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Abstract: Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechan-
ically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible
solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D)
printed tracheal scaffold made of polymers. Polymer blending is one of the methods used to produce
material for a trachea scaffold with tailored characteristics. The purpose of this study is to evaluate
the mechanical and in vitro properties of a thermoplastic polyurethane (TPU) and polylactic acid
(PLA) blend as a potential material for 3D printed tracheal scaffolds. Both materials were melt-
blended using a single screw extruder. The morphologies (as well as the mechanical and thermal
characteristics) were determined via scanning electron microscopy (SEM), Fourier Transform In-
frared (FTIR) spectroscopy, tensile test, and Differential Scanning calorimetry (DSC). The samples
were also evaluated for their water absorption, in vitro biodegradability, and biocompatibility. It is
demonstrated that, despite being not miscible, TPU and PLA are biocompatible, and their promising
properties are suitable for future applications in tracheal tissue engineering.

Keywords: thermoplastic polyurethane; polylactic acid; trachea scaffold; 3D filament

1. Introduction

Tracheal injury can result from several conditions, including cancer, infection, trauma,
or congenital anomalies. The conventional indication for therapy in severely injured
tracheas of any aetiology is partial or full reconstruction, which necessitates the substitution
of a graft or scaffold at the site of the lesion [1,2]. Unfortunately, even though there are a
few treatment options available such as natural grafts or synthetic replacement, no optimal
material has met the criteria. The limitations for natural grafts include the availability of
donors and the unmatched size of donor grafts. According to the Organ Procurement &
Transplantation Network, United States Department of Health and Services, the number
of patients on the national transplant waiting list until July 2019 for all organ types has
increased to more than 100,000. Out of this number, two-thirds are above the age of 50,
while almost 2000 are below the age of eighteen and only one-third of the total numbers
received organ transplantation [3]. In addition, the natural grafts derived from donors are
challenged by the possibility of severe immune-rejection risks and complications caused
by infection or disease from the donor-to-patient [4]. On the other hand, synthetic scaffolds
are commonly associated with the biocompatibility of the scaffold material, inadequate
mechanical properties, and biodegradability over time. In addition, other problems (such
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as availability for mass production with easy fabrication and the need for the size of the
trachea should be custom-made to patients) persist [5–7].

Synthetic materials such as biodegradable polymers are gaining attention as materials
in tissue engineering due to their broad processability window where the macro- and
microstructures, mechanical properties, and degradation time can be easily manipulated
and controlled. Scaffolds are fabricated and manipulated through various techniques
to produce high precision, which suits the application. Some of the techniques used in
the fabrication of tracheal scaffold using biodegradable materials that have been tested
in animal models are electrospinning [8], thermally induced phase separation [9], and
three dimensional (3D) printed technology (additive manufacturing) [10,11]. However,
the choice of material and design for tracheal scaffold fabrication remains a challenge. To
meet the selection criteria, many requirements must be fulfilled. For example, the scaffolds
must create a suitable 3D niche for the cells to grow, proliferate, and differentiate, and
should not elicit an immune reaction that can trigger a severe inflammatory response that
might reduce healing or cause rejection by the body [12]. In vivo, the scaffold functions as a
temporary framework that degrades over time which is eventually replaced by the body’s
cells. Therefore, the degradation rate should match the rate at which the cells produce their
cellular matrix, while the by-products released should be innocuous and eliminated safely
through the body system [13]. Similarly, sufficient mechanical integrity of the implanted
scaffold is required to allow for physiological functionality starting from implantation until
the completion of the remodelling process.

Additive manufacturing (AM), also known as three-dimensional (3D) printing, has
been used to fabricate tissue-engineered constructs. According to the ISO/ASTM standard,
AM is defined as the “process of joining materials to make parts from 3D model data,
usually layer upon layer” [14]. The AM is significantly different from traditional formative
or subtractive manufacturing. It is the closest to ‘bottom up’ manufacturing, in which
a structure can be built into its intended shape using a layer-by-layer technique. This
layer-by-layer manufacturing technique enables unprecedented precision and control for
constructing complex, composite, and hybrid structures. The four key components in AM
include a digital model of the object, materials that are consolidated from the smallest
possible form, a machine for laying materials, and a digital control system for the machine
to lay the materials layer-by-layer to form a complex structure with customizable shape,
size, and internal architecture [15–17]. The 3D fabrication of a tracheal scaffold has been
reported in several preclinical studies using different types of polymeric materials such as
polylactic acid [18] and polycaprolactone [19,20].

