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The approval of immune checkpoint inhibitors (ICIs) by the Food and Drug Administration

(FDA) led to an improvement in the treatment of several types of cancer. The main targets

of these drugs are cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell

death protein-1/programmed death-ligand 1 pathway (PD-1/PD-L1), which are important

inhibitory molecules for the immune system. Besides being generally safer than common

chemotherapy, the use of ICIs has been associated with several immune-related adverse

effects (irAEs). Although rare, neurological adverse effects are reported within the irAEs in

clinical trials, particularly in patients treated with anti-PD-1 antibodies or a combination of

both anti-CTLA-4 and PD-1 drugs. The observations obtained from clinical trials suggest

that the PD-1 axis may play a remarkable role in the regulation of neuroinflammation.

Moreover, numerous studies in preclinical models have demonstrated the involvement

of PD-1 in several neurological disorders. However, a comprehensive understanding of

these cellular mechanisms remains elusive. Our review aims to summarize the most

recent evidence concerning the regulation of neuroinflammation through PD-1/PD-L

signaling, focusing on cell populations that are involved in this pathway.

Keywords: PD-1, PD-L1, PD-L2, neuroinflammation, multiple sclerosis, Alzheimer’s disease

INTRODUCTION TO NEUROINFLAMMATION

Immune checkpoints, such as programmed cell death protein-1 (PD-1) and its ligands, are
regulatory molecules that are fundamental to suppress the immune response and promote self-
tolerance. PD-1 has two known ligands: PD-L1 (also called B7 homolog 1, B7-H1) and PD-L2
(or B7-DC). Both ligands have been characterized as powerful inhibitors in the context of tumor
evasion from the immune system. Since 2014, six different inhibitors of PD-1 and PD-L1 were
approved for cancer immunotherapy by the US Food and Drug Administration (FDA) and the
EuropeanMedicines Agency (EMA) (1), revolutionizing the treatment of certain cancers. However,
in addition to their desired effects, immune-checkpoints inhibitors (ICIs) modify the balance of
immune responses and induce specific off-target toxicities called immune-related adverse events
(irAEs) (2). Several neurological immune-related adverse events were described during post-
marketing surveillance with an estimated incidence of about 3–4% (3, 4). The reported neurological
irAEs include encephalitis, aseptic meningitis, peripheral neuropathy, myasthenia gravis, and
myositis. These clinical observations, combined with growing evidence about the role of PD-1

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.877936
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.877936&domain=pdf&date_stamp=2022-06-09
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:manenti.susanna@hsr.it
https://doi.org/10.3389/fneur.2022.877936
https://www.frontiersin.org/articles/10.3389/fneur.2022.877936/full


Manenti et al. PD-1 Axis in Neuroinflammation

in neuroinflammatory disorders, suggest that the PD-1 axis may
play a critical role not only in peripheral immune imbalance but
also in the regulation of neuroinflammation, as highlighted in
a previous work by Zhao et al. (5, 6). A comprehensive view
of the cell-to-cell interactions and the molecular mechanisms
underlying PD-l functions in neuroinflammation is, however,
still missing. This review aims to summarize the most recent
evidence concerning the regulation of human and murine
neuroinflammatory disorders by PD-1 signaling, focusing on cell
populations that are involved in this pathway.

PD-1/PD-L AXIS

Molecular Overview
Programmed cell death protein-1 is a 288 amino acid protein that
belongs to the immunoglobulin superfamily and is a homolog
to CD28. PD-1 is expressed in physiological conditions on
a subset of thymocytes but can be induced upon activation
in many types of immune cells, including T cells, B cells,
natural killer (NK) cells, monocytes, and dendritic cells (DCs)
(5). In its cytoplasmic tail, PD-1 has two tyrosine motifs,
an immunoreceptor tyrosine-based switch-motif (ITSM) and
an immunoreceptor tyrosine-based inhibitions motif (ITIM)
(7). PD ligands are members of the B7 family of type 1
transmembrane proteins, which also include CD86 and CD80
(8). They have similar exon organization of the 5′UTR region,
a signal sequence, IgV-like, IgC-like, and transmembrane
domains, cytoplasmic exon 1, and cytoplasmic exon 2 with
the 3′ untranslated region (8). However, the affinity of PD-
L2 to PD-1 is three times stronger when compared to that
of PD-L1, and this is probably due to tryptophan that is
unique to PD-L2 (9). PD-1 ligands differ in their expression
patterns: PD-L2 expression is restricted to professional antigen-
presenting cells (APCs) (10), while PD-L1 is ubiquitously
expressed in the inflamed tissues (11). To date, in physiological
conditions, PD-L1 mRNA is largely present in various tissues,
while PD-L1 protein is barely expressed on the cell surface,
suggesting that PD-L1 mRNA is under tight post-transcriptional
regulation. An exception is made in the context of human
cancers, where PD-L1 protein is highly expressed by the
tumor cells in an attempt to hide neoantigens from immune
surveillance (12). The engagement of PD-1 by its ligands leads
to the formation of PD-1 microclusters together with the
T-cell or B-cell receptor (TCR or BCR). This leads to the
recruitment of the Src homology phosphatase (SH)-2 domain-
containing tyrosine phosphatase 2 (SHP2). Which then causes
a decrease in the phosphorylation of the entire spectrum
of TCR downstream signaling molecules. PD-1 engagement
decreases the downstream signaling of both T- and B-cell
receptors, respectively, by decreasing the phosphorylation of
CD3z and protein kinase C q (PCK-q) and that of Igb, Syk, and
phospholipase Cg2 (PLCg2). Furthermore, PD-1 engagement
leads to the blockage of both the phosphatidylinositol-3 kinase
and the serine-threonine kinase Akt through the recruitment
of SHP2 (13). The downstream effects of PD-1 and PD-L1/L2
interaction comprehensively result in reduced proliferation of
autoreactive T cells, suppression of effector T and B cells in

