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ECM composition and architecture are tightly regulated for tissue homeostasis. Different
disorders have been associated to alterations in the levels of proteins such as collagens,
fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple
inflammatory processes, both during physiological tissue repair as well as pathological
conditions ranging from tumor progression to cardiovascular disease. Importantly, our
current understanding as to how TnC and other non-collagen ECM components are
secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound
particles released to the extracellular space by most cell types, playing a key role in cell-cell
communication. A broad range of cellular components can be transported by EVs (e.g.
nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred
to target cells, potentially modulating their function. Recently, several extracellular matrix
(ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion
being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases
where ECM integrity is altered, establishing novel concepts in the field such as ECM
nucleation over long distances, and highlighting novel opportunities for diagnostics and
therapeutic intervention. Here, we review recent findings and standing questions on the
molecular mechanisms governing EV–dependent ECM secretion and its potential
relevance for disease, with a focus on TnC.

Keywords: tenascin C, extracellular matrix (ECM), exosomes, fibronectin (FN), tumor progression, cardiovascular
disease, inflammation
INTRODUCTION

Multicellularity drove the emergence of cell differentiation and functional specialization, changing the
continuous communication cells establish with their surrounding environment. A connective substance
among tissues ensuring nurturing and functional coordination between cells evolved, giving rise to the
extracellular matrix (ECM) (1, 2). In addition to providing a physical scaffold, the ECM actively
participates of several biochemical and biomechanical processes related tomorphogenesis, differentiation
and homeostasis. A meshwork generally composed of water, proteins, glycoproteins and proteoglycans,
the ECM exhibits tissue-specific matrix composition and architecture, which provide unique
physicochemical properties (3, 4). Importantly, the ECM is constantly remodelled by cells to
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maintain tissue and organismal homeostasis across conditions (5–
7). Apart from the regulated secretion of specific structural
components, ECM architectural remodeling is orchestrated by
secreted modifying enzymes (metalloproteinases (MMPs) (8) and
their inhibitors (TIMPs) (9), and other enzymes controlling ECM
modification and crosslinking—such as lysyl oxidases (LOX) (10)
or transglutaminases—, and a reciprocal biomechanical crosstalk
with resident cells (11). Several growth factors and cytokines are
bound to the ECM and modulate cell adhesion, differentiation,
growth and migration (12) and its architecture and physical
properties can modulate cell function (13). Conversely, cell
proliferation, spatial arrangement and contractility drives ECM
remodeling (14–16).

The broad functional relevance of the ECM is reflected by the
numerous pathological conditions associated with ECM
alteration or dysfunction. Some of these diseases are related to
genetic abnormalities that imply a decrease in the expression, or
post-translational modification, of certain ECM proteins (17–
20). On the other hand, desmoplasia—an increase in bulk ECM
deposition and/or dysregulated expression of certain ECM
components—(21), causes architectural and biomechanical
alterat ions driving different pathologies , including
cardiovascular diseases, chronic inflammation or cancer.

Tenascins are a family of extracellular matrix (ECM)
glycoproteins composed of five members (Tenascin-C (TnC),
R, W, X and Y), TnC being the best characterized among them
(22). TnC is a hexameric protein which contributes to regulate
cell substrate adhesion through the modulation of focal adhesion
(FA) binding to other ECM components such as fibronectin
(FN) (23), and downstream events such as cell activation,
apoptotic cascades, and migration. TnC is expressed
abundantly during development, especially in the neural
system. However, expression levels of TnC in adults are
substantially reduced and its presence is virtually limited to
stem cell niches and tendons. Increased TnC expression in
adult, differentiated tissues is commonly associated with tissue
damage and repair, as well as with pathological conditions such
as dysregulated inflammation (as occurs, for example, in
atherosclerotic lesions) or tumorigenesis (24–31).

Despite their physiopathological relevance, our understanding
of the intracellular mechanisms regulating the trafficking and
secretion of TnC and many other ECM components is limited
(32). Notably, recent studies support that extracellular vesicles
(EVs), including exosomes and microvesicles (MVs), can act as
carriers of ECM components, including TnC and FN, a well-
known, evolutionarily related partner of TnC (33, 34). Here, we
review our current knowledge on the role of EVs on TnC secretion
and ECM deposit, and their potential relevance for inflammation
and disease.
PHYSIOPATHOLOGICAL ROLES OF TnC
AND THEIR MOLECULAR BASIS

Certain features of tumor progression and metastasis are currently
considered subverted, aberrant wound repair programs (35),
Frontiers in Immunology | www.frontiersin.org 2
where ECM deposit and remodeling by resident fibroblast is
dysregulated. This altered stromal ECM can in turn promote
several cancer hallmarks (36). For example, sustained proliferation
requires cell adhesion to ECM and growth factor-dependent
activation of Erk and PI3K, to promote G1/S transition. The
ECM can also promote the induction of hypoxia-triggered
angiogenesis acting as a reservoir of angiogenesis regulators,
activate cell invasion through the regulation of cell adhesion and
invadopodia formation, or modulate the immune response (13,
37). Several ECM components exhibiting differential expression
and/or arrangement in tumors play relevant roles in the
progression of the disease. Altered deposition of different
collagen types can regulate cell growth, differentiation and cell
migration. An excessive deposition of collagen I in many solid
tumor types confers rigidity to the tumor stroma, and its altered
assembly and crosslinking, mechanical properties and
architectural features such as anisotropy, affect tumor cell
biology (3, 5). Other key ECM components also exhibit altered
expression in cancer. FN is considered a major building block in
ECM fibre assembly and remodeling, and can bind to other
molecules including heparin, collagens, tenascins or fibrin to
modulate their assembly and their interaction with cells (38, 39).

