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Reference exome data for a 
Northern Brazilian population
Alexia L. Weeks1,5, Richard W. Francis   1,5, Joao I. C. F. Neri2, Nathaly M. C. Costa2, 
Nivea M. R. Arrais3, Timo Lassmann   1,6, Jenefer M. Blackwell   1,6 ✉ & 
Selma M. B. Jeronimo2,4,6

Exome sequencing is widely used in the diagnosis of rare genetic diseases and provides useful variant 
data for analysis of complex diseases. There is not always adequate population-specific reference data 
to assist in assigning a diagnostic variant to a specific clinical condition. Here we provide a catalogue of 
variants called after sequencing the exomes of 45 babies from Rio Grande do Nord in Brazil. Sequence 
data were processed using an ‘intersect-then-combine’ (ITC) approach, using GATK and SAMtools 
to call variants. A total of 612,761 variants were identified in at least one individual in this Brazilian 
Cohort, including 559,448 single nucleotide variants (SNVs) and 53,313 insertion/deletions. Of these, 
58,111 overlapped with nonsynonymous (nsSNVs) or splice site (ssSNVs) SNVs in dbNSFP. As an aid to 
clinical diagnosis of rare diseases, we used the American College of Medicine Genetics and Genomics 
(ACMG) guidelines to assign pathogenic/likely pathogenic status to 185 (0.32%) of the 58,111 nsSNVs 
and ssSNVs. Our data set provides a useful reference point for diagnosis of rare diseases in Brazil. (169 
words).

Background & Summary
Next-generation sequencing of protein-coding regions, known as whole exome sequencing (WES), has enabled 
molecular diagnoses for thousands of rare disease patients (reviewed1) and provides useful variant data for genetic 
studies of complex diseases. As the use of this technology spreads world-wide it is becoming more important to 
understand genetic heterogeneity at a population-specific level, and to generate adequate population-specific 
reference data to assist clinical geneticists in assigning a diagnostic variant to a specific clinical condition. One 
region in which this is becoming increasingly important is in South America, and more specifically in Brazil, 
where genetic causes of clinical traits such as congenital microcephaly, ocular disease, need to be differentially 
diagnosed from those associated with Zika virus infection acquired in utero. In examining a cohort of 45 Brazilian 
babies from the State of Rio Grande do Norte we undertook WES to ascertain that none of 44 babies presenting 
with Zika-associated microcephaly were due to pathogenic genetic variants known to be associated with this clin-
ical trait. One baby presented with familial congenital microcephaly. Here we describe the baseline data on vari-
ants identified in this population, with a specific focus on known and novel (i.e. those exclusive to this Brazilian 
population) rare variants that will inform the diagnosis of rare genetic diseases in Brazil. The data also provides 
useful information on novel and common variants that add to our knowledge of genetic heterogeneity in Brazil 
and may contribute to studies of genetic risk factors for complex diseases.

The exome data were processed with GATK 4.0.2.02,3 and SAMtools 1.74 using an ‘intersect-then-combine’ 
(ITC) approach. Variant calling was performed using the GATK best practices and SAMtools mpileup, only vari-
ants identified by both methods were retained. We calculated an average sequence depth of 97.4% at 20X coverage 
and 94.4% at 30X coverage (Fig. 1a). An average transition/transversion (Ts/Tv) ratio of 2.30 was observed for the 
Brazilian sample used here (Fig. 1b).

Sequences were aligned to the hg19 reference human genome and a total number of 612,761 variants were 
identified in at least one individual. Of these variants, 559,448 were single nucleotide variants (SNVs) and 53,313 
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were insertions/deletions (indels). To evaluate admixture in this Brazilian sample we carried out principal com-
ponent analysis on an LD-pruned set of SNVs with minor allele frequencies >0.1. Comparison with 1000 G 
populations indicated predominant admixture between Caucasian and Negroid populations (Fig. 2a), consistent 
with data from the ABraOM database of exome variants from 609 elderly Brazilians from Sao Paulo State5. In 

Fig. 1  (a) WES coverage for the at 20X and 30X depth. Each bar represents an individual sample and the 
percentage of bases with at least 20X or 30X coverage. The red lines mark the 90% and 75% coverages at 20X and 
30X depths, respectively, which are optimal targets for WES that most of the samples achieved. (b) Ts/Tv ratio 
calculated individually for all individuals using SNVs passing the GATK best practice VQSR threshold.