parenchymal tissues, reduced cytokine production, induced T-
cell anergy and exhaustion, reduced motility, and increased IL-10
production (14). The absence of PD-1 leads to an alteration of
the signaling threshold during the development of T cells in the
thymus, resulting in an increased presence of CD4/CD8 double-
negative T cells. Furthermore, in several preclinical models, the
blockade of the PD-1 pathway results in the development or
exacerbation of autoimmune diseases depending on the genetic
background they have (15–17). For example, C57BL/6 PD-
1−/− mice develop lupus-like glomerulonephritis and arthritis
starting at 6 months of age, while BALB/c knockout mice
develop a dilated cardiomyopathy starting at 5 weeks of age
(18–20). Among others, these findings suggest that the PD-1
axis plays an important role in central and peripheral tolerance,
and a preventive role for several types of autoimmune disorders
(Figure 1).

PD-L1 and PD-L2 Expression in the CNS
During Neuroinflammation
Preliminary evidence of the expression of PD-1 ligands in
the central nervous system (CNS) comes from experimental
autoimmune encephalomyelitis (EAE). In EAE mice, PD-L1 is
overexpressed on microglial cells, astrocytes, and infiltrating
mononuclear cells near the meninges, particularly in the areas
with the highest inflammatory response (21). PD-L1 expression
is also increased on the endothelium surrounding the cell
infiltrates. Microglial cells, which represent 5–20% of all glial
cells in the murine CNS, constitutively express a low level
of PD-L1, and its expression can be upregulated in vitro
when exposed to inflammatory conditions, for example, in the
presence of IFN-γ or Th1 supernatants. PD-L1 expression by
microglia can regulate immune responses by interacting with
PD-1. Thus, one of the current hypotheses is that PD-L1 is
expressed by microglia and infiltrating cells, which might act a
strong immune inhibitory molecule that is able to curb T-cell
activation and thus useful to maintain immune homeostasis in
the CNS (11, 22).

The functions and distribution of PD-L2 are similar but not
overlapping to PD-L1, and they still need to be fully elucidated
in the CNS. Similar to PD-L1, PD-L2 inhibits T-cell proliferation
by blocking cell cycle progression without increasing cell death.
However, PD-L2 seems to be slightly less potent than PD-L1.
Moreover, PD-L2 seems to be upregulated on small round cells
in the brain, indicative of infiltrating macrophages or B cells (11).

To date, some authors reported that PD-L2 might bind to a
second receptor different from PD-1, and is known as repulsive
guidance molecule b (RGMb). RGMb, also called DRAGON, is a
part of the RGM family, a group of glycosylphosphatidylinositol-
anchored membrane proteins that bind bone morphogenetic
proteins (BMPs) and neogenin. RGMb does not directly act as
a signaling molecule, although it can function as a co-receptor
modulating BMP signaling. RGMb is expressed mainly in the
CNS and in particular on the surface of macrophages and other
immune system cells. There is some evidence that the interaction
of PD-L2 with RGMb through the BMP pathway might be
co-stimulatory rather than inhibitory on T cells (23). This
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FIGURE 1 | Immune checkpoint function during activation or inhibition pathways. Made with Adobe Draw.

interaction seems to promote the development of respiratory
tolerance, facilitating the proliferation of T cells. However, the
potential role of RGMb has just begun to emerge, and further
studies are needed to clarify its functions.

PD-1 ROLE DURING
NEUROINFLAMMATION

The multifactorial nature of neuroinflammation unfolds through
a complex, highly multicellular pathophysiological process that
evolves according to the type and the duration of the disease.
Many studies have tried to explain the role of the PD-1/PD-L1
pathway in CNS infections, often with contradictory results. In
this section, we will discuss recent findings from various studies
in murine models, focusing on the different cellular subsets that
are involved (Table 1).

Lymphoid Cells
As highlighted in the Introduction section, PD-1 acts as an
important immunosuppressive molecule that can exert several
regulatory roles on T-cell effector functions. It has extensively
been demonstrated that signaling through the PD-1 receptor
results in the inhibition of TCR-mediated cell activation (e.g.,
proliferation and cytokine production), (8, 43, 44) but increasing
evidence suggests that the PD-1 axis also has a crucial

role in modulating T-cell activation in different models of
neuroinflammatory diseases.