During development, TnC is expressed robustly and contributes
to physiological epithelial-to-mesenchymal transitions (EMT) and
morphogenesis (25). In contrast, in normal adult tissues TnC
expression is usually low, except for stem cell niches and tendons.
Upon tissue damage, TnC can be rapidly upregulated and
contributes to physiological inflammation and repair. Owing to
its capacity to promote proinflammatory and activated states in
different cell types, increased TnC deposition is associated with
several pathological conditions. Persistent high levels of TnC can
promote chronic inflammation and desmoplasia, driving
pathological events such as fibrosis or oncogenesis.

TnC was initially characterized as a modulator of cell
adhesion, either through its interaction with other ECM
components (23) or through direct binding to specific cell
receptors. Its binding to integrins such as a9b1, aVb3, a8b1
and aVb6 (27, 28) can induce EMT in several cancer models
(40–42), modulate the dynamics of focal adhesions (43, 44) or
reduce apoptosis. These characteristics support its potential as a
marker of poor prognosis, underpinned by its impact on cell
motility and invasion, aberrant angiogenesis (45) and
immunomodulation (31, 46, 47). Importantly, TnC modulates
the activation state of immune cells such as macrophages and
lymphocytes; this appears to be an important aspect of its
contribution to both physiological tissue repair, as well as
pathological conditions involving tissue remodeling (48–50).

Several mouse models reveal the importance of TnC in tumor
progression and its implication in tumor cell survival, proliferation,
invasion and metastasis (51, 52). TnC can influence fibroblasts and
differentiation of epithelial cells onto myofibloblasts through the
tumor growth factor-b (TGF-b) signalling pathway (53), regulate
inflammatory signalling by an activation of Toll-like receptor 4
(TLR4) (54) or modulate epidermal growth factor (EGF)-receptor
driven cell proliferation cell proliferation (55). As part of the
AngioMatrix (56), TnC can participate in the angiogenic switch,
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and generate an aberrant vasculature within tumours. Both as a
result of this promotion of aberrant angiogenesis, as well as through
direct modulation of immune cell populations, TnC is likely an
important contributor to the emerging role of stromal ECM
composition and architecture as central regulators of antitumor
immunity (57–60). An intriguing feature that may be particularly
relevant for the rationalization of TnC as a biomarker, or even
therapeutic target, in the context of antitumor immunotherapy is its
potential to selectively determine macrophage polarity towardsM1-
like, cytokine-releasing phenotypes (mainly through its interaction
with a9b1, aVb3 and TLR4 receptors); and promote an anergic
state in T-cells (presumably by interfering with integrin signalling)
(61, 62). Recent studies have shown the beneficial effects of targeting
TnC in antitumor immunotherapy in breast (63) and oral
squamous cell carcinoma (64) mouse models. Combinational
therapy with monoclonal antibodies that inhibited TnC-mediated
TLR4 activation and anti-PD-L1 treatment significantly reduced
tumor growth and lung metastasis in vivo (63). In line with these
results, ablation of TnC or its effector CCR7 implied inhibition of
the lymphoid immune-suppressive stromal properties, reducing
tumor progression and metastasis in oral squamous cell
carcinoma (64), indicating a relevant approach in the therapy of
head and neck tumors.

TnC has a prominent role in cardiovascular tissue
remodeling. Almost invariably, TnC re-expression is associated
with cardiovascular pathological processes coursing with
inflammation, such as myocardial infarction, hypertensive
cardiac fibrosis, myocarditis or dilated cardiomyopathy (65–
67). Upregulation of TnC is also a hallmark of the
proatherogenic vessel remodeling, driving the progression of
atherosclerotic disease (AS) (68–70); however, TnC deficiency
in mouse models of genetic hypercholesterolemia exacerbate
atherosclerosis and promote lesions prone to rupture, reflecting
the delicate balance between the physiological roles of TnC in
tissue homeostasis (71).

TnC can play a role in several diseases derived from a fibrotic
state generated upon tissue damage (50, 52, 72, 73). For example,
in neuroinflammation (29), brain injury (74) or glioma (59),
where ECM deposition is enhanced, TnC accumulation is found
associated with blood-brain barrier disruption, neuronal
apoptosis and activation of inflammatory pathways (mitogen-
activated protein kinases and NF-kB). Finally, TnC is implicated
in other fibrotic diseases such as kidney and liver damage
through orchestration of the fibrotic niche and is considered as
a biomarker of poor prognosis (75, 76).
THE STANDING QUESTION OF TnC
SECRETION

ECM component biogenesis, intracellular trafficking and export
pathways are tightly controlled, but our current mechanistic
understanding of these processes, particularly regarding non-
collagen ECM components, is rather limited. Collagens, a family
of large fibrillar ECM proteins, constitute over 30% of the total
protein mass in multicellular organisms (77–79). These proteins
Frontiers in Immunology | www.frontiersin.org 3
are initially synthesized as an immature form, known as
preprocollagen, in the endoplasmic reticulum (ER). These
polypeptides undergo hydroxylation of proline and lysine
residues and are assembled as triple helices, yielding
procollagens (80). Procollagens must then be trafficked to the
Golgi apparatus for further posttranslational modification. The
coat complex type II (COPII) vesicle transport machinery
facilitates the regulated transfer of proteins from the ER to the
ER-Golgi intermediate compartment (ERGIC) and cis-Golgi (81,
82), and is strictly required for procollagen trafficking and
secretion: mutation or genetic ablation of core COPII
components such as SAR1B, SEC23A, SEC24A/C or SEC13
profoundly affect the secretion of collagens and lead to their
accumulation in the ER (32). In contrast with smaller cargoes,
procollagen units are too big (~300nm in length) to be
incorporated into conventional ~80-nm COPII (83), and
additional regulators (transport and Golgi organization protein
1 (TANGO1), cutaneous T-cell lymphoma-associated antigen 5
(cTAGE5), trafficking From ER To Golgi Regulator (TFG), or the
KHLH12-cullin-3 ubiquitin E3 ligase complex) (84–87) have
been identified as required for nascent COPII vesicles to
accommodate and carry these rigid fibrillar molecules. Finally,
procollagens are transported in tubular structures emanating
from the Golgi to the plasma membrane (PM) and secreted to
the extracellular space, where they will be cleaved to generate
tropocollagens and assembled in crosslinked fibrils (Figure 1).

