed by multiple users. Armed with this validation,
we proceeded to compare the segmentation accuracy and time costs
between the algorithm and two prior published methods.

Comparison between different algorithms
To demonstrate the robustness and accuracy of our method, as well
as its flexibility compared to previously reported methods, we
compared our performance with two previously published
algorithms for cell segmentation, PombeX and CellDetect. The
segmentation is shown in Fig. 3, with the performance of each
algorithm on each dataset summarized in Table 1. Accuracy was
calculated as the number of correctly segmented cells divided by the
total cell number. From Fig. 3 and Table 1, we can see that while
PombeX performs reasonably well on Dataset B (for which it was
trained), its robustness is extremely low, as when examining an
unseen dataset, it achieves only 2% correct segmentation. If
PombeX could be re-trained or have its parameters varied, it is
possible that the segmentation rate in Dataset A could be improved.
However, as currently available its performance is not satisfactory
on datasets that differ in any way from the original data. Further, the
output of PombeX does not yield any information about the cell
morphometry. CellDetect, meanwhile, can be re-trained on a new
dataset, although some manual effort must be expended to annotate
the new images, and adjust their contrast to achieve optimum results.
Following this training, the CellDetect algorithm can achieve
reasonably good performance, around 65% correct segmentation on
Dataset A and 76% on Dataset B. We note that Dataset A contains
several shape-variant mutants, and the CellDetect algorithm’s
success was 84% on wild-type fission yeast. However, when
analyzing yeasts with varying shapes, the performance markedly
dropped. Including examples of these mutants in the training data
had the effect of reducing overall performance. Further, due to the
complexity of the algorithm, the training process takes one to

several hours depending on the number of training images and their
size. The analysis time per image in the testing phase takes 30 s to
several minutes depending on the image size. By comparison, our
proposed method yields higher accuracy on both datasets than prior
algorithms, 85% and 90% correct segmentation respectively, with
substantially faster computation time, approximately 5 s per image,
and with higher length accuracy compared to manual analysis than
CellDetect.

Morphometric parameters for identification of fission yeast
shape
As discussed above, the algorithm, once it has correctly segmented
the image, can easily extract a multitude of morphometric
parameters. In addition to cell length and width, it can calculate
simple metrics such as area or eccentricity, as well as complex
measures such as the convex area, or measures of the image
intensity within the cell. These can all be exploited to determine
subtle differences in cell size and cell shape that are related to cell
growth and function. To test the robustness of our algorithm,
we analyzed several morphometric values for wild-type, orb6-25
(an orb6 temperature sensitive mutant; Orb6 is inactive at the
restrictive temperature 37°C), tea1Δ (cells lacking Tea1), wee1Δ,
and cdc25-22 fission yeasts. It has been reported that malfunction of
Orb6 and Wee1 kinases leads to small round cells (Barbet and Carr,
1993; Das et al., 2009; Verde et al., 1998), while inactivation of
Cdc25 makes cells longer (Keifenheim et al., 2017). The absence of
Tea1, meanwhile, results in bent or T-shaped cells (Mata and Nurse,
1997). Representative segmentation results are shown in Fig. 4A–E,
where the variegated morphology of the different strains can be
readily observed. The results of automated morphometric analysis
of these cells are shown in Fig. 4F–H and Table S2, where clear
differences among the parameters between strains can be observed.
For example, the mean eccentricity of orb6-25 and wee1Δ is lower
than the other three strains, indicative of their circular nature. The
ratio of the cell’s area to the convex area (the area of the smallest
convex polygon containing the cell), a measure of convexity called
solidity, is smaller in tea1Δ and cdc25-22 than in other strains,
showing the curved, concave nature of these cells. Meanwhile the
mean length of wee1Δ is shorter than the wild type, while
cdc25-22 is much longer. Altogether, our morphometric
measurements recapitulate the results reported previously,
confirming the accuracy of our method to segment yeast cells of
widely varying shapes.