CD4 and CD8T Lymphocytes
Mair et al. studied the role of PD-1 in the development and
maintenance of T-cell adaptive tolerance [i.e., a process by which
T cells acquire a hyporesponsive state when antigen stimulation
persists in vivo (28)] after exposure to high levels of autoantigens
in the model of EAE. This group reported that PD-1 expression
is upregulated on adapted CD4+ T cells within the CNS, but PD-
1 loss did not preclude T cells to acquire an adapted phenotype
both in vivo and in vitro, indicating that the maintenance of
their unresponsiveness in EAE is independent of PD-1 (28). This
finding suggests that PD-l is not fundamental in this process, and
it is in contrast to the majority of studies about PD-1 involvement
in T-cell adapted state (45). Using the same disease mouse model
(i.e., EAE), it was shown that CD4+ T cells, infiltrating the CNS
at the peak of disease, upregulate PD-1, and this overexpression
is associated with a reduction of Th1 cells due to nitric oxide
release by PD-L1+ microglia. This evidence supports the role
of PD-1 in EAE regulation through the suppression of Th1 cell
differentiation (31).

The impairment of CD8+ T-cell function found in mice with
spinal cord injury (SCI) was associated with the induction of
regulatory pathways, including the upregulation of PD-1/PD-L1.
Injured mice display an increased percentage of PD-1+ CD8T
cells which also have a higher expression of this receptor on their
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TABLE 1 | PD-1 and its ligands in animal models of neurological disorders.

Disease Model Cell subset involved in the axis Reference

PD-1 PD-L

Viral infection Viral encephalitis: WT and PD-1 KO MuPyV

infected mice

CD8+ bTRM cells Microglia, astrocytes

and infiltrating

monocytes

Shwetank et al. (24)

Chronic neuroinflammation: MCMV infected

mice

CD8+ T cells Microglia, astrocytes Schachtele et al. (25)

Chronic neuroinflammation: WT and PD-1

or PD-L1 KO MCMV infected mice

CD8+ bTRM cells ? Prasad et al. (26)

Chronic murine retroviral (LP-BM5) infection

(WT and PD-1 KO mice)

? Microglia Chauhan et al. (27)

Multiple Sclerosis EAE mice CD4+ T cells ? Mair et al. (28)

EAE mice injected with MIS416, a TLR9

and NOD2 agonist

? Neutrophils,

macrophages and

infiltrating monocytes

White et al. (29)

EAE mice injected with MIS416 ? Neutrophils Khorooshi et al. (30)

EAE mice CD4+ T cells and

microglia

Microglia Hu et al. (31)

EAE mice with a transfer of granulocytic

myeloid-derived suppressor cells

(G-MDSCs)

T cells G-MDSCs Ioannou et al. (32)

Parkinson’s Disease Parkinson’s disease mouse model and

PD-1 KO mice

Iba1+ microglial cells ? Cheng et al. (33)

Spinal cord injury Mice with mid-thoracic spinal cord injury CD8+ T cells Macrophages Norden et al. (34)

Murine primal cord injury model using

T-and-B-cell-deficient Rag1-/- mice

Tregs Macrophages,

microglia

He et al. (35)

Rat spinal cord injury model

(Dexmedetomidine administration)

Microglia ? He et al. (36)

Tumor GL261 murine glioma model CD4+ and CD8+ T

cells

Microglia and

macrophages

Qian et al. (37)

PCNSL cell lines and human

monocyte-derived macrophages

? Microglia and

macrophages

Miyasato et al. (38)

Intracerebral

hemorrhage

PD-1 KO and WT ICH mice Macrophages ? Yuan et al. (39)

Surgical Brain Injury SBI mouse model (PD-L1 mAb/PD-L1

protein administration)

? Microglia Chen et al. (40)

Chronic

neurodegeneration

Murine prion disease model-ME7 strain

(PD-1 KO and WT mice)

Microglia Neurons Obst et al. (41)

Traumatic brain injury Controlled cortical impact model of

traumatic brain injury

T cells Astrocytes Gao X et al. (42)

surface. In this way, PD-1 upregulation prevents the immune-
inflammatory cascade and limits the spreading of inflammation
at the site of damage (34).

Using the same mouse model, the study of He et al. showed
that the anti-inflammatory function carried out by regulatory T
cells (Tregs) that infiltrate the spinal cord in the SCI subacute
phase is maintained, thanks to the overexpression of PD-1.
Knockdown of PD-1 in Tregs caused decreased production of
IL-10, TGF-β, and Foxp3, inducing a lower inhibitory activity of
Tregs on pro-inflammatory macrophages/microglia (35).

In the glioma 261 model (GL261), through the analysis
of cells that infiltrate the glioma, Qian et al. demonstrated
that PD-1 expression is higher both on CD4+ and CD8+ T
cells and increases during tumor progression. Besides, PD-1
expression, in cells that infiltrate the tumor, correlates with an

increased apoptotic rate of T cells, suggesting a role for the PD-
1 axis in the inhibition of T-cell function in glioma (37). Some
evidence regarding the importance of the PD-1/PD-L1 pathway
in controlling neuroinflammation also comes from different
models of chronic neuroinflammation in mice recovering from
a viral brain infection.

In mice with encephalitis induced by murine cytomegalovirus
(MCMV) infection, expression of PD-1 is found on CD8+ T cells
within the brain. Such expression contributes to their functional
suppression and cytokine production inhibition in the post-
encephalitic brain (25).

Brain-Resident Memory T Cells (BTRMs)
In 2017, Qian et al. assessed the importance of the PD-1 axis in
the generation of brain-resident memory T cells (bTRMs) after
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viral infection. bTRMs are a population of tissue-resident CD8+

lymphocytes that persist for a long time in the brain and play a
fundamental role in controlling pathogen clearance in the case of
virus re-infection (37, 46).