Thermoplastic polyurethane (TPU) is a polymeric material that can be manipulated,
moulded, and produced through heating in various industrial processes. Polyurethane is
composed of three materials; a diisocyanate, a chain extender and a macrodiol (or polyol)
which are linked to form linear, segmented copolymers consisting of alternating hard and
soft segments. The soft and flexible segment is derived from polyols such as polyester,
while the rigid and hard segment is formed from the diisocyanate and chain extender [21].
TPU exhibits a broad range of mechanical properties across a wide range of temperatures
due to the various ratios of soft to hard segments. As a result of its excellent physical
properties and biocompatibility, it is widely used in biomedical applications, particularly
in flexible uses such as blood vessels [22–24], catheters [25,26], and cartilage [27,28].

Polylactic acid (PLA) is a semi-crystalline polymer that belongs to the α-hydroxy acid
family, derived from renewable sources such as corn, potatoes, sugarcane, and beets. It is
classified as an aliphatic polyester because of the ester bonds that connect the monomer
units, the lactic acids [29,30]. PLA and its copolymers have become one of the most atten-
tively studied components in the biomedical field because of their excellent biological and
mechanical properties, biodegradability and processability. Hence, it has wide applications
such as medical implants, sutures [31], bone fixation screws [32], and drug delivery sys-
tems [33]. However, biodegradable PLA exhibits little to no elastic behaviour and is not
favoured for applications requiring high flexibility or deformation in situ. Furthermore,
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the inherent hydrophobicity and slow degradability of PLA slightly impede its application
in biological systems [34].

Blending two or more polymers is a common physical modification approach to
enhance the existing properties of both materials to customize the desired properties for
a particular application [34–36]. The blending technique has been utilized to overcome
the limitations of the physical properties of polymers and has resulted in materials with
novel properties such as shape memory and morphology that are not present in the
parent polymers. These materials can be moulded into various structures, including films,
porous scaffolds, fibres, filaments, and particles, depending on the intended application,
with properties tuned for use in a variety of biomedical applications. Polymer blending
facilitates the efficient and cost-effective modification or improvement of a polymer’s
properties, thereby minimizing the significant costs and efforts associated with research
and development of new polymers or copolymers. The blending techniques used are melt
extrusion, foaming, electrospinning, and compression moulding [34,35].

Several biodegradable polymers that have been used to fabricate a tracheal scaf-
fold are polylactic acid (PLA), polyglycolic acid (PGA), polylactide-co-glycolide acid
(PLGA) [37–40], polypropylene [41,42], polyethylene terephthalate [43], high-density
polyethylene (HDPE) [44], and polycaprolactone (PCL) [45–48]. Most of these polymers are
used in combination with other synthetic or natural materials to enhance their properties.

Despite a large amount of research into various biodegradable polymers, clinical
performance has yet to satisfy theoretical expectations. As a result, there is currently no
clinically feasible solution for patients with long segmental airway problems. Therefore, an
ideal synthetic scaffold that is biocompatible, timely degraded, and eliminated by the body
system with appropriate and physical-mechanical qualities that can be easily replicated
when needed (and is maybe individually custom-made to prevent prosthesis failure) is
required. This study investigated the physical blending of two materials to obtain the
optimum mechanical properties while retaining the material’s superior inherent properties.
Additionally, it aimed to evaluate the physical and mechanical properties of a series of TPU
and PLA blends, which will be used to produce filaments for 3D printing for tracheal tissue
engineering. The TPU/PLA blended matrix, a combination of soft material TPU and rigid
material PLA, is expected to act as an artificial ECM by possessing suitable mechanical
strength and flexibility between the TPU and PLA.

2. Experimental
2.1. Materials

TPU Estane 58,311 NAT 028 (Brussel, Belgium); PLA NatureWorks, 2002D was pur-
chased from NatureWorks LLC (Minnesota, MN, USA) with a specific gravity of 1.24 and a
melt index of 5.0–7.0 g/10 min (2.16 kg loads at 210 ◦C).