While this canonical route is relatively well characterized for
collagens, several of its regulators, including core components of
the COPII machinery, appear to be dispensable for the secretion
of other ECM components. Indeed, the mechanisms governing
the trafficking and secretion of a majority of non-collagen ECM
proteins have remained puzzlingly elusive (32, 88). Soluble FN,
which assembles in fibrillar structures upon secretion to the
extracellular space and binding exposed integrins (38), is initially
synthesized in the ER (32, 89). Current models describe its
transport to the extracellular space through the secretory
pathway (90–93), as it reaches the Golgi apparatus (94–98) to
undergo further glycosylation (39). However, FN secretion seems
to be unaffected by mutation or genetic ablation of core COPII
components that severely impair collagen transport from the ER,
such as SEC23A (99), SEC24D (100) or TANGO1 (32, 101), and
its trafficking remains incompletely explored. Proteins such as
periostin (89) and transmembrane P24 Trafficking Protein 2
(TMED2; the human homolog of emp24) (102) are proteins
potentially associated with the export of FN from the ER.

TnC has a six arm-structure termed hexabrachion, consisting
of six 320kDa monomers stabilized by amino-terminal
disulphide bonds. In contrast to FN, oligomerization of TnC is
a rapid process that takes place cotranslationally in the ER, and
two models have been proposed. In one model, the six
monomers are simultaneously assembled into a single
hexabrachion, as suggested by pulse-chase approaches which
found no apparent intermediate species (103). In the second
model, oligomerization is a two-step process (104), whereby two
intermediate trimers are first formed through the stabilization of
alpha-helical coiled-coil interactions at their amino-terminal
April 2021 | Volume 12 | Article 671485
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domains. Then, hexabrachion assembly is favoured by an
increase in homophylic binding affinity between the two
trimers. Similar to FN, evidence supporting TnC transit
through (105), and glycosylation at (24), the Golgi, suggests
that TnC is trafficked from the ER to the Golgi apparatus. This
transfer appears to be a rate-limiting step for secretion output
(103) and is affected in cells treated with brefeldin-A, an inhibitor
of ER-Golgi vesicle transport (106). However, like for many
other ECM components, the precise mechanisms regulating TnC
trafficking and secretion remain incompletely characterized. An
unexpected, emerging mechanism for the secretion of these and
other non-collagen components, is extracellular vesicle
(EV) secretion.
Frontiers in Immunology | www.frontiersin.org 4
EV BIOGENESIS AND GENERAL
FUNCTIONS

Recent studies show that extracellular vesicles (EVs) can export
ECM components to the extracellular environment (107),
constituting alternative mechanisms for ECM secretion and
deposition and implying specific regulatory principles for their
trafficking (108, 109). EVs are a heterogeneous group of cell-
derived membranous structures that include exosomes and MVs,
which defer on their intracellular origin (110).

Exosome biogenesis takes place in the endosomal compartment
through endosome membrane budding (111–113). Several
mechanisms have been implicated in this process. One of the
A B

C

FIGURE 1 | The secretory pathway and collagen secretion. (A) Schematic representation of cell secretion routes. The ER constitutes the main protein factory in the
cell. ER-associated ribosomes translate proteins that can be subsequently inserted onto the membrane, or released into the ER lumen. After translation, several
modifications can be added to proteins bydifferent enzymatic activities. Proteins are then transported to the Golgi apparatus, mainly through the COPII-dependent
pathway. Within the Golgi, further modifications are carried out. Finally, proteins will be sorted into vesicles and transported to their final destination, including the
plasma membrane (PM) (receptors, adhesion proteins and extracellular proteins) or endosomes. (B) Collagens are initially secreted as procollagens. Once in the
extracellular space, terminal peptides are cleaved by the procollagen peptidase to form tropocollagen. Finally, collagen fibrils are assembled via covalent cross-linking
by lysyl oxidases, which link hydroxylysine and lysine residues. Multiple collagen fibrils assemble into collagen fibers. (C) In addition to COPII machinery, other
regulators are necessary for the proper export of procollagen from the ER. TANGO1 participates in the sorting of procollagen in vesicles through a direct binding
through Hsp47 in the lumen of the ER. Preprocollagen peptides are synthesised and assembled in the lumen of the ER. Once procollagens are formed, TANGO1,
previously recruited trough the interaction to Sec23 (Sec23/24 complex), position the collagen fibrils in the budding vesicle (Stage I). Later, as the vesicle grow,
TANGO1 pushes procollagen molecules towards the lumenal face of the ER (Stage II). In stage III, ER vesicles are big enough to accommodate collagens. TANGO1
separates its SH3-like domain from Hsp47/collagens. This is the followed by the release of TANGO1 from Sec23 and the recruitment of Sec13/31 to the ER
membrane. Finally, in stage IV, fission of the collagen-containing vesicles is undertaken and TANGO1 return to interact with the Sec23/24 complex (84).
April 2021 | Volume 12 | Article 671485
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most studied mechanisms is dependent on the ESCRT (Endosomal
Sorting Complexes Required for Transport) machinery, whose four
conserved complexes (ESCRT-0, -I, -II and -III) (114–116) assemble
sequentially on the cytosolic surface of the endosomal membrane.
Ubiquitylation is an important event not only for ESCRT-
dependent vesicle formation, but also for the specification of
cargo to be sorted onto exosomes (113, 117). Additionally,
evidence for an ESCRT-independent mechanism for exosome
biogenesis has been described (118). Specific lipid species such as
ceramides (derived from sphingomyelinases-mediated hydrolysis of
sphingomyelin) (119), LBPA (lyso-bis-phosphatidic acid) (120) or
cholesterol, as well as proteins that modulate membrane
organization, including tetraspanins (121) and caveolin-1 (108,
122, 123), have been recently identified as important regulators of
ESCRT-independent endosome dynamics and exosome biogenesis.