Authors phenotypically characterize bTRMs by analyzing
CD8+ lymphocytes residing in the brain of mice chronically
infected with MCMV and describe that loss of PD-1 results in
fewer bTRM cells within the brains of PD-1 KO mice (i.e., the
reduced number of CD8+ cells expressing the integrin CD103, a
marker of brain TRM). Furthermore, the characterization of PD-1
expression on CD103+CD8+ T cells isolated from the brain at 30
days post-infection reveals a higher frequency of PD-1+CD103+

cells in the brains of wild-type animals compared to PD-L1
KO mice. These results suggest that the upregulation of PD-1
receptors on bTRM cells may help to preserve their longevity
(26). Moreover, Shwetank et al. confirmed that PD-1 signaling
plays a pivotal role in the regulation of immune response in CNS
persistent infection, revealing a multifaceted function of PD-1 on
neuroinflammation regulation in mouse polyomavirus (MuPyV)
encephalitis. These authors demonstrate that the intracerebral
inoculation of MuPyV leads to the generation of a permanent
population of virus-specific PD-1+bTRM cells in infected mice
brains. During the acute phase of infection, PD-1 inhibits the
effector functions of virus-specific CD8+ bTRM cells, limiting the
severity of neuroinflammation but maintaining the control of
re-encountered virus during persistent infection (24).

All these findings suggest that PD-1 signaling represents not
only a mechanism to inhibit T-cell stimulation and proliferation
but also to promote the long life of bTRM cells.

Evidence supporting the role of the PD-1 regulator in
bTRM cells also comes from studies conducted in the human
brain. In line with results obtained in mouse models, Smolders
et al. demonstrated that in human white matter CD103+

CD8+ TRM cells, PD-1 is highly expressed (47) and that this
cell population is enriched in the active lesions in multiple
sclerosis (48).

Myeloid Cells
Both peripheral and CNS-resident myeloid cells are remarkably
involved in the onset and development of neurological disorders.
The pathogenesis of many neuroinflammatory diseases has
been associated with impaired neuronal function due to the
production of reactive oxygen species (ROS) or reactive nitrogen
species (RNS). This consequently leads to an increase in oxidative
stress (49). In mice, GM-CSF, IFNγ, and IL1ß are fundamental
stimulations for the recruitment of myeloid cells in the CNS
(50–53). Accordingly, receptors for IFNγ and GM-CSF are
abundant on a variety of myeloid cells, such as neutrophils, DCs,
macrophages, and monocytes (54). It has been demonstrated
that GM-CSF plays a fundamental and non-redundant role in
EAE pathology (55). IL1ß is involved both in the development
of EAE and in the transmigration of myeloid cells into the CNS
(56). Moreover, endothelial cells activated with IL1ß release GM-
CSF which then converts monocytes into antigen-presenting
cells (APCs). Mice depleted for both IL1ß and GM-CSF are
resistant to EAE (57), highlighting the importance of myeloid
cell recruitment in the CNS. On the same note, IFNγ seems

to be fundamental for the gradual acquisition of a mature
inflammatory phagocyte phenotype in Ly6Chi monocytes (50).
Only in recent years, an increasing number of studies have
highlighted the involvement of myeloid cells expressing PD-
1/PD-L in the immune regulation of CNS disorders in different
contexts. Ioannou et al. showed that granulocytic myeloid-
derived suppressor cells (MDSC) expressing PD-L1 could be
found in the peripheral lymphoid tissue of EAE mice. PD-L1
upregulation was stimulated by IFNγ, and the active transfer
of these cells was able to ameliorate the disease, significantly
decrease demyelination, and delay the onset of symptoms (32).
As an example, studies conducted with MIS416, a small molecule
that is a TLR9 and NOD2 agonist, show interesting results
in the EAE animal model. MIS416 treatment produced an
expansion of myeloid cells and an increased expression of PD-
L1 on the peripheral myeloid subset (CD11b+, CD45high) that
was recruited to the CNS (29). Moreover, MIS416 has shown
success in reducing disease burden in mice with EAE when
administered prophylactically or therapeutically. This protection
depends on the rapid production of IFNγ, a cytokine that was also
significantly increased in MIS416-treated secondary progressive
MS patients (58). MIS416 leads to an upregulation of PD-L1 and
MHCII on neutrophils, macrophages, and infiltrating monocytes
and enhances the homeostatic recruitment of PD-L1-expressing
myeloid cells to the CNS (30).

Monocytes and Macrophages
Infiltrating monocytes and monocyte-derived macrophages are
fundamental for the pathogenesis and the development of
inflammation inside the CNS. Differentiated inflammatory
monocytes and their progeny are increasingly present in the
inflamed tissue and represent the most important executors
of GM-CSF-dependent pathogenesis (54). In 2019, Schwartz’s
group showed that immune checkpoint blockade targeting the
PD-1/PD-L1 pathway might have beneficial results in a tau-
driven disease model resembling Alzheimer’s disease (AD).
The use of PD-L1 blocking antibodies resulted in increased
immunomodulatory monocyte-derived macrophages within the
brain parenchyma, which ultimately led to the modification of
brain pathology and the restoration of cognitive performance
(59, 60).

Yuan et al. conducted a study exploiting an animal model
of intracerebral hemorrhage (ICH), which accounts for 10–
15% of all acute strokes, and showed that PD-1 expression
is increased in perihematomal tissue and mainly on CD11b+

macrophages. The expression of PD-1 attenuates macrophage-
mediated inflammation and brain injuries (39).