2.2. Methods
2.2.1. Fabrication of Polymer Blends’ Filaments via Melt Extrusion Technique

Prior to extrusion, the pellets of both polymers were dried in a 60 ◦C oven for 12 h.
Then, the extrusion of fibres was performed using a Brabender (Duisburg, Germany) single
screw extruder with a 1.75 mm die, operated according to the manufacturer’s instructions.
A total weight of 100 g was used for each composition based on their weight percentage
ratio (TPU: PLA) and coded as 100/0, 90/10, 80/20, 70/30, 60/40 and 0/100, respectively.
Next, both materials were manually premixed via tumbling in a plastic zip-lock bag before
melt-compounding. Once optimised, the temperature of the single screw extruder was set
at 170◦ to 205 ◦C (±5 ◦C), the rotation speed was at 40 (±5) rpm, and the mixture was fed
for melt compounding. Finally, the filaments were pelletised and hot-pressed into dumbbell
shapes and 10 mm × 10 mm square samples, allowing for various characterisation methods.
The TPU filament was produced using TPU pellets only in the same manner as other blends.
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2.2.2. Characterisation of Polymer Blends
Fourier Transform Infrared (FTIR)

FTIR spectra were obtained in a reflective absorbance mode on a Perkin Elmer spec-
trometer (Waltham, MA, USA) with a constant spectral resolution of 4 cm−1, in the range
of 4000 to 550 cm−1, and after 16 scans. The reported spectra were analysed quantitatively
using Perkin Elmer Software (Waltham, MA, USA) version 10.

Differential Scanning Calorimetry (DSC)

Thermal property analyses were carried out using a Differential Scanning Calorimetry
(Mettler Toledo, Greifensee, Switzerland). In standard aluminium pans, about 10 mg
of the samples were from room temperature to 250 ◦C at a rate of 20 ◦C/min and held
isothermally for 5 min to exclude all previous thermal history. After cooling at 5 ◦C/min to
−80 ◦C at a rate of 10 ◦C/min, samples were heated again at 20 ◦C/min to 250 ◦C. All of
the experiments were conducted under a nitrogen atmosphere.

Mechanical Testing

The mechanical properties of all blends were conducted in tensile uniaxial mode using
an Instron universal testing machine model 3366 (Norwood, MA, USA) at a crosshead
speed of 5 mm/min according to ASTM D638. The samples analysed were 60 mm × 5 mm
in size, with a thickness of around 1.0 mm. The slope of the straight-line stress-strain curve
was used to calculate the Young’s Modulus (YM) of the polymer blends and the effects of
tensile strength and percentage of elongation at break. The mean and standard deviation
of five measures were used to calculate all results.

Scanning Electron Microscope (SEM)

SEM images were captured using a tabletop SEM (Hitachi, Tokyo, Japan). The cross-
sectional surfaces were obtained from a tensile examination of a broken dumbbell. Before
microscopy experiment, all specimens were sputtered with a thin layer of gold.

Water Absorption Study

The water absorption test was performed on 10 mm square samples according to
ASTM D570. The samples were dried at 60 ◦C for 24 h to achieve a stable weight. The dried
samples were weighed and placed in the test plate wells, prewetted with PBS solution
before filling with 5 mL of PBS, pH 7.4 at 37 ◦C. The samples were incubated and tested
at 8, 24, 48 and 72 h. The excess water was carefully removed with tissue paper, and the
samples were re-weighed. Water absorption was calculated based on the amount of water
absorbed according to Equation (1):

Water absorption (%) =
Wwet − Wdry

Wdry
× 100 (1)

For each composition, three specimens were examined to achieve an average value.

In Vitro Degradation Study

PBS soaking tests were used to mimic the hydrolytic degradation activity of TPU/PLA
blends and control scaffolds. The samples were weighed after drying overnight at 60 ◦C.
Each sample was individually enclosed in a plastic container filled with a 1X PBS solution
and incubated at 37 ◦C in an orbital shaker (Stuart S1500, Illinois City, IL, USA) at a shaking
rate of 50 rpm. Every 7 days, PBS was refreshed, and the test lasted up to 7 months. The
samples were rinsed three times with purified water before being dried overnight and
weighed at each time point. Equation (2) was used to measure the weight loss of the
materials.

Degradation (%) =

(
1 − Wn

Wo

)
× 100 (2)
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W0 is the initial sample weight, and Wn is the weight of the same sample after degradation
for a time, n.

In Vitro Biocompatibility Assay

The blended samples were evaluated for biocompatibility and possible use as tissue
engineering scaffolds in biomedical applications.