Morphometric analysis of budding yeast
For budding yeast, a critical point of interest is the morphometric
relationship between daughter and parent cells. As shown in
Fig. 5A, our algorithm can accurately identify the majority of buds
in an image, despite their small size. Since the buds are smaller than
mother yeast, we set an area threshold to separate the buds and
mother yeast. Our automated analysis can also record the pixel
locations of each identified cell in the image. To identify the most
likely parent of a given bud, we find the closest cell to each bud and

Table 1. Correct segmentation rate (correctly segmented cells/total cells), running time, and extracted morphology comparison between PombeX,
CellDetect and our method on two independent datasets

Methods Dataset A Dataset B CPU time/Per image Mean cell length of dataset A (µm) Mean cell length of dataset B (µm)

PombeX 2% 85% 30–60 s None None
CellDetect 65% 76% 6–8 min 13.33 8.11
Our method 85% 90% 5 s 10.47 8.03
Manual 100% 100% 3–6 min 9.94 7.75
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assign it as the bud’s parent. As shown in Fig. S3, this accurately
identifies the daughter–parent relationship in most cases. It is
occasionally ‘fooled’ when a bud emerges in a crowded region and
thus is touching multiple potential parents. With the bud and mother

cells identified, their morphometry can be independently analyzed,
as shown in Fig. 5B, where the bud’s eccentricity is smaller than the
mother yeast, indicating that they are more circular compared to the
slightly elongated mother cells. Knowing the daughter–parent

Fig. 4. Segmentation of wild-type and mutant fission yeast cells with altered shape. (A) Wild-type cells. Note that the results in A are the same as
shown in Fig. 2C. (B) orb6-25 temperature sensitive cells. Orb6 belongs to the conserved NDR family kinase required for polarized cell growth. (C) tea1Δ
(tea1-deletion) cells. Tea1 localizes to cell ends to regulate cell growth, and the absence of Tea1 leads to bent and/or T-shaped cells. (D) wee1Δ cells. Wee1
is a kinase responsible for inactivating the master regulator Cdc2/CDK1 of the cell cycle. The absence of Wee1 lead to small cells. (E) cdc25-22 temperature
sensitive cells. Cdc25 is a phosphatase responsible for inactivating Cdc2/CDK1. Inactivation of Cdc25 results in long cells. (F) Cell length, (G) solidity, and
(H) eccentricity of five fission yeast strains, showing substantial variation among strains. Scale bars: 10 µm.

Fig. 5. Segmentation of budding yeast and morphologic analysis. (A) Segmentation result of budding yeast. Scale bar: 10 µm. (B) Cell eccentricity
comparison between buds and mature cells. (C) Length ratio between the buds and their parent cells.
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relationship, we can compute the diameter ratio between the
daughters and their parent cells as shown in Fig. 5C. The length ratio
may be a key parameter to measure in studying cell size control as
the daughter cell size is regulated in a cell-cycle dependent manner
and by the availability of nutrients (Leitao and Kellogg, 2017).

Morphometric analysis of C. elegans
For the C. elegans, the worm length is the most important indicator
marking the developmental stage of the C. elegans is in the life
cycle. Further, due to the worm’s typically curved morphology
during locomotion, straight worms are likely to be dead. These can
be parameterized by the worm length and worm solidity (with dead
worms having high solidity, curved/living worms having low
solidity values). Despite the worm’s highly curved nature, and
despite its highly divergent size scale compared with the yeast cells,
our algorithm can still effectively segment the worms even when
imaged using large fields of viewwith poor illumination uniformity,
as shown in Fig. 6A and B. Because the worm is highly curved, its
length cannot be accurately judged by a measure along any single
dimension of the segmented shape. To extract its length, we utilize a
skeletonization procedure described graphically in Fig. S4. Briefly,
we first skeletonize the image, yielding a single pixel-wide line with
several branch and endpoints. The branched line can be split into
several segments. If a segment contains an endpoint, it is considered
an ‘end-segment’, if the segment merely connects two branch points

we term this a ‘branch-segment’. This line is initially 8-connected.
However, to unambiguously split this skeleton into branch- and end-
segments, we minimally thicken the line to be 4-connected. Starting
from each endpoint, we iteratively calculate the length of all paths
from that endpoint to all other endpoints in the skeleton. This
process is repeated until all possible end-to-end paths are explored,
with the longest end-to-end path being judged as the worm’s length,
as shown in Fig. 6C. A comparison of extracted length and solidity
parameters from 24 individual C. elegans worms are shown in
Fig. 6D.