On the other hand, in an animal model of spinal cord injury,
Norden’s group showed that macrophages were highly activated
in the spleen of mice, with an increased expression of PD-L1 and
MHCII after the induction of the disease (34).

Neutrophils
The importance of neutrophils in neuroinflammatory disorders
is gaining growing interest, and their involvement in the
pathogenesis and progression of a stroke, MS, and Alzheimer’s
disease is now undeniable (61–64). With their capability to
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release ROS, enzymes, neutrophil extracellular traps (NETs), and
cytokines in different pathophysiological conditions, neutrophils
are involved not only in acute inflammation but also in causing
chronic collateral damage in tissues (65). However, several studies
reported a duality in the function of neutrophils, as they carry
an active contribution both in a pro-inflammatory and an
anti-inflammatory way. On the one end, neutrophils perform
several crucial functions during all the stages of autoimmune
progression, including antigen presentation, modulation of
several cell types, and direct tissue damage (66). In human
patients, the neutrophil-to-lymphocyte ratio has been proposed
as a clinical marker both for MS and ischemic stroke (67).
Accordingly, the percentage of neutrophils in the infiltrating
cells in EAE, MS preclinical model, increased remarkably during
the disease onset, remaining high until the peak stage and
then drastically decreasing thereafter (68). Moreover, blocking
a fundamental cytokine for the recruitment of neutrophils,
namely CXCR2 (CXC motif chemokine receptor 2), resulted
in reduced disease severity in EAE (69). On the other hand,
several recent papers reported that neutrophils might exert a
protective function in neuroinflammatory disorders, by slowing
down the disease progression (70). On the same note, Khorooshi
et al. reported that MIS416 injected intrathecally in EAE mice
suppressed the disease and recruited neutrophils into the CNS.
In the first phase of the EAE, these neutrophils were described
as “protective,” as they were able to produce IL-10 and express
PD-L1. When tested for in vitro proliferation assays, PD-L1+

neutrophils showed immunosuppressive features, slowing down
lymphocyte proliferation, while PD-L1+ monocytes cannot
(30). Moreover, Melero-Jerez et al. identified myeloid-derived
suppressor cells expressing Arg1+PD-L1+ and Gr1+. These cells
were induced after IFN-ß treatment and once again showed
immunosuppressive features toward T lymphocytes (71).

Microglia
Microglial cells are CNS-resident myeloid cells that are extremely
sensitive to alterations in the homeostasis of the brain. In
autoimmune inflammation, microglia act as a direct link between
the immune system and the CNS (21). Microglial cells express
basal levels of PD-L1 (approximately 20%) in uninfected mice,
but this expression can be increased to over 90% of the cells
within 1 week following a viral brain infection (25). In 2018,
Chauhan et al. exploited a model of chronic murine retroviral
(LP-BM5) infection. They described that the infiltration rate of
T lymphocytes and macrophages, as well as microglial activation,
was remarkably increased in PD-1 KO mice compared to wild-
type animals (27). A basal level of PD-L1 protein expression was
observed on approximately 20% of microglial cells in uninfected
mice, but it reached over 90% of the cells within 7 days following
viral brain infection. In MCMV-induced brain infection, there
is chronic neuroinflammation and the production of IFNγ

by infiltrating T lymphocytes, which induces the upregulation
of PD-L1 in activated brain-resident glial cells. The antiviral
responses are controlled through functional inhibition of effector
CD8+ T cells via the PD-L1 pathway, limiting the consequences
of neuroinflammation (25). During neuroinflammation, both
microglial cells and astrocytes upregulate PD-L1 along with

MHC I and MHC II, suggesting a role for resident glial
cells in limiting CNS pathology (72). PD-L1 expression on
microglia and astrocytes, but not on oligodendrocytes, has also
been reported to inhibit T-cell activation and limit immune-
mediated tissue damage in a mouse model of acute viral
encephalitis (MuPyV encephalitis). PD-1 acts to inhibit the
effector functions of virus-specific CD8+ bTRM during MuPyV
encephalitis (24). This study highlights the role of PD-L1
in mediating protection from viral-induced immunopathology
associated with encephalomyelitis.

Several other studies with murine models illustrate the
immunoregulatory role of microglial cells during chronic,
persistent neuroinflammation. At the peak of the disease in the
EAE model, Hu et al. found that microglial cells were increased
in number and displayed an upregulation of PD-L1 along with
MHC II and CD86. Using an ex vivo co-culture, microglia from
EAE mice inhibited antigen-specific CD4+ T-cell proliferation,
as well as Th1 differentiation via nitric oxide (whose production
was dependent on PD-L1) (31).

Moreover, the adoptive transfer of M2-polarized microglia
expressing PD-L1 attenuated the severity of an established EAE,
demonstrating again the importance of the regulatory role of
PD-L1 in neuroinflammation (73).

In a murine model of chronic neurodegeneration, a prion
disease in the ME7 strain, PD-1 expression was increased on
microglia cells compared to wild-type mice. Moreover, PD-
1−/− mice did not show an increase in myeloid cell infiltration
or a major change in the inflammatory profile. Furthermore,
no changes were observed in the neurodegeneration of the
pyramidal neurons in the hippocampus that indifferently
expresses PD-L1 and PD-L2 both in healthy controls and in ME7
mice. The absence of PD-1 led only to a slight exacerbation in the
behavioral phenotypes (41).