On the other hand, MVs are derived from scission of small
plasma membrane-derived vesicles (110). This process—termed
ectocytosis—shares many similar steps to exosome formation.
The ESCRT machinery, as well as cytoskeletal elements and their
regulators, such as RHO family of GTPases and ROCK, are
important for the formation of MVs together with other
membrane-associated proteins, including tetraspanins and
membrane cargos (124) (Figure 2).

Virtually every cell type can release EVs, and these structures
are abundant in the extracellular space and body fluids such as
Frontiers in Immunology | www.frontiersin.org 5
plasma, urine and saliva. A broad spectrum of cargoes (e.g.
nucleic acids, proteins or signalling molecules) can be sorted
onto these vesicles and subsequently exported and transferred to
target cells. Many cargoes have been related to the modulation of
the biology of acceptor cells in multiple physiologic and
pathologic scenarios.

Immune responses are exquisitely regulated to ensure defence
from external pathogens or physicochemical insults as well as
internal alterations such as tumor cell growth, while avoiding
damage of the self. EVs are crucial in the intricate cell-cell
communication involved. EVs are frequently described as pro-
inflammatory mediators and participate in the propagation of
inflammatory signals during infections and chronic inflammatory
diseases among components of innate immunity. Mechanistically,
several cargoes such as cytokines, receptors and microRNAs can
modulate the activation state and function of macrophages,
neutrophilic granulocytes and natural killer (NK) cells (125). EVs
also participate of several steps of acquired immunity and antigen
presentation. Antigen presenting cells (APCs), including B
lymphocytes, dendritic cells (DCs) and macrophages can release
major histocompatibility complex II (MHC-II) through exosomes
enabling antigen presentation to CD4+ T lymphocytes at distance
(126). EVs released by tumor cells or several pathogens can
constitute a relevant source of antigens for APCs for their
processing and presentation to CD4+ T lymphocytes (127, 128).
A B

FIGURE 2 | Extracellular vesicle formation. (A) Extracellular vesicles are classified according to their origin. Microvesicles are formed from the PM in a process called
ectocytosis that depends on the ESCRT machinery and the actin cytoskeleton. Exosomes are derived from the budding process on the membrane of the
endosome/multivesicular body, and released to the extracellular space upon fusion of the endosome with the PM. (B) Diagram of the structure of the ESCRT
machinery and of ESCRT-independent mechanisms implicated in exosome formation.
April 2021 | Volume 12 | Article 671485
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EVs also actively participate of the immune synapse between
lymphocytes and APCs, and lymphocytes specifically relocalize
multivesicular bodies (MVBs) towards the contact site, leading to
a localized increase in exosome secretion and unidirectional transfer
of microRNAs that modulate downstream responses. Highlighting
the key role of EV communication in this process, inhibition of
exosomes formation/secretion dysregulates gene expression in
APCs (129) and reduces antibody production in activated B-cells
(130, 131).

Immune cell-derived EVs are also involved in other
inflammatory processes such as tissue fibrosis, where an increase
in ECM deposition has been described to impact cell behaviour,
including cell proliferation, migration and differentiation, and
subsequently participating in the development of several
pathologies. A prominent EVs profibrotic cargo is interleukin-1b
(IL-1b) (132), which is released by DCs upon binding of ATP to
P2X purinoceptor 7 (P2X7R) (133) and can act on several IL-1b)
receptor-expressing cell types (134, 135). IL-1b can, in turn, induce
vesicular secretion of interleukin-6 (IL-6) in mast cells, amplifying
inflammation (136). Other ligands that induce fibrosis such as TGF-
b or TNFa have also been described as EVs cargoes.

EVs-dependent secretion and inter-tissue communication is
also involved in vascular physiopathology (137–140). EVs-
mediated communication can be involved in either AS
progression or lesion prevention. Krüppel-like factor 2 (KLF2)-
expressing endothelial cells (ECs) (an atheroprotective hallmark)
can load miR-143/145 in exosomes to control smooth muscle cell
(SMC) activation and reduce AS lesion formation (141). In
contrast, proinflammatory cues on ECs repress the presence of
Ten-eleven translocation 2 (TET2) dioxygenase in exosomes,
promoting plaque formation (142). SMCs can influence back
endothelial function through EVs: SMC-derived E cargo miR-
155 increases endothelial permeability (143). EVs also play a role
in the development of an inflammatory environment in the
progressing atherosclerotic plaque (144–146). EVs may also
directly contribute to subendothelial matrix remodeling and
lesion progression, either through recently discovered ECM
depos i t ion (see be low) , as we l l as sphingomyel in
phosphodiesterase 3 (SMPD3)-dependent calcification (147).