Pellet Sterilisation

Prior to in vitro testing, the TPU/PLA pellets were sterilised by being immersed in
70% ethanol (v/v) for 2 h, followed by rinsing three times with 1x PBS to eliminate all traces
of ethanol. The pellets were then air-dried in a sterile atmosphere before being sterilised
for 2 h with ultraviolet light. This phase ensured that any pollutants on the surface of the
pellets were removed.

Pesto Blue Viability Assay

In order to be considered for biomedical applications, any material must not impose
any toxicity to the surrounding tissues. The toxicity of the TPU and PLA was investigated
in this study and was defined as a reduction in cell growth to less than 50% viability. The
sterile pellets were immersed in complete α-MEM overnight before testing. BEAS-2-B
(human bronchial epithelial cells) were purchased form American Type Culture Collection
(ATCC, Manassas, VA, USA) were grown to confluence in complete α-MEM containing 10%
FBS and 1% antibiotic–antimycotic (AA) solution at 37 ◦C in an incubator with 5% carbon
dioxide (CO2). In 24-well plates, one pellet was placed in each well, followed by direct
cell seeding on top of the pellet at a seeding number of 1 × 104 cells per well, and the
plates were incubated in a CO2 incubator for 3 days. As a positive control, a tissue culture
plate with fresh α-MEM was used. The toxicity test was performed using Presto Blue Cell
Viability Reagent on days 1, 2 and 3. The metabolic product of viable cells was released
into the culture medium, reduced resazurin to resorufin, and changed the colour from blue
to pinkish red. When reduction did not occur in a nonviable setting, the blue-coloured
resazurin was preserved. An automatic ELISA reader was used to test the fluorescence of
the samples in triplicate. Equation (3) was used to measure the cell toxicity percentage:

Cell toxicity (%) =
Fluorescencetreatment − Fluorescencecontrol

Fluorescencecontrol
× 100 (3)

Statistical Analysis

The mean and standard deviation of all the results were calculated (SD). The one-
way analysis of variance (ANOVA) was used for normally distributed data, while for
non-normally distributed data, the nonparametric test was used. The Tukey’s test was
then used to assess the data’s particular differences, with p < 0.05 indicating statistical
significance. The data were analysed using GraphPad Software (Prism 9.0, GraphPad
Software, La Jolla, CA, USA).

3. Results and Discussion

Apart from being biocompatible and biodegradable, as the foundation of the tracheal
structure, the material of the scaffold should have adequate mechanical strength and
flexibility to enable physiological function during breathing. The rigid components of
the cartilage retain the trachea lumen open and prevent its collapse under negative air
pressure, preventing airflow limitations [49]. The purpose of this study is to determine the
physical and mechanical properties, as well as the absorption, in vitro degradation, and
biocompatibility, of a series of TPU and PLA blends that will be produced as filaments and
3D printed as a potential material for tracheal replacement.
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3.1. Fabrication of Filament and Identification of the Materials

The physical blending of the material through the melt extrusion technique of TPU
and PLA was chosen in this study to produce filaments that will be fabricated as tracheal
scaffold using a 3D printing technique. Both materials were mixed based on their weight
percentage and characterised accordingly. FTIR transmission spectra of the samples are
presented in Figure 1 with main characteristic bands of pure TPU appeared at 3328 cm−1,
2935 cm−1, and 2850 cm−1 which correspond to stretching of -NH- in urethane and asym-
metric and symmetric vibrations in -CH2- respectively [50–53]. In addition, 1700, 1531
and 1314 cm−1 bands were associated with bending and stretching of amide I, II and
III bonds. The intensity of characteristic bands in TPU reduces as the PLA contents in-
creases and vice versa. The characteristic bands of PLA were seen at 1750 cm−1, 1456 cm−1

and 1180 cm−1, corresponding to asymmetric vibration of -C=O and the asymmetric and
symmetric stretching of -C-O-C bonds, respectively. The characteristic bands and their
activities are summarised in Table 1. Overall, the spectra revealed no new chemical bonds,
suggesting that both PLA and TPU were successfully compounded during melt blend-
ing [54,55]. Physical blending does not alter the chemical characteristic of the constituents
of the polymers [34]. Hence, the properties of the blend can be conveniently customized
using different compositions of the polymer to suit its application.
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Figure 1. FTIR spectra of TPU, PLA, and TPU/PLA blends.

Table 1. Characteristic bands and corresponding activities of TPU and PLA.