Automated analysis of cell growth during nitrogen starvation
and replenishment confirms that the TOR pathway is
essential for cells to re-enter the cell cycle
Because the algorithm presented above dramatically simplifies
measurement of cell length, cell morphology can be easily observed
in large numbers of cells over extended time periods with
substantially reduced experimental effort. To demonstrate the
power of such measurements, we followed wild-type and mutant
fission yeast cells for 32 h of culture, including 24 h of nitrogen
starvation followed by 8 h of release, as described in more detail in
theMaterials andMethods. In rich medium cells grow rapidly, and it
is generally believed that the TOR pathway is involved in
controlling such rapid cell growth by promoting anabolic
processes and inhibiting catabolic processes. By contrast, cell

Fig. 6. Segmentation of C. elegans and morphologic analysis. (A) C. elegans bright-field image. (B) Segmentation result of C. elegans overlaid on
contrast-inverted bright-field image. (C) Results of automated length determination. (D) Cell length versus solidity of 24 worms. Scale bars: 50 µm.
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growth ceases in medium lacking nitrogen due to the inactivation of
the TOR kinase. In fission yeast, it has been demonstrated that tor2
(the TOR kinase TORC1) promotes cell growth by maintaining the
activity of the phosphatase of PP2A.B55 through inhibiting the
Greatwall(Ppk18)-Endosulfine(Igo1) pathway (Chica et al., 2016).
Nitrogen depletion causes inactivation of the TOR signaling and
then activation of the Greatwall(Ppk18)-Endosulfine(Igo1)
pathway, inhibiting PP2A.B55 and enabling cells to enter mitosis
prematurely with a smaller size (Chica et al., 2016). We then
employed our automated algorithm to analyze the cell size of wild-
type, Tor2 defective, and Igo1-deletion mutant cells during nitrogen
starvation and replenishment. As expected, Tor2 was essential for
initiating cell growth after nitrogen replenishment (i.e. re-entering
the cell cycle) since cell size did not increase in cells without Tor2
activity (Fig. 7A,C). By contrast, the Tor2 downstream protein Igo1,
also an inhibitory factor of PP2A.B55, appeared to be important for
decreasing cell size (i.e. promoting premature mitosis) during
nitrogen starvation but not important for the cells to re-enter the cell
cycle during replenishment (Fig. 7B,D). Thus, our automated
algorithm is a powerful tool to dissect cell growth and the cell cycle.
The automated detection of multiple morphometric parameters also
opens up the ability to track cell morphology in a multiparametric
space, similar to flow cytometry, which may prove useful for
identifying subtle effects or subgroups within a larger population
(Fig. S5). Further, using the x and y positions of each cell in a time-
lapse, single-cell growth curves such as shown in Mitchison and
Nurse (1985), can be reproduced for wild type and shape-variant
mutants (Fig. S6).

DISCUSSION
In this paper we have presented a robust method to automatically
segment images of yeast cells andC. elegans, model organisms with
widely varying morphologies and size scales. While there exist a
wide variety of prior algorithms reported in the literature, including
recent reports using advanced machine-learning methods, ‘classic’
methods such as watershed segmentation can still have substantial
advantages in robustness and computational efficiency. In this
report we describe an algorithm which combines a logical
procession of classic morphologic operations, which is able to
successfully segment cells without relying on machine learning
methods or on measures of convexity that are typically applied in
prior work on yeast segmentation, allowing our algorithm to
successfully identify a wider range of organisms and mutant types
than prior methods. The algorithm has been demonstrated
utilizing bright-field images alone, with an additional algorithm
incorporating fluorescent images from yeast when available to
slightly increase robustness (as shown in Fig. S2). Both of the
algorithms can reach precisions in determining cell morphology
similar to manual image analysis. However, as with other image
analysis methods, our algorithm contains a few caveats. While our
method outperforms other recently published results, currently the
algorithm’s performance does not yield a 100% success rate in
segmentation. The majority of cases where images were not
successfully analyzed was due to issues of imperfect image quality,
or where individual yeast were morphologically unusual, perhaps
due to cell death or other factors. Poorly-focused images and ‘dirty’
slides will both confound our current algorithm and care must be