The involvement of the PD-1 axis has also been studied in
a model of surgical brain injury (SBI). PD-L1 was significantly
upregulated on microglial cells both in vitro and in vivo through
the ERK signaling pathway. Consistently, the blockade of the
PD-1 axis using a PD-L1 antibody significantly enhanced brain
edema, exacerbated apoptosis, and increased neurodeficits post-
SBI. On the other hand, the activation of PD-1/PD-L1 signaling
with a PD-L1 recombinant protein significantly attenuated the
inflammatory responses and brain edema post-SBI. Thus, the
PD-1/PD-L1 pathway might be involved in a “self-protection
mechanism” in SBI (40).

Dexmedetomidine, a drug used in a rat SCI model,
inhibits neuroinflammation through the upregulation of PD-
1 on microglia cells mediated by AMPK signaling. PD-
1/PD-L1 interactions downregulate pro-inflammatory cytokine
expression by activating microglia and inducing the M2
polarization of microglial cells (36). Besides suppressing T-
cell activity, the PD-1/PD-L1 axis might also prevent the
immune system from eliminating cancer cells. The role of
PD-L1 on brain tumors might serve as an immune evasion
strategy. Miyasato et al. reported that PD-L1 expression was
upregulated on tumor-associated macrophages/microglia in the
case of primary central nervous system lymphoma (38). In 2017,
Saha et al. demonstrated that the triple-combination therapy of
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anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4, anti-
PD-1, and G471-mIL12 (oncolytic HSV expressing murine IL-
12) healed most mice in two glioma models. This curative effect
was associated with macrophage infiltration and the subsequent
M1-like polarization, along with an increase in the ratio of T-
effector to T-regulatory cells (74). Immune checkpoint inhibitors
function as tumor-regressing factors via the modulation of
the interactions between immune and tumor cells. They lead
to the reactivation of cytotoxic T cells which fight against
cancer cells. Moreover, in 2018, Qian et al. identified the
distribution of tumor-infiltrating T cells and PD-L1 expression
in a model of murine glioma. The group showed that the IFNγ

level was positively correlated with PD-L1 expression in the
glioma microenvironment (37). Finally, in a preclinical model of
Parkinson’s disease, Cheng et al. hypothesized the involvement
of the PD-1/PD-L axis in the pathogenesis of the disease.
The knockout of PD-1 led to an exacerbation in the motor
dysfunction of animals. This was explained by an increase in
microglial activation and release of pro-inflammatory cytokines,
which ultimately led to neuroinflammation in midbrains (33).

Astrocytes
Astrocytes are a very heterogeneous population in the CNS.
Similar to microglia, they can switch to a reactive state and
can modulate the progression of multiple neurologic disorders
both positively and negatively (75). Similar to microglia, during
neuroinflammation, astrocytes can upregulate PD-L1 along with
MHC I and MHC II, suggesting a role for resident glial cells in
limiting CNS pathology (72). Accordingly, Lipp et al. showed an
upregulation of PD-L1 on hippocampal astrocytes in a model
of axonal degeneration (76), suggesting a potential role in the
inhibition of T cells. Gao et al. described the formation of dense
areas of activated astrocytes expressing PD-L1 near the lesions
in a traumatic brain injury model (42). In this model, astrocytes
acted as gatekeepers, by blocking the infiltration of inflammatory
Ly6chi monocytes/macrophages, but not the entrance of tissue
repairing Ly6clowF4/80 (42) cells.

PD-1 PATHWAYS IN HUMAN
NEUROINFLAMMATORY DISORDERS

Immune-Related Adverse Effects of
Checkpoint Inhibitors
Due to the high level of expression of PD-L1, monoclonal
antibodies targeting the PD-1 axis have been developed to treat
a wide variety of human tumors. Nivolumab was the first PD-
1 checkpoint inhibitor approved for the treatment of metastatic
melanoma (77). The approval of these drugs improved the
treatment of several types of cancer. To date, the immune
checkpoint blockade approach is generally safer than common
chemotherapy. On the other hand, the possible side effects on
the immune system are not completely understood, and they
have been associated with irAEs. These side effects mostly involve
compartments like the gastrointestinal tract, endocrine glands,
skin, liver, and the CNS. Neurological autoimmune diseases are
reported within the irAEs in the clinical trials, but at a low

frequency (78). During post-marketing surveillance, neurological
complications have been described with an estimated incidence
of about 3–4% (3, 4). Some authors reported neuromuscular
complications as the most common nervous system condition,
(3) but cases of multiple sclerosis and meningoencephalitis
have been increasingly reported in the treated patients (79,
80). The clinical management of neurological adverse events is
not trivial, which can be attributed to the partial knowledge
of the underlying immunological mechanisms (81). Systemic
corticosteroid therapy is the most common first-line therapy for
irAEs (82). Clear guidelines for the treatment of neurological
adverse events are still missing. Typically, drugs interfering
with the PD-1 axis have been associated with irAEs at a lower
frequency compared to those binding other immune checkpoint
inhibitors (i.e., CTLA-4). The risk rises when these therapies
are combined (83). Neurological irAEs seem to show a different
trend with an overall incidence of 6.1% in patients treated with
anti-PD-1 antibodies, 3.8% with anti-CTLA-4 antibodies, and
12% in combination (84). Diamanti et al. recently reported
common neurological manifestations of irAEs in a small cohort
of 27 oncologic patients, including myositis, inflammatory
polyradiculoneuropathies, and myasthenia gravis, alone or in
combination. The authors suggest that in corticoresistant or
severely affected patients, second-line treatments with IVIg or
plasmapheresis may provide additional benefit (85).