Myocardial injury engages mechanisms to repair and
maintain cardiac function, including cardiac fibrosis by
activation of resident fibroblasts through TGF-b, EDN-1,
PDGF, CCN2 and AGTII ligands, which can be released
through EVs derived from cardiomyocytes and ECs. Reflecting
a role in events after myocardial injury, miRNAs cargo signatures
on EVs (including miR-1, -208, -214) (148, 149) emerge as good
biomarkers of myocardial infarction detection and prognosis
from plasma samples.

Tumor cells (TCs) usually secrete large amounts of EVs,
which can influence different aspects of tumor progression and
behaviour, including tumour-associated fibroblast activation,
angiogenesis, immunomodulation, matrix remodeling or the
establishment of pre-metastatic niches. TC populations are
heterogeneous (150–152). TCs communicate inside the tumor
and can transfer part of their unique characteristics to other
surrounding cancer cells. For example, tumour-derived EVs can
Frontiers in Immunology | www.frontiersin.org 6
modulate local growth via autocrine transfer of mutant KRAS
proto-oncogene to wild type KRAS-expressing colon cancer cells
(153). Similarly, glioblastoma microvesicles transport specific
RNAs that promote neighbour proliferation (154). EVs can
also transmit their capacity to adapt to the characteristic tumor
stresses such as hypoxia, changes in pH and nutrient
deprivation (155).

Tumor angiogenesis and abnormal vascularization
determines its behaviour and response to therapy (156, 157).
Many pro-angiogenic factors are tumoral EV cargoes, such as the
vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF), TGF-b, TNF-a or fibroblast growth
factor (FGF) (158). Tumour-derived exosomes can also induce
vascular permeability in distant organs in breast, melanoma and
colorectal cancers (159–161).

Antitumor immunity and its suppression by tumors are
another major focus of research and therapeutic intervention,
and EVs also play a role in this process. DCs induce T-cell and
NK cell activation in an EV-dependent manner to mount an
antitumor response (126, 162–164). As the tumor progresses,
TCs deploy mechanisms such as attenuation of NK cell
cytotoxicity (block of NKG2D pathway), reduction of T-cell-
mediated killing or activation of myeloid-derived suppressor
cells (TC-derived EVs can contain PGE2, TGF-b and
HSP72) (127).

Under physiological conditions, fibroblasts are in a quiescent
state. Upon tissular damage, they can enter an activated state,
whereby a “secretory phenotype”—to produce both paracrine
signals and new ECM components—and contractile activity—for
the biomechanical remodeling of tissue—are acquired.
Dysregulated persistent activation is a hallmark of tumour-
associated fibroblasts (TAFs) (165) and other pathological
conditions coursing with fibrosis and desmoplasia. Tumour-
derived EVs can induce fibroblast activation (166), by virtue of
microRNA cargo subsets modulating motility, collagen
contraction or proliferation (167). TC-derived exosomes can
also induce secretion of specific ECM components, such as FN
(168, 169), as well as ECM remodeling enzymes (170, 171).

Evidence suggests that EVs can actively participate of ECM
sculpting (172, 173), through ECM remodeling cargoes such as
MMPs (174) or lysyl oxidases (175, 176). Active MMPs such as
MMP-1, -13, -2, -3 or -14 are detected on the surface of EVs
derived from several tumor cell types. Moreover, ADAMs family
(regulators of cell adhesion and migration) components and
more specifically the two most notorious members of this family
(ADAM10 and ADAM17) have been described as EVs cargoes
(177, 178).
EVs AS ECM CARRIERS: IMPLICATIONS IN
ECM SECRETION

Recent studies support that some ECM components are EVs
cargoes themselves, implying that trafficking and export
mechanisms could coexist with canonical secretion pathways,
modulating ECM composition and architecture and
April 2021 | Volume 12 | Article 671485
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subsequently impacting on cell behaviour. Additionally, EV
function could also be linked to ECM remodelling in the sense
that ECM fiber components might influence the retention of EVs
at specific regions through discrete subsets of receptors in their
surface (168), therefore contributing to their selectivity for cell
type targeting and favouring a specific evolving composition and
architecture of the ECM during its remodeling.

Early observations hinting at the involvement of EVs in
matrix secretion and deposition described “matrix vesicles”
(179, 180), as a relevant mechanism for osteoblast-mediated
primary bone mineralization (181, 182). Secreted matrix
vesicles initiate the nucleation of calcium phosphate crystals by
an influx of Ca2+ and PO4

3- through their membrane
transporters and the action of several intraluminal enzymes
such as tissue-nonspecific alkaline phosphatase (TNSALP),
ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1)
or phosphoethanolamine/phosphocholine phosphatase 1
(PHOSPHO1) (182). Interestingly, a role for matrix vesicles
has been also described in vascular SMC-driven calcification
during AS progression (147).

