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Using human in vitro transcriptome 
analysis to build trustworthy 
machine learning models for 
prediction of animal drug toxicity
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During the development of new drugs or compounds there is a requirement for preclinical trials, 
commonly involving animal tests, to ascertain the safety of the compound prior to human trials. 
Machine learning techniques could provide an in-silico alternative to animal models for assessing 
drug toxicity, thus reducing expensive and invasive animal testing during clinical trials, for drugs 
that are most likely to fail safety tests. Here we present a machine learning model to predict kidney 
dysfunction, as a proxy for drug induced renal toxicity, in rats. To achieve this, we use inexpensive 
transcriptomic profiles derived from human cell lines after chemical compound treatment to train 
our models combined with compound chemical structure information. Genomics data due to its 
sparse, high-dimensional and noisy nature presents significant challenges in building trustworthy and 
transparent machine learning models. Here we address these issues by judiciously building feature 
sets from heterogenous sources and coupling them with measures of model uncertainty achieved 
through Gaussian Process based Bayesian models. We combine the use of insight into the feature-wise 
contributions to our predictions with the use of predictive uncertainties recovered from the Gaussian 
Process to improve the transparency and trustworthiness of the model.

In order for a pharmaceutical drug candidate to progress to the human trial phase, regulations require preclinical 
trials to ascertain the safety of the compound. These preclinical trials commonly involve testing on animals such 
as dogs, mice, rats and rabbits. However, although toxicity in animals can translate to human toxicity, this transla-
tion shows considerable variability1,2. It is important to understand the degree to which biological perturbations 
that are observed in animals can be translated to humans3. This is balanced against the desire to reduce the overall 
requirement for testing compounds on animals wherever possible due to rising expense and ethical implications.

Machine learning (ML) offers a path to derive insight on this animal to human translation for drug toxicity4. 
Transcriptomic data can be combined with machine learning methods to predict adverse effects after compound 
exposure and much research to date has focused on predicting a compounds toxicological class or endpoint5–8. 
However, this is commonly assessed in human or rat models translating between in vivo and in vitro experimental 
measurements. Here we translate between species and experimental differences, we use ML to ascertain whether 
in vitro human transcriptome data can be used for predicting compound toxicity in vivo in animals such as rats –  
a model drug testing species. In order to enable this methods such as RNA-seq can be used to profile the tran-
scriptome in full to understand compound-induced toxicity. Studies have also demonstrated the integration of 
multi-omics data for toxicology studies9. However, such approaches are expensive when there are a large number 
of compounds to screen, as is typical in the early stages of drug development, and the resultant data requires a 
considerable amount of time, computation and expertise to process10. As such, there has been a large amount of 
effort invested in cost effective experimental methods that can generate datasets from which the likely effect that 
a compound will have after its administration, particularly with respect to toxicity or adverse events, can be pre-
dicted. One such approach is L1000, a high-dimensional gene expression profiling method, which is fast emerg-
ing as a cheap alternative to produce large amounts of experimental observations that are suitable for machine 
learning driven drug discovery11.

1IBM Research UK, Sci-Tech Daresbury, Warrington, UK. 2STFC Daresbury Lab., Warrington, UK. ✉e-mail: Laura-
Jayne.Gardiner@ibm.com; Ritesh.krishna@uk.ibm.com

OPEN

https://doi.org/10.1038/s41598-020-66481-0
mailto:Laura-Jayne.Gardiner@ibm.com
mailto:Laura-Jayne.Gardiner@ibm.com
mailto:Ritesh.krishna@uk.ibm.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-66481-0&domain=pdf


2Scientific Reports |         (2020) 10:9522  | https://doi.org/10.1038/s41598-020-66481-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

In this study, we use human cell-line derived L1000 gene expression or transcriptomic profiles that have been 
generated for a variety of chemical compounds12. We apply machine learning to L1000 profiles generated after 
chemical compound treatment, to predict specific rat phenotypes associated with kidney dysfunction that are 
induced after treatment with the same compound (Supplementary Fig. S1). Impairment of renal function or 
drug-induced nephrotoxicity is reported as a common adverse drug effect that is linked with systemic toxicity of 
a drug13. Therefore, using regression, we predict a continuous variable, the amount of blood urea nitrogen (BUN) 
in rats, as a proxy for drug induced renal toxicity, since elevated levels (28–136 mg/dl) are routinely used as an 
indicator that the kidneys may be damaged or dysfunctional14,15.