PD-1 and Multiple Sclerosis
The immune-regulatory role of PD-1 in MS, the most common
neuroinflammatory disease, is still to be fully elucidated.
However, studies have demonstrated the importance of the PD-1
pathway in the development and progression of EAE, suggesting
that this pathway might play a role in human disease as well.
In people with MS, the PD-1 gene polymorphism (PD-1.3),
which is related to reduced PD-1 activity, was associated with
a progressive course of the disease, possibly due to a partial
defect in PD-1–mediated inhibition of T-cell activation (86).
Pawlak-Adamska et al. in a population-based case-control study
with 203MS patients investigated and selected four PD-1 single-
nucleotide polymorphisms: rs36084323 (PD-1.1), rs11568821
(PD-1.3), rs2227981 (PD-1.5), and rs2227982 (PD-1.9). The
study revealed that the polymorphic variations could be rather
disease-modifying than MS risk factors (87).

The relative expression of PD-1 and PD-L1 in the PBMCs
of MS patients seems to be significantly decreased compared
to healthy donors (88). Javan et al. showed a general reduction
in the expression of inhibitory receptors like PD-1, CTLA-
4, and TIM-3 in the PBMCs of MS patients, particularly
for PD-1 (89). Moreover, after treatment with autologous
hematopoietic stem cell transplant in MS patients, Arruda
et al. observed a temporary increase in the number of
regulatory T cells and PD-1- expressing CD8+ T cells (90).
The expansion of CD8+PD-1+ T and CD19+PD-1+ B cells
was associated with better clinical outcomes. Interferon-beta, a
primary immunomodulatory treatment for MS, enhances PD-
L1 expression in vitro as well as in vivo on APCs (91). Koto et
al. highlighted differences in the presence of circulating CD8+

PD-1+ T cells according to the stage of the disease. In fact, in
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the disease remission state, CD8+ PD-1+ T cells were decreased
in the peripheral blood of patients with MS and resolved in
patients treated with IFN-β treatment who showed immune-
regulatory cytokine interleukin (IL)-10 expression. On the other
hand, CD8+ PD-1+ T cells were enriched in the CSF of MS
patients, which predicted a good response to subsequent IV
steroid therapy (92).

Regarding the neuropathological analysis of post-mortem
brain tissues, Pittet et al. showed that PD-L1 is largely expressed
in MS lesions compared to controls and that it is colocalized with
astrocytes or microglia/macrophage markers. On the contrary,
PD-L2 expression was notably reduced on brain endothelial cells
of MS brains, while being easily detectable in controls. In this
case, only a small number of infiltrating CD8+ T lymphocytes in
the lesions expressed PD-1 (93). One possible explanation is that
during MS pathogenesis, the inflamed CNS attempts to protect
itself against active T lymphocytes through the expression of PD-
L1. However, this process is not effective since the majority of
CD8+ T infiltrating lymphocytes lack PD-1 and are insensitive to
PD-L1/L2 (93). On a different note, van Nierop et al. reported
that post-mortem brains of patients with an advanced disease
contained a high frequency of CD8+ T cells that expressed
both co-inhibitory (TIM-3 and PD-1) and co-stimulatory (ICOS)
T-cell receptors (94).

The usage of checkpoint inhibitors in clinics (such as
ipilimumab, an anti-CTLA-4 antibody) was associated
with MS development and an increase in MS activity (95).
Other checkpoint inhibitors like nivolumab, ipilimumab,
pembrolizumab, and atezolizumab were associated with MS
relapse (80, 96). A recent meta-analysis described a rapid
progression of MS in 14 patients with MS and concomitant
immunotherapy (97). Gerdes et al., with quantitative NGS,
showed that distinct clonal expansions of CD4+ and CD8+ T
cells in the melanoma and CSF were found during ipilimumab
treatment, and concomitant MS activity permitted conversion
of RIS to MS (97). These data suggest that the protective
antitumor response could be associated with inadvertent anti-
CNS autoimmune response toward different antigens and MS
reactivation (91).

PD-1 and Alzheimer’s Disease
Alzheimer’s disease is the most common cause of dementia
in humans and is characterized by a decline in cognitive
decline and neuronal loss. AD pathologies are characterized
by two conditions: β-amyloid (Aβ)-containing extracellular
plaques and tau-containing intracellular neurofibrillary tangles
(98). The mechanism that underlines the deposition of
β-amyloid and TAU protein remains indecipherable, and
the immune system may play an essential role in the
pathological process (99). Recent evidence suggests that systemic
immunity should be boosted, rather than suppressed, to
promote brain repair through an immune-dependent cascade.
In this context, the PD-1 pathway has been proposed as
a possible target therapy for Alzheimer’s disease (100). In
mouse models of AD, trafficking of blood-borne myeloid
cells (monocyte-derived macrophages) to the CNS was shown
to be neuroprotective. The expression of both PD-1 on T

cells and PD-L1 on monocytes and macrophages decreases
significantly in AD patients and patients with mild cognitive
impairment compared to age and sex-matched healthy controls
(101). Baruch et al. demonstrated that PD-1 blockade evokes
a systemic IFN-γ-dependent immune response that enables
the mobilization of monocyte-derived macrophages into the
brain (100). This process is reminiscent of tissue-specific
immune surveillance induced by ICI blockade in cancer
therapy. Moreover, PD-1 signaling impairments inhibit IL-10
production, suggesting that positive PD-1 signaling increases
IL-10 production. IL-10, in turn, can reduce inflammatory
responses and ameliorate AD pathology as demonstrated in
animal models (102).