Our understanding of the implication of EVs in the secretion
and deposition of specific ECM components has since
considerably lagged. Recent studies have shown that ECM
proteins are exported and deposited by EVs (183, 184) (www.
vesiclepedia.org, www.exocarta.org) and animal models in which
exosome production has been abrogated through disruption of
neutral sphingomyelinase (NSMase) activities show marked
Frontiers in Immunology | www.frontiersin.org 7
alterations in ECM deposition and architecture (185, 186). FN
is a prominent ECM cargo in EVs from different cell types, and
the blockade of exosome secretion partially alters, although does
not completely impair, FN fiber deposit (108). Other groups have
recently described that FN is transported by EVs. FN
accumulates at the surface of exosomes through its binding to
heparan-sulfate (187, 188) and that upon beta1 integrin
endocytosis (189), FN can be redeposited from the endosomal
compartment at the basal cell surface in epithelial cells
(cortactin-dependent) (190) and in epicardial cells (mediated
by Bves and NDRG4) (191). Moreover, Weaver and colleagues
suggested that exosome secretion plays a key role in autocrine
deposition of FN at the leading edge of the cells: Golgi secreted
FN would be in an inactive form previous to its assembly at the
cell surface (38), exosomal FN, presumably sourced from the
endosomal compartment (109, 189, 191) would constitute a
rapid alternative pathway for competent adhesive substrate
deposition (Figure 3).

FN-containing EVs have been associated with tumor
progression. Certain features of tumor cells can be altered by
the presence of FN-positive EVs in the media. Weaver and
coworkers have characterized that exosome secretion in
invadopodia is essential for FN resecretion, and regulates cell
adhesion, directional motility and invasion in tumor cells (109,
192, 193). Invasiveness of fibroblasts is positively regulated by
FN-positive EVs treatment (194). Exosomal FN can modulate
other functional programmes such as proliferation (195), signal
A

B

FIGURE 3 | Structure and exosomal secretion of FN. (A) Structure of a FN dimer stabilised by a di-sulphide bond. Basic domains (FNI, II, and II) and the main
binding sites to other ECM proteins and receptors are depicted. (B) Exosome-mediated FN secretion and cell migration. Caveolin-1-dependent b1 integrin
endocytosis is implicated in the internalization of extracellular FN. Upon endocytosis, FN is transported to endosomes, where exosomes are formed (stage I) (189).
Exosomal FN is then released at invadopodia, and induces cell migration and invasion through its internalization (138) or via activation of integrin-mediated pathways
(192) (stage II).
April 2021 | Volume 12 | Article 671485

https://www.vesiclepedia.org
https://www.vesiclepedia.org
http://www.exocarta.org
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Albacete-Albacete et al. Exosomal Secretion of TnC
transduction (138, 196), endocytosis (197) or cell survival (198).
Finally, exosomal FN can modulate tumor immunity. Secretion
of FN-containing EVs can be induced by tumour-associated
leukocytes (199), but these FN pools can also induce pro-
inflammatory IL-1b) production by macrophages (200). FN
interacts with acceptor cells through plasma membrane
heparansulfate and a5 integrin receptor (109, 187, 200).
However, the mechanism of action of exosomal FN seems to
require its internalization (138). This apparent discrepancy may
indicate that exosomal ECM could be activating several pathways
depending on the mechanism by which they interact with
acceptor cells (Table 1).
EV SECRETION: AN INTEGRAL ASPECT
OF TnC BIOLOGICAL ROLES

Recent studies demonstrate that exosome secretion is strictly
required for appropriate extracellular TnC deposition by both
tumor cells and different fibroblast types (108, 122) (Figure 4).
Circulating exosomes from cancer patients frequently carry TnC
(24), and several cancer cell types secrete TnC in EVs in vitro (183,
184) (www.microvesicle.org, www.exocarta.org). Disruption of
exosome secretion by pharmacological inhibition or RNAi-
mediated depletion of NSMase 2 led to accumulation of TnC at
the ER and decreased extracellular TnC fibre formation. These
studies excluded internalization of extracellular TnC and established
that exosome-secreted TnC is synthesized de novo. Mechanistically,
caveolin-1 [Cav1; a pivotal regulator of membrane organization,
mechanoadaptation, ECM remodeling and cholesterol efflux (16,
203–205)] is strictly required for the appropriate biogenesis of
Frontiers in Immunology | www.frontiersin.org 8
exosome subpopulations of different sizes, and the sorting onto
them of specific ECM components, through the control of
cholesterol content in endosomal compartments. Interestingly,
this effect varies across ECM exosome cargoes, suggesting that the
extent of dependency on different secretion routes may be specific
for each ECM component; for example, in contrast with TnC, FN
deposition is only partially decreased upon disruption of
exososomal secretion. Cav1 deficiency, exogenous cholesterol
loading or pharmalogical inhibition of cholesterol trafficking from
endosomes all markedly impaired exosomal secretion of TnC.
Cholesterol homeostasis emerges as an as yet poorly understood
mechanism by which membrane trafficking and metabolism
potentially feed onto functions allocated at the endosomal
compartment, including cell signalling regulation (206, 207) and
exosome secretion (108).

The involvement of Cav1 as a central regulator of this process
is not trivial. Cav1 is a central node simultaneously regulating the
transduction of information on ECM composition and physical
properties (204), and the coordinated remodeling of both aspects
(16, 108, 208). This reciprocal crosstalk [first discussed by Bissell
and Hall as stromal dynamic reciprocity (209)] is key to
understand both physiological and pathological processes
pertaining different tissues. Furthermore, collagens are not a
class of ECM components correlating with TnC in their Cav1-
dependent sorting onto exosomes; in fact, Cav1 might regulate
oppositely COPII-dependent deposition of collagen, and
exosome-mediated secretion of other ECM components (210).
It remains to be studied whether other components of caveolae
such as PTRF—which does appear to modulate exosome-
mediated secretion (211)—also regulate the sorting of ECM
components to exosomes. Cav1-dependent regulation of tissue
architecture and cell function is relevant for several conditions in
TABLE 1 | Literature contributing evidence of FN as an EV secreted cargo. EVs origin: cell type/tissue from which EVs containing TnC were detected; WB: western
blotting.