Fig. 7. Morphologic analysis of nitrogen starvation and replenishment of the indicated mutant fission yeast cells. (A) Wild type versus tor2ts.
(B) Wild type versus igo1Δ; error bars represent one standard deviation. (C,D) Contrast-adjusted bright-field image regions of interest comparing wild-type
and mutant strains at the indicated time points: starve 0 h, 8 h, and 24 h, and release 8 h. Scale bar: 10 µm.
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taken to ensure proper alignment of the microscope prior to image
acquisition. As shown in Fig. S7, the accuracy of the method
critically depends on the focus. The best performance is achieved
slightly below focus, where the contrast between the cell wall and
the background is highest, with a range of acceptable foci spanning
approximately 1–5 µm below focus using our relatively high NA
microscope system. As demonstrated by the C. elegans results, our
algorithm is tolerant to highly non-uniform illuminations. Adding
calcofluor fluorescence images to the pipeline mitigated these
concerns to some extent in yeasts, due to the higher contrast between
cell wall fluorescence and the dark background. In some cases,
particularly with the cdc25 strain, the highly structured cytoplasm of
the cells yielded slight over-segmentation in a small minority of
cells. Further, some cells were treated as part of the image
background due to a lack of contrast between the cell wall and the
background. Both of these concerns could be overcome through
more complex imaging methods such as dark field or quantitative
phase imaging. However, phase imaging methods may require
modification to the algorithm. In the case of traditional Zernike
phase contrast, where a uniform halo is observed around the cell, our
algorithm may indeed work with simple parameter tuning.
However, other phase contrast methods such as DIC, where the
cell wall does not maintain a constant intensity value, but instead
undergoes a contrast reversal, would require more substantial
modification. More complex binarization approaches such as using
the Hilbert transform (Kuijper and Heise, 2008) rather than simple
intensity thresholding could overcome this challenge. However, for
determining the mean morphology of each cell type, culture
condition, etc. the results obtained from simple bright-field imaging
are sufficient even without a 100% correct segmentation rate. This is
demonstrated by the high concordance between the mean length
values for fission yeast regardless using the bright-field only and
bright-field plus fluorescence algorithms, despite the fact that adding
fluorescence increases the segmentation accuracy. Thus, our
algorithm balances performance with experimental complexity:
providing reasonable segmentation accuracy and highly accurate
morphology measures using only bright-field imaging, with no need
for exotic or automated imaging systems. Additionally, as our goal is
to reduce manual effort as much as possible, all images examined for
a given model organism have been processed using a single set of
parameters in the image analysis pipeline. However, performance
could be further optimized by altering the free parameters in our
provided software on a strain-by-strain or even image-by-image basis,
as dictated by the available time and requirements of the operator.
Lastly, our algorithm is currently available as both a MATLAB code
that can be freely edited by interested users, and as a stand-alone
executable for users without MATLAB. As our method makes use of
standard morphological processing, the algorithm presented here
could potentially be transformed into a CellProfiler pipeline for those
who wish to have more granular control of the algorithm but who are
not experts in MATLAB programming.

MATERIALS AND METHODS
Strains and media
Fission yeast strains were created by random spore digestion as previously
described (Forsburg and Rhind, 2006). The strain used for Calcofluor-White
staining in Fig. 1 was wild type (ade6-m210 leu1-32 ura4-D18 h−). For
Fig. 3, the strains used were as follows: wild type (ade6-m210 leu1-32 ura4-
D18 h−), orb6-25 (ade6-m210 leu1-32 h−), tea1Δ (ade6-m210 leu1-32 h+),
wee1Δ (leu1-32 h−), cdc25-22 (h+); the temperature sensitive strains orb6-
25 and cdc25-22 were cultured first at the permissive temperature 30°C and
then at the restrictive temperature 37°C for 4 h. For Fig. 6, the strains used
were as follows: wild type (h−), tor2ts (h−), and igo1Δ (h+). Generally,