Characteristic Band Activity Material

3328 Stretching -NH- in urethane TPU
2935 Asymmetric vibration in -CH2- TPU
2850 Symmetric vibration in -CH2- TPU
1748 -C=O stretching (amide I) TPU/PLA
1531 N-H bending vibration (amide II) TPU
1314 C-N (amide III) TPU
1182 asymmetric stretching of -C-O-C- PLA
1085 symmetric stretching of -C-O-C- PLA
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3.2. Morphology and Miscibility of the Blends

The SEM images of the fractured surface TPU/PLA dumbbell films were analysed
to study the phase morphology of the samples. In contrast, the DSC findings were used
to determine the thermal properties and miscibility of the samples. As shown in Figure 2,
the fractured surface morphology of pure TPU and pure PLA reveals the homogeneous
distribution of fibrous TPU and continuous matrix of PLA, respectively. In contrast, in
blended compositions, the smooth-edged PLA domains are distributed in the fibrous
TPU matrix, resulting in a notably heterogeneous two-phase structure. Both 90/10 and
80/20 samples displayed more fibrous TPU than 70/30 and 60/40 samples, reflecting the
flexibility of the blends. However, several separated phase domains with minute debonded
holes were also observed, indicating a weak interfacial contact between the TPU matrix and
the PLA domain. As the PLA ratio increased, larger and more PLA spheres were detected
in the TPU matrix, although they were dispersed equally. All blended polymers exhibit
phase separation, suggesting that TPU and PLA are immiscible.
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in pure TPU and pure PLA (c) 90/10, (d) 80/20, (e) 70/30, (f) 60/40. Some fibrous TPU is present in the polymer blends,
with PLA domains are dispersed in TPU matrices in all blends. Red arrows show PLA particles in the TPU matrix, while
blue arrows indicate the fibrous TPU of the fractured surface. Scale bar of 100 µm.

TPU is composed of diisocyanate hard segments and polyester macroglycol soft
segments, while PLA is an aliphatic polyester. Due to their structures, two glass transition
temperature (Tg) and melting temperature (Tm) values were observed in pure TPU, which
correspond to hard and soft segments as shown in DSC curves in Figure 3. On the other
hand, only one Tg and Tm were seen in pure PLA.
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The immiscibility of the blends is further demonstrated by DSC curves and summa-
rized data as shown in Table 2. The Tg values can determine the extent of blend miscibility,
partial miscibility, or total immiscibility as a function of the polymer blend composition.
Normal Tg values of the TPU and PLA ranges from around −18 ◦C to −47 ◦C and 61 ◦C
to 67 ◦C, respectively [56,57]. Miscible polymers typically have a single Tg, whereas im-
miscible blends transition temperatures shift toward each other to a degree depending
on the mutual miscibility of the phases [58–61]. In the event of a completely immiscible
blend system, the blend components may remain their original Tg values, regardless of
the blend composition [34]. In this study, the appearance of three distinct Tg values in
90/10, 80/20, 70/30, and 60/40 samples suggest that TPU and PLA are immiscible. Two
Tg values correspond to the TPU structure, whereas another Tg value comes from the PLA.
The immiscibility was demonstrated by considerable macroscopic phase separation in the
blends in SEM. Moreover, all mixed samples that confirm the immiscibility also show two
different melting temperatures (Tm). This result is in line with [51,61–63]. In immiscible
blends, the properties of the component polymers integrate in such a way that the blend
morphology is a direct representation of the component morphology. As a result, blend
morphology is regarded as a good indicator of blend miscibility.

Table 2. Differential scanning calorimetry data for TPU, PLA, and blends.

Sample Tg TPU Tg PLA Tm1 Tm2

100/0 −26.98 - 153.88 189.90

0/100 - 63.16 150.74 -

90/10 −25.12 58.21 145.18 180.20

80/20 −19.70 55.87 144.11 178.44

70/30 −27.62 59.24 148.17 186.84

60/40 −28.00 58.56 148.15 187.15
Tg = glass transition temperature, Tm = melting temperature.