We predict BUN levels using either gene expression data, compound chemical structure information or both 
datasets as features. Combining gene expression data with chemical structure information allows us to substan-
tially improve predictions, in line with previous work12. As the combined feature space exceeds the number of 
observations, as can be typical for genomics datasets, we use dimensionality reduction to tackle problems asso-
ciated with a sparse and high dimensionality dataset. We also highlight the benefit of using Gaussian processes 
to understand the context of a prediction in terms of its transparency and trustworthiness, which is of high 
importance in healthcare. Here, we integrate heterogeneous experimental datasets and, using ML we predict rat 
blood tests (in vivo) as a proxy for renal drug-induced toxicity using in vitro inexpensive human cell line tests. 
Our combination of in vitro-to-in vivo translation with human-to-mouse inter-species translation for toxicity 
prediction assists our ultimate aim to identify translatability between species and to reduce animal testing in drug 
development by identifying likely toxic compounds earlier in the development process or before animal testing. 
This supports the pharmaceutical industry’s commitment to the 3 R’s (Replacement, Reduction, Refinement) in 
drug development16.

Results and Discussion
Dataset enrichment through augmentation of L1000 features with chemical structure infor-
mation.  We propose that a richer feature set, when coupled with an appropriate model, should improve 
the predictive power of the approach. Biomedical data, of the type studied here, often suffers from a lack of 
expressiveness, which has hindered the uptake of machine learning approaches. As such, in this study we aug-
mented the L1000 features with chemical structure information to provide a richer feature set, which we hoped 
would circumvent this challenge and improve predictive power. To test this, we applied Gaussian Process (GP) 
regression17,18 to predict rat BUN level using as training data; firstly, only the L1000 gene expression profiles 
(964 features), secondly, using only chemical structure information (166 features) and finally, combining both 
resources (1,130 features). For all three analyses we used a kernel which was the sum of a simple RBF kernel, and 
a WhiteKernel. Hyperparameters were optimized using gradient descent on the marginal log-likelihood of the 
model. Due to the large dimensionality of the data, a single length scale was used over all features.

Figure 1(a–c) and Table 1 show that the combination of gene expression and chemical structure information 
decreases test set RMSE scores to 2.961 from the average 3.708 seen separately. There is also a marked increase in 
the test set r2 scores after combination of the features from on average 0.021 to 0.418. Figure 1 highlights the true 
versus predicted test values where, correlation coefficients increase from 0.11 and 0.17 for gene expression and 
chemical structure separately to 0.65 after combination. Furthermore, Fig. 1 shows that prediction confidence 
increases after feature combination with the average uncertainty level (the standard deviation of the predictive 
distribution for each test datapoint) decreasing from 3.283 for gene expression and chemical structure separately 
to 0.683 for the combined features.

The combination of gene expression and chemical structure information increases our predictive capability 
for BUN level. This analysis also highlights the benefit of using a GP with the ability to directly capture the uncer-
tainty of the predictions since there is a dramatic decrease (4.8-fold) in the uncertainty level after feature com-
bination while the difference in RSME scores was not so marked (1.3-fold) and could mask a poorly performing 
model.

Dealing with high dimensional data where d ≫ N.  One of the main challenges presented by this data-
set, and many others in the field of genomics, was a far greater number of features than datapoints (1,130 features 
vs 429 datapoints). As such, traditional methods would be susceptible to overfitting since any parametric model 
where d > N will, without proper regularization, produce a perfect fit to the training data, but fail to generalize. 
We addressed this using two approaches, firstly, using GP and secondly by using dimensionality reduction tech-
niques. Because GP uses a covariance matrix, rather than the input features themselves, in its prediction, the pre-
dictive power scales with the number of data points rather than the dimensionality. Here, after investigation, we 
found a kernel comprising of a sum of the common Radial Basis Function (RBF) kernel, with automatic relevance 
determination (ARD) to best model the data. This is expressed as:
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2  the characteristic length scale 
of each feature, σf  is the signal standard deviation. It is clear from this, however, that problems with large, sparse, 
descriptors can creep into the kernel of a GP through the distance term. This is because many standard distance 
measures will not take the nature of the vector into account, and thus simply the number of zeroes in such a vector 
will ensure a small distance. There are two potential avenues to tackle this problem – either by using a distance 
measure which understands the sparse nature of the input features, or through a dimensionality reduction 
approach.
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Dimensionality reduction has been shown to have a significant effect in building powerful machine learning 
models from genomics data such as gene expression datasets that have similar dimensionality characteristics to 
our dataset19,20. Thus, we reduced the dimensionality of our problem using a similar approach to that demon-
strated previously21 utilizing a truncated singular value decomposition (t-SVD)22. The use of t-SVD is necessitated 
by the fact that the feature matrix is not square (i.e. N! = D), and so we cannot simply use eigenvalues and eigen-
vectors to decompose the matrix. Since we can write our SVD – decomposition of a matrix A as