Besides modulating peripheral blood cells, this route may
also influence the resident cells of CNS like microglia and
astrocytes. Recent work also showed that PD-L1 was increased
in the CSF of AD patients (6). PD-L1 expression in astrocytes
and PD-1 expression in microglia are close to amyloid
plaques in AD patients and AD animal models. Kummer et
al. demonstrated that PD-1/PD-L1 signaling is an important
factor in Ab phagocytosis, with PD-1 knockout resulting in
increased Ab levels, amyloid plaques, and cognitive deficits
in APP/PS1 mice together with an inflammatory response in
PD-1-deficient microglia (103). Instead, Latta-Mahieu et al.
showed that inhibition of PD-1 checkpoint signaling in some
different animal models by itself is not sufficient to reduce
amyloid pathology (104). In conclusion, the PD-1/PD-L1 axis
is a promising target for AD treatment but will need to be
further examined to translate the data from animal models to
clinical trials.

DISCUSSION

In basic research, the PD-1/PD-L axis has been identified as
being of primary importance to immunosurveillance. Studies
in preclinical models suggest that this axis plays an important
role in different pathological conditions involving the CNS, such
as viral encephalitis, brain tumors, autoimmune disorders, and
dementia. In most cases, the authors describe an upregulation
of PD-1 or PD-Ls during the pathological condition. PD-
L1 and PD-L2 seem to be expressed and upregulated mainly
on myeloid-derived cells, namely, resident microglial cells
and infiltrating macrophages and neutrophils. Conversely, the
receptor PD-1 is predominantly found on T and B lymphoid
cells, although there is some evidence that it can be upregulated
also on activated microglia and macrophages. Under the current
understanding of the PD-1/PD-L1 axis in the CNS, its role
cannot be described uniquely as protective or pathogenic. In
most cases, the upregulation of PD-L1 or PD-L2 helps in
slowing down and limiting the inflammatory process, suggesting
a protective mechanism (40, 73). However, the use of PD-
L1 blocking antibodies might have beneficial results in other
contexts, such as in a tau-driven disease model resembling
Alzheimer’s disease, as described by Schwartz’s group (59).
Moreover, in the first attempt at a therapeutic approach, Hirata
et al. (105) transferred genetically modified dendritic cells
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FIGURE 2 | PD-1/PD-L axis in neuroinflammation. (A) In acute neuroinflammation, CNS infiltrates are renewed 2-3 times a day. Infiltrating myeloid and resident cells

expressing PD-Ls attempt to slow down the inflammatory process through interactions with PD-1 expressed on the lymphoid cells. Due to an overabundance of cells,

some pathogenic cells escape this protective mechanism, causing damage. However, blocking PD-1/PD-L interactions with ICI treatments remove this defense,

leading to the worsening of the inflammation. (B) In chronic inflammation, the PD-1/PD-L axis may not function properly as a result of low or no expression of the

receptor and ligand; therefore, the sustained inflammation continues.
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presenting MOG peptide in the context of MHC class II and
overexpressing PD-L1 before the EAE induction. This treatment
reduced T-cell response to MOG, cell infiltration into the spinal
cord, and ultimately the severity of the disease. Moreover, the
administration of αPD-1 antibody that possesses selective toxicity
both in vitro and in vivo for PD-1+ cells restored mobility
in mice that were paralyzed by EAE (37, 106). Most of the
current knowledge about neurological pathologies is based on
studies of mice. Since murine models cannot reliably reproduce
the complexity of pathologies observed in the central nervous
system, it is widely recognized that this is a limitation in
the understanding of neurological disorders. At the moment,
only a few studies focused on neurological patients and with
controversial results (89, 107).

From the presented results, the PD-1/PD-L axis appears
to be regulating the immune response but is not involved
in determining the disease or in causing exacerbation.
Indeed, inhibition of this axis increases the severity of
neuroinflammation, which occurs as a side effect of PD-1
axis inhibition in cancer (Figure 2A). Most results, however,
rely on mouse models of acute inflammation and indicate
the upregulation of the PD-1/PD-L axis as a counteracting
mechanism trying to re-establish homeostasis. Indeed,

anti-migratory therapies, diminishing the number of blood-
derived CSN-infiltrating cells, are very efficacious in MS.
This suggests that inhibitory checkpoints, including the
PD-1 axis, can take care of the few residual inflammatory
cells still infiltrating the CNS. On the other hand, if the
PD-1/PD-L axis fails in the long term, its contribution to
chronic CNS inflammation leading to neurodegeneration is
not currently known (Figure 2B). The latter hypothesis, if
confirmed, would highlight a potential therapeutic strategy
in fostering, supporting, and reinforcing this axis to treat
chronic neuroinflammation.

This underlines the need for further investigations
to better understand the role of the PD-1 axis during
neuroinflammatory disorders.
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