FN
EVs origin Target cell Detection approach Result Ref.

Myeloma RPMI-8226 and CAG) Human bone marrow stroma (HS-5),
Human umbilical vein endothelial cells

WB and light microscopy Exosome-cell interaction and internalization (187)
Myeloma tumour growth and progression
(p38 and pERK activation)
Increased endothelial cell invasion

Fibrosarcoma (HT1080) Fibrosarcoma (HT1080) WB and sucrose gradient Increased motility (192)
HIV-1 infected dendritic cells T-lymphocyte WB Viral trans-infection (201)

Increased IFN-g, TNF-a, IL-1b and RANTES
Activation of p38/Stat pathways

Human trabecular meshwork cells N/A WB Dexamethasone reduces exosomal FN levels (188)
Fibrosarcoma (HT1080) Fibrosarcoma (HT1080) WB and sucrose gradient Tumour cell migration (109)
Transplantation patient serum N/A WB Allograft rejection biomarker (202)
Human trophoblast Macrophage WB Increased IL-1b production (200)
Mesenchymal stem cells Bone marrow (SH-SY5Y) WB and Proteomics Increased mitosis and growth factor secretion (195)
Endothelial cells Hepatic stellate cell WB and electron microscopy Increased AKT phosphorylation (138)

Increased cell migration
Tumour-associated leukocytes Breast cancer (AT-3) WB and FACS Increased exosomal FN (199)

Colon cancer (4T1, CT26) Increased tumour cell invasion
Fibroblast (IMR90) Fibroblast (IMR90) Proteomics, FACS Fibroblast invasion (194)
Primary melanocyte Primary melanocyte WB, proteomics, light microscopy Increased melanocyte

survival after UVB radiation
(198)

Microvascular endothelial cells Oligodendrocyte precursor cell (OPC) Proteomics, enzyme-linked
immunosorbent assay

OPCs survival and proliferation (197)
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which TnC has a prominent role, such as tumor progression or
cardiovascular remodeling (16, 212, 213). An additional standing
question is whether Cav1 expression (both during exosome
biogenesis as well as at destination) may determine the
specificity of exosome-mediated communication, given the
prominent role integrins appear to have in this process (168).

Exosome secretion appears to account for the major share (if
not the totality) of TnC extracellular release and deposition (108);
thus, virtually all biological/physiopathological roles of TnC
should be framed by the specific features of exosomal
communication. Exosomes enable the transport of cargoes
across interorgan distances, and TnC-containing exosomes can
nucleate ECM beds in different organs of TnCKO mice such as
liver and lungs upon intravenous injection (108); these
observations suggest that exosomal deposit of TnC and
associated ECM components contributes significantly to pre-
metastatic niche formation (169). These pools of exosomal TnC
are fully functional and apart from fostering ECM fiber nucleation,
efficiently induce proinflammatory states and features compatible
with EMT in breast cancer cells in 2D and 3D culture models (108,
122). Exosomal TnC levels also correlate with invasiveness in
pancreatic ductal adenocarcinoma (184, 214), and induce invasion
through WNT/b-catenin signaling, a crucial pathway in EMT
modulation, and activation of the NF/kB pathway (214).
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Exosomes have also recently emerged as efficient platforms for
immunomodulation in the tumor microenvironment and other
tissue contexts (131, 215); it is likely that the prominent roles TnC
has as a regulator of immune cell function (see first section) are
exerted at least in part through exosomes. Interestingly, exosomes
released by SARS-CoV2-infected cells are significantly enriched in
TnC and could promote the propagation of inflammation to
distant sites (216). Serum TnC levels have been explored as
diagnostic/prognostic markers in different pathologies (24), but
whether all circulating TnC is exclusively trafficked through EVs is
yet to be determined. Other examples of paracrine secretion of
TnC in exosomes include osteoblasts (217), airway epithelial cells
(218) and several tumor cells (183, 184), where exosomal TnC has
been associated to alterations of pre-existing ECM, impacting
collagen and alkaline phosphatase activity. Yong and co-workers
also described that brain tumour-initiating cells can secrete TnC in
exosomes and suppress T-cell activation, enabling tumor
progression and metastasis through the modulation of
antitumor immunity (219). Mechanistically, TnC could inhibit
T-cell activation and proliferation through the well-established
TnC receptors a5b1 and anb6 integrins, reducing mTOR
signaling (Figure 5 and Table 2).

Additionally, it may be considered that TnC fibers at a given
ECM niche could act as efficient receptors for the homing of
A

B

FIGURE 4 | Structure and exosomal secretion of TnC. (A) Structure of a trimer of TnC. Tenascin monomers bind via the tenascin assembly domain (TAD) located at
the N-terminus. Basic domains (EGF-Like and FNIII-Like) and the main binding sites to other ECM proteins and receptors are depicted. (B) Models for TnC
biosynthesis. In model 1, hexabrachions are formed in a very rapid co-translational process where six monomers are simultaneously assembled. In model 2, the
hexabrachion assembly take place in two steps. First, monomers form an intermediary trimer through a-helical coiled-coil interactions in the TAD. Subsequently, two
trimers assemble in a hexamer that is stabilized by di-sulphide bonds. (C) Exosome-mediated TnC secretion. After biosynthesis in the ER, TnC is transported to
multivesicular bodies (MVBs) in a Cav1 dependent manner (Cav1+/+). The absence of Cav1 (Cav1-/-) increases the levels of cholesterol at MVBs and alters exosome
formation, preventing the sorting of TnC onto exosomes and leading to the accumulation of TnC in the ER. Upon secretion, exosomal TnC can be locally deposited,
or modulate the behavior of surrounding cells. On the other hand, exosomes can eventually reach the blood stream and generate new TnC nucleation points at
distant organs and tissues (108).
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TABLE 2 | Literature contributing evidence of TnC as an EV secreted cargo. EVs origin: cell type/tissue from which EVs containing TnC were detected; WB: western
blotting.