Fig. 2  (a) PCA plot to demonstrate ethnic admixture in the Brazilian sample compared to 1000 G populations 
grouped as African (ACB, ASW, ESN, GWD, LWK, MSL, YRI); Hispanic (CLM, MXL, PEL, PUR); East-Asian 
(CDX, CHB, CHS, JPT, KHV); South Asian (BEB, GIH, ITU, PJL, STU); and Caucasian (CEU, FIN, GBR, IBS, 
TSI). (b) Venn diagram showing overlap between SNVs in two Brazilian samples (ABraOM database of exome 
variants from 609 elderly Brazilians from Sao Paulo State5 and the 45 exomes from Rio de Grande do Norte State 
studied here) compared to large public domain databases.
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comparing our data with the ABraOM database we found 414,769 variants in common with the ABraOM study 
and 197,992 that were unique to our study sample. Comparing the data with large public domain datasets (dbSNP 
1516, 1000 Genomes Phase 37, TWINSUK8, ESP65009, UK10K10, ExAC11 and gnomAD12 databases) we found 
361,524 variants that were unique to the combined Brazilian datasets (Fig. 2b).

The 612,761 variants in our study sample were annotated with VEP13 to provide variant types and conse-
quences (Fig. 3). Most variants were categorised as intronic, exonic or UTR3, consistent with design of the exome 
sequencing capture kit. A total of 248,329 intronic variants, 117,524 exonic variants and 136,266 UTR3 variants 
were present.

Exome variants of interest in diagnosis of rare genetic diseases usually fall within the categories of nonsynon-
ymous SNVs (nsSNVs) and splice‐site variants (ssSNVs). To identify this potentially functional subset of variants 
in our dataset we looked for overlap between our variants and those present in the dbNSFP v4.014,15 database of 
human nsSNVs and ssSNVs. Using the search_dbNSFP40a function we identified 58,111 nsSNVs/ssSNVs in our 
sample that were present in dbNSFP.

To further identify nsSNVs/ssSNVs that may be pathogenic for genetic diseases we determined the number 
that classify as “pathogenic” or “likely pathogenic” according to the American College of Medicine Genetics and 
Genomics (ACMG) standards and guidelines16 (Supplementary Table 1). Of the 58,111 nsSNVs/ssSNVs in our 
sample a total of 12 (0.02%) were classified as “pathogenic” and 173 (0.30%) as “likely pathogenic”. Details of these 
variants is provided in Supplementary Table 2.

Methods
Study population.  Subjects were recruited through the Pediatric Hospital of the Federal University of 
Rio Grande do Norte or through visits to households that had cases suspected of microcephaly in Natal and 
other cities where cases of microcephaly were reported during the 2015–2016 ZIKV outbreak, Rio Grande do 
Norte, Brazil. The sample comprised 45 babies (26 males aged mean ± SD 25.50 ± 7.17 months; 19 females aged 
mean ± SD 24.79 ± 6.73 months), 44 with confirmed Zika-associated congenital microcephaly and one baby with 
familial congenital microcephaly. None of the babies with Zika-related microcephaly had a deleterious genetic 
variant previously known to be associated with genetically determined congenital microcephaly that could 
account for their phenotype (see Supplementary Table 2). Nor did we find a variant that matched deleterious 
variants in dbNSFP v4.0 that would account for the one familial case of microcephaly. The complete list of genes 
and filtering strategy that we applied to look for microcephaly variants is provided in Supplementary Table 3.

Ethical considerations.  This study was undertaken with ethical approval from the institutional review 
board of the Universidade Federal do Rio Grande do Norte/Comissão Nacional de Ética em Pesquisa (CAAE 
53111416.7.0000.5537). Written consent was obtained from the parents or legal guardians of babies who ranged 
in age from 5 months to 40 months. The individual consent included an option to accept or refuse continued 
use of their genetic or clinical data in further studies. The parents or legal guardian of all subjects included in 
the study had given consent for storage and future use of deidentified DNA samples and data for their children.