3.3. Mechanical Properties

It is well recognised that the morphology of the materials greatly influences the
mechanical properties of blends, and the properties of the final product can be achieved
by adjusting the morphology. The tensile strength and YM measurement were derived
from the stress–strain curve of the tensile test ASTM D638. Figure 4 depicts the mechanical
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properties of the TPU/PLA blends. Pure PLA has the highest tensile strength and YM at
46.48 ± 5.51 MPa and 2282.80 ± 95.60 MPa, preceded by TPU blends with higher PLA
contents. This means that the higher the PLA concentration, the stiffer the blend. On
the other hand, pure PLA demonstrated the least amount of flexibility because it cannot
elongate by more than 5% due to its inelastic nature. In comparison, pure TPU showed
the highest flexibility (up to more than 25%) without fracture, as shown in Figure 4b. The
flexibility decreases with decreasing TPU concentration, with the 60/40 blend exhibiting
the least flexibility of all blends. The morphology of TPU and PLA blends appeared to be
related to their mechanical properties, with stretched fibrous TPU can be seen in fractured
surfaces images of the 90/10 and 80/20 samples reflecting the blends’ flexibility.
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As a substitute for the cartilage wall, the scaffold is expected to possess adequate
strength to keep the airway open and resist collapse. At the same time, it maintains
the flexibility to allow flexion/bending despite intrathoracic pressure differences during
breathing cycles [63,64]. TPU is known to have flexibility and is widely used in soft tissue
engineering [23,24,65,66]. The present study revealed that the tensile strength and Youngs’
modulus of TPU were proportionately increased when PLA was added. In contrast, the
percent elongation reduces accordingly. The results obtained were similar to those reported
by Lis–Bartos et al. (2018) [67] and Mi et al., (2013) [51]. The overall physicomechanical
behaviour of immiscible systems is critically dependent on two demanding structural
parameters. First, an appropriate interfacial tension leads to a phase size that is small
enough to allow the material to be considered macroscopically homogeneous. Secondly, an
interphase adhesion is strong enough to assimilate stresses and strains without disrupting
the established morphology [68]. Even though the blend was not miscible, it is noted that
they considered having good compatibility with each other. This is due to the composition
of diisocyanate hard segments and polyester macroglycol soft segments of the TPU and
aliphatic polyester in PLA, which forms hydrogen bonding between the molecules of the
blend, as shown in Figure 5.
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The blend is suitable for the fabrication of a tissue-engineered scaffold since the
mechanical properties are within the normal human tracheal range: tensile stiffness
1–15 MPa [70] and YM 12.2–20.5 MPa in young and old humans; ~16 MPa in both hu-
man male and female [64].

The purpose of combining two polymers is to produce a material with improved
physical properties over the parent polymers. The degree of modification is relative to
the quantity of each composition of the polymer. The morphology of the blend and the
dispersion of the phases have a considerable effect on the thermomechanical characteristics.
For example, TPU with a lower tensile strength is combined with PLA to increase the
tensile strength. Despite the modest reduction in elongation at break, the final material
can be adjusted by varying the polymer composition to attain the optimal combination of
thermal and mechanical properties for specific applications.

3.4. Water Absorption and In Vitro Degradation Rate

An ideal implant material should possess optimal absorption and biodegradable prop-
erties similar to the regenerative process of the native tissue [71]. This fills up surrounding
tissues and provides a biocompatible framework that allows cells, blood vessels, and newly
created tissues to develop and maintain an extracellular matrix [72].

The swelling behaviour of a material (or its ability to absorb water) is an important
factor to consider when constructing a scaffold. Although excessive water absorption
damages the scaffold’s morphology, its absence causes inadequate absorption, inhibiting
cell growth in vivo [54]. The absorption rate was determined by immersing the samples
in PBS solution. Pure PLA showed the highest absorption rate in PBS solution, which
was approximately 5% in the first hour, decreased significantly after 8 h, and remained
stable until 48 h. On the other hand, other compositions exhibited nearly equal absorption,
varying from 1 to 2 percent, but decreased steadily and remained nearly stable until 48 h.
No significant differences were found in any of the compositions. The material’s absorp-
tion property indicates the scaffold’s ability to bind to the surrounding metabolites and
promotes the transportation of nutrients and cell integration throughout the scaffold [73].