fission yeast strains were cultured either in the rich medium YE5S (yeast
extract medium supplemented with adenine, histidine, lysine, leucine, and
Uracil) (www.formedium.com, Formedium Ltd. Hunstanton, Norfolk, UK)
or in the defined medium EMM5S (Edinburgh minimal medium with
adenine, histidine, lysine, leucine, and Uracil) at 30°C. For starvation, cells
were grown in EMM without nitrogen (EMM-N). The tor2ts cells and their
wild-type control cells in the exponential phase were collected and cultured
in EMM-N for starvation and in YE5S for replenishment at the restrictive
temperature 37°C. For budding yeast imaging, Y2H gold cells were cultured
in YPDAmedium at 30°C, and cells in the exponential phase were collected
for imaging. The C. elegans worms were grown on agar plates containing
Escherichia coli and sodium azide (to immobilize the worms).

Starvation and release methods
The strains used for the starvation and release experiments were inoculated
into YE5S medium at 30°C, and cells at the exponential phase were
collected for imaging analysis and measurements. Briefly, cells were
washed with EMM-N five times after collection. For nitrogen starvation
analysis, the washed cells were cultured in EMM-N medium for 24 h; for
replenishment analysis, the starved cells were then spun down and cultured
in the rich medium YE5S. Images were taken during the starvation and
replenishment at the time points indicated in the figures.

Fluorescence staining and microscopic imaging
To visualize fission yeast cells with high contrast, Calcofluor-White staining
was performed. Briefly, cells grown in YE5S medium were collected and
washed with the PBS (phosphate buffered saline) buffer one time, followed
by incubation in PBS containing 0.5 µg/ml Calcofluor-White (Sigma-
Aldrich) in the dark for 10 min. The stained cells were then washed with PBS
four times before imaging. Bright-field and fluorescence imaging was
performed with an upright Olympus BX53 microscope (Olympus Corp.,
Tokyo, Japan) equipped with a condenser (U-AC2, NA1.1) and a 60x, NA
1.35 oil objective. Both bright-field and fluorescence images were acquired
with a CCD camera (OlympusDP73). Similarly, the budding yeast cells were
imaged with the Olympus BX53 microscope. For C. elegans imaging, the
worms were placed on an agar pad on a slide and images were acquired with
the Leica DFC310 FXmicroscope (LeicaMicrosystems,Wetzlar, Germany).

Data analysis
All of the data was analyzed, using in-house scripts and functions written in
MATLAB (R2017b, The Mathworks, Natick, MA, USA). And in order to
benchmark our algorithm, we compared its performance to two previously
published methods for yeast cell segmentation, PombeX and CellDetect,
using two datasets. Dataset A was a subset of the images analyzed by our
method, showing yeast with varying morphologies. Dataset B was obtained
from Peng et al. (2013) and includes ten bright-field images.

Briefly, the previously published algorithms use machine learning to
determine cell contours. While machine-learning methods can be quite
accurate, their accuracy depends on the similarity between the training and
test data. The PombeX algorithm uses bright-field images (and optional
nuclear fluorescence images) to identify the cell membrane and cytoplasm.
The algorithm then utilizes gradient vector flow snake to obtain cell
contours, then uses a machine learning-based validation of cell contours to
remove incorrect contours. The CellDetect algorithm takes simply annotated
images (images paired with x-y coordinates of cell centroids) and uses these
to train a structured SVM framework. In testing images a maximally stable
extremal region detector is used to roughly dot annotate different cells,
followed by using the trained SVM to evaluate and identify the non-
overlapping regions as correct cells.

All the three test algorithms were run on a standard mid-range desktop
computer, with an Intel i5-3470, 3.5 GHz CPU and 8GB RAM. As the
magnification, resolution, and focus values of Dataset A and B differed, in
order to provide the fairest comparison, separate classifiers were trained for
Dataset A and Dataset B for CellDetect, and morphological parameters,
particularly the binarization threshold, were re-optimized for our algorithm,
as Datasets A and B had differing brightnesses. PombeX, meanwhile, had
no user-controllable parameters, leading to fragile performance when
applied to images outside of its original dataset.
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