Whole exome sequencing.  The DNA samples were prepared following the Agilent SureSelect XT + UTR 
v6 protocol and sequenced on a HiSeq. 4000 system using 150 bp paired end chemistry at the Genomics Division, 
Iowa Institute of Human Genetics, University of Iowa, USA. Sequence data was processed with GATK 4.0.2.02,3 
and SAMtools 1.74 using an ‘intersect-then-combine’ (ITC) approach. Variant calling was performed with GATK 
following best practices17 and with SAMtools4 using the mpileup function. Only variants identified by both meth-
ods were retained. Sequence coverage was calculated using BEDtools18 with the -d parameter to calculate the per 
base depth and then the percentage of bases with at least 20X and 30X coverage were calculated.

Variant annotation.  Prior to annotation, the data were normalized and decomposed with VT v0.5772119. 
Variant annotation was performed using the Variant Effect Predictor (VEP v97.3)13. VEP annotated variants as 
splicing, ncRNA, UTR5, UTR3, intronic, upstream, downstream or intergenic, with exonic variants categorised 

Fig. 3  Annotation of identified variants reported by (a) genomic location and (b) the main variant 
consequences. Other variant consequences not in the figure included: stop_lost (164); start_lost (219); protein_
altering_variant (4); incomplete_terminal_codon_variant (8); stop_retained_variant (72); coding_sequence_
variant (16); and mature_miRNA_variant (160).
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as start lost, stop lost, stop gain, frameshift insertion, frameshift deletion, nonframeshift insertion, nonframeshift 
deletion, protein altering variant, incomplete terminal codon variant, stop retained variant, coding sequence 
variant, mature miRNA variant, missense SNV or synonymous SNV.

Overlap with known variants.  Variants in our dataset were compared with data from the Brazilian 
ABraOM databases5 and with large public domain datasets dbSNP 1516, 1000 Genomes Phase 37, TWINSUK8, 
ESP65009, UK10K10, ExAC11 and gnomAD12 databases. To gain a handle on functionality relevant to rare dis-
ease diagnosis, variants in our sample were also compared to the 84,013,490 nsSNVs and ssSNVs present in the 
dbNSFP14,15 v4.0 database.

Principal component analysis.  Scripts used to perform the data processing and plotting for principal 
component analysis are available at https://github.com/richardwfrancis/zika_admixture.

Classification of variant pathogenicity.  To further identify nsSNVs/ssSNVs that may be pathogenic for 
genetic diseases we determined whether they classified as “pathogenic” or “likely pathogenic” according to the 
ACMG standards and guidelines16 using criteria laid out in Supplementary Table 1 and implemented using the 
python script available here: https://github.com/TimoLassmann/Phenoparser/blob/master/scripts/acmg.py.

Data Records
The full set of variants has been recorded as two VCF files: (i) The complete normalised and VEP annotated ver-
sion containing only PASSed variants and (ii) the subset of variants found in dbNSFP, which is further annotated 
with ACMG classification. These files have been deposited in the European GenomePhenome Archive (EGA) 
under the accession number EGAS0000100411220. Summary allele frequency data have also been deposited in 
the European Nucleotide Archive (ENA) under the project and analysis accession numbers PRJEB39409 and 
ERZ1466912, respectively21.

Technical Validation
The Ts/Tv ratio was calculated for each sample using the stats function in BCFtools as a quality control metric. It 
has been reported that a Ts/Tv ratio of 2.8 is expected for WES22. However this varies greatly by genome region 
and functionality23, and is usually ~3.0 for exome regions and ~2.0 outside of exome regions24.

Usage Notes
Summary allele frequency data are available as open access through the ENA. The variant data are made available 
through the EGA. Access to variant data will be granted to qualified researchers for appropriate health related 
uses, subject to review by a study-specific Data Access Committee (DAC).
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