One of the primary goals of biodegradable tissue-engineered scaffolds is to provide a
mechanical structure or framework to support the extracellular matrix (ECM). At the same
time, it degrades evenly/slowly via hydrolytic degradation, allowing the surrounding
tissue to recover the supporting function of the scaffold [74]. The monomeric components of
the polymers are innocuously eliminated through the body system [75]. In the degradation
study over 7 months, all of the samples showed a gradual loss with pure TPU (100/0)
exhibiting the fastest degradation rate, followed by 90/10, 80/20, 70/30, 60/40 and pure
PLA (0/100). The higher the TPU concentration, the faster rate of degradation. The
degradation percentage up to 7 months was less than 6%, suggesting that the blended
material is long-term stable. In contrast, the degradation of PLA is slower, which started
only after 1 month of incubation and gradually degraded at a very slow rate. Up until
7 months, the degradation percentage was approximately 2% and was the lowest among
other blends. Figure 6 shows both the rate of absorption and degradation results.
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The biodegradation of polymeric biomaterials mainly depends on hydrolytic degra-
dation of polymer chains. For example, degradation of polyurethane occurs when water
molecules infiltrate the polymer network, triggering hydrolysis of the polyurethane chains,
including the chemical dissolution of ester and amide bonds [76]. Similarly, the hydrolytic
degradation of PLA started by the breaking of the ester link of the polymeric chain [77].
Hydrolytic degradation has been described as belonging to two types: surface erosion and
bulk erosion. Surface erosion occurs exclusively at the polymer–water interface, while
bulk erosion occurs uniformly throughout the polymer [76,77]. However, it is critical to
emphasise that this degradation investigation was conducted on nonporous film speci-
mens without plasma, biomolecules, or cells. The rate of degradation is important, as it is
controlled by various other factors in vivo, which significantly enhances the degradation
of polymers.

Erosion and bulk degradation are the two possible mechanisms through which poly-
mers degrade. Crystallinity and chain orientation of polymers are particularly essential
in degradation processes. The degradation process begins with water diffusion into the
amorphous regions, followed by random hydrolytic scission of the ester bonds. After
degrading the amorphous sections, the hydrolytic attack continues to the crystalline struc-
tures. Due to the loose packing of the molecules in the amorphous area of a polymer, they
are more susceptible to attack by reactive species or solvents than the molecules in the
crystalline region [78–80]. TPU’s amorphous structure is the possible cause that results in
a faster degradation rate than semicrystalline PLA, as seen by its lower glass transition
temperature (Tg).

3.5. In Vitro Biocompatibility

The viability of cell culture is shown by the proportion of viable cells in a population.
A decrease in the percentage of viable cells below 50% of total cell growth is described
as the toxicity of the material towards the cells. BEAS-2B was cultured for three days on
sterilised TPU, PLA, and TPU/PLA scaffolds to test their biocompatibility and toxicity of
the material, and the result is shown in Figure 7.
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Both pure TPU and PLA indicated biocompatibility towards BEAS-2B cells. After 24 h
of incubation, cell proliferation was noted, exhibiting viability of cells was more than 100%
in both pure materials. The result showed that the viability of BEAS-2B was greater than
80% in all compositions up until day 3, indicating that none of the compositions were toxic
to the cells. Pure PLA outperformed pure TPU and other blends in terms of viability. TPU
has been proven to be biocompatible and suitable for regenerative medicine, either alone
or in conjunction with other polymers. Therefore, this result was expected [17,81,82]. This
study is also consistent with the findings by Harynska and colleagues (2018) [83]. Similarly,
the U.S. Food and Drug Administration (FDA) has authorised PLA as a biodegradable and
biocompatible polymer for application in the human body due to its absorbability and
nontoxicity [33,35,73,84].

4. Conclusions

Due to the shortage of organs and tissues for organ transplantation, synthetic mate-
rials are some of the treatment alternatives for trachea replacement, which necessitates
developing an ideal material with desirable properties. Apart from biocompatibility and
nontoxicity in the body system, mechanical properties are some of the important factors
that must be considered due to the anatomy of the trachea in the body. TPU and PLA were
selected for this study because of their inherent properties and wide use in biomedical
applications. However, the properties of these materials limit their application. Polymer
blending is an appealing and cost-effective method for developing new material with
improved properties by combining physically existing polymers instead of synthesizing
entirely new polymeric materials. This study investigated the mechanical properties, water
absorption, biodegradability, and biocompatibility of melt blended TPU and PLA polymers
as a material of choice in 3D printed tracheal tissue engineering. It was demonstrated that
both materials were successfully compounded. Even though all blend compositions were
not miscible, their morphology and mechanical properties showed improvement for the
proposed use. Furthermore, the blended material is biocompatible and has an appropriate
absorption and degradation rate, making it viable for use as a filament material in additive
manufacturing for medical purposes. Therefore, the polymer blending of TPU and PLA
can be a cost-effective strategy to improve the properties of TPU and PLA and produce
filaments for 3D printing.
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