TnC
EVs origin Target cell Detection approach Result Ref.

Fibroblast Breast cancer (MDA-MB-468) WB, sucrose gradient and proteomics Matrix deposition in 2D, 3D and in vivo (108)
increased migration and invasion

Breast cancer (MDA-MB-231) Breast cancer (MDA-MB-231, T47-D) WB, proteomics increased migration and invasion (122)
Brain tumor-initiating cells T-lymphocyte WB Inhibition of mTOR signalling and inhibition

of T-cell proliferation, activation and cytokine
secretion

(219)
Glioblastoma patients

Osteoblast-like cells (SaOS2) N/A WB Bone mineralization (217)
Pancreatic cancer (PC-1, PC-1.0,
AsPC-1, Capan-2)

Pancreatic cancer WB Increased migration and invasion (214)
Increased proliferation through activation of
the NF/kB

Metastatic colorectal cancer
(SW480, SW620)

N/A Proteomics Increased exosomal TnC in metastatic cell
lines

(183)

Pancreatic ductal adenocarcinoma
patients (pancreatic duct fluid)

N/A Proteomics Increased exosomal TnC correlates with
stromal TnC matrix

(184)

Albacete-Albacete et al. Exosomal Secretion of TnC
exosome subsets exposing TnC-binding receptors, a mechanism
that may contribute to ECM remodeling and its coordination
with cell modulation. Finally, the consideration of features
derived from exosomal secretion might be highly relevant for
Frontiers in Immunology | www.frontiersin.org 10
biomedical applications aiming at tissue repair and regeneration:
exosomes would potentially enable for accurate “dosage” and
target specificity (220), and might hold the key for leveraging on
the tissue remodeling and repair activities of TnC (221) through
A

D

C

B

E

FIGURE 5 | Roles of exosomal TnC in cancer progression and immunomodulation. Scheme of the main stages (I-IV) in carcinoma tumor progression. In stage I a
normal epithelium is shown, composed by epithelial cells located on a basal membrane. Underneath, the interstitial matrix deposited by stromal cells provides
support. Insults promote transformation of epithelial cells onto tumoral cells, which lose polarity and adhesion (Stage II). In stage III, continuously activated fibroblasts
increase the production and secretion of ECM, including collagens, FN and TnC. Tumor cells start invading neighbouring tissues and degrading the basal membrane.
Finally, in stage IV, a highly remodelled ECM favors tumor cell migration through the interstitial space towards blood and lymphatic vessels, to metastasize. The
previously described roles of exosomal TnC in tumor progression are depicted (A–E). (A) Paracrine/autocrine secretion of TnC-loaded exosomes induce tumor cell
proliferation and invasion (122). (B) Exosomal TnC derived from brain tumour-initiating cells suppresses mTOR activity and T-cell activity (219)(Mirzaei et al). Activated
fibroblasts can also secrete exosomes carrying TnC that can (C) modulate tumor cells and/or deposit new TnC matrix (108) (D). Finally, TnC-positive exosomes can
be released into the bloodstream to deposit TnC at distant organs (E). An increase in TnC in plasma has been proposed as poor prognosis marker in many cancers
and inflammatory diseases (24).
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very controlled time frames, bypassing uncontrolled chronic
inflammation states.
CONCLUDING REMARKS AND
PERSPECTIVES

The characterization of mechanisms driving ECM deposit and of
antifibrotic agents (72, 222, 223) aiming at intervening or
preventing diseases such as chronic hepatitis (224), kidney
diseases (225), systemic sclerosis, pulmonary fibrosis (226, 227)
or cancer and tumor progression (228) has been intensive.
Throughout the past decade, the study of EV-associated ECM
components has expanded our understanding of ECM biology.
EVs have been suggested as integral components of stromal
environments (172, 173), and enable the impact of ECM-
secreting cell populations on distant organismal locations.
These insights have opened several key questions. We do not
know whether EV-mediated transport of certain ECM
components specifies their function at destiny. Mechanistically,
we have a very limited understanding as to how ECM
components are routed for sorting onto exosomes, instead of
being targeted for degradation at the endosomal compartment;
whether and how cells use different potential mechanisms for the
secretion of a given ECM component; and how these processes
are integrated with the complex reciprocal regulation established
between ECM and stromal cells. Finally, the principles by which
target cell specificity (168) correlates with this ECM secretion
activity remain unexplored. The potential interplay of EV-
carried TnC with other cargoes regarding their impact on
target cells is also a key question. Given the potential of EV-
trafficked TnC levels as serum diagnosis/prognosis biomarkers,
and the ability of EVs to nucleate novel ECM niches at specific
organs, the biology of exosomal TnC secretion holds the promise
to explore potential novel theranostic applications.
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Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell
Communication. Nat Cell Biol (2019) 21:9–17. doi: 10.1038/s41556-018-0250-9

113. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F,
Mittelbrunn M. Sorting it Out: Regulation of Exosome Loading. Semin
Cancer Biol (2014) 28:3–13. doi: 10.1016/j.semcancer.2014.04.009

114. Henne WM, Buchkovich NJ, Emr SD. The Escrt Pathway. Dev Cell (2011) 21
(1):77–91. doi: 10.1016/j.devcel.2011.05.015
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