= Σ ⁎A U V
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where σi are the singular values, and υ ⁎ui i  are the i-th column of U and V, respectively we can imagine a 
k-truncated approximation as
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which, under the Eckart-Young theorem23 represents an optimal solution at all values of k, where the singular 
value of k + 1 represents the 2-norm error of the compression.

Figure 1.  True versus predicted test values from BUN level prediction. Scatter plots showing the true (x-axis) 
versus predicted (y-axis) test values using: (a) gene expression data as training data, (b) chemical structure 
information as training data and (c) both gene expression and chemical structure as training data. Scatter plots 
showing the true (x-axis) versus predicted (y-axis) test values using gene expression and chemical structure 
as training data after: (d) PCA using 57 components, (e) tSVD using 57 components and (d) tSVD h. All 
scatterplots show marginal histograms with regression and kernel density fits. The 95% confidence interval 
for the regression estimate is drawn using translucent bands around the regression line. Datapoint colour is 
according to the standard deviation of the predictive distribution per point; scales for colour vary between plots. 
Figure (f) shows our best model.
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Since our feature space is represented by two different sets of features (the L1000 profiles, and the chem-
ical descriptors), we chose to implement a hierarchical approach to t-SVD (t-SVDh), where the two parts of 
the feature space were considered separately, and then recombined. Preserving 95% of feature information per 
sub-domain resulted in a 57-dimensional vector, with the first 17 dimensions representing chemical features 
(reduced from 166 dimensions) and the final 40 dimensions representing the L1000 profiles (reduced from 
964 dimensions). We tested this hierarchical tSVDh approach against a straight dimensionality reduction to 57 
dimensions using both t-SVD and the commonly used PCA method (Fig. 1(d–f), Table 1). tSVDh gave a very 
strong correlation coefficient of 0.81 and r2 of 0.661 exceeding any other observed with this dataset and alongside 
the lowest weighted RMSE of 1.528. Importantly, all of these methods outperformed a GP with no dimensionality 
reduction applied to it.

Capturing Model Uncertainty to Improve Trust and Transparency.  Within sensitive domain areas, 
which are epitomised by medical and pharmaceutical applications, we believe that one of the major barriers to the 
uptake of ML, and more generally data-driven technologies, is a perceived lack of trust – sometimes referred to 
as the ‘black box problem’. We propose that a degradation of trust in a model, or an approach, can come from two 
major sources: poor predictions on out of set problems and lack of transparency and interpretability. To address 
poor out of set modelling, we build a rich description of the model uncertainties and return both a prediction and 
an associated confidence measurement. Thus, an out of set prediction will come with an inbuilt ‘warning’ about 
possible performance issues and can be treated accordingly.

It is important that predictive uncertainties are sufficiently descriptive, otherwise they add very little informa-
tion about the quality of the model. In an ideal world, we want points which are poorly predicted due to out of set 
character to also have high uncertainty associated with the prediction. As we have demonstrated previously, the 
dimensionality and nature of the features can strongly impact the quality of the model; and the same is true with 
the quality of the uncertainties. Our ‘full’ feature set (i.e. features to which no dimensionality reduction had been 
applied) did not display our desired behaviour, with large uncertainties throughout the test set. However, when 
we use our hierarchical dimensionality reduction, we observed much lower levels of uncertainty.

To demonstrate the importance of predictive uncertainties, we also fitted commonly used deterministic meth-
ods to the data and compared the results to our best GP model with and without dimensionality reduction for 
comparison (Supplementary Tables S1 and S2; see Methods). Here, for several of the methods we found the 
resulting models to be more predictive using the reduced feature set for predictions (Linear Regression, SVM, 
KNN and XGBoost) while others did not benefit from dimensionality reduction (Random Forest, Gradient 
Boosting and Light GBM). There is overlap between the training set MAEs (Mean Absolute error) ±1 SD 
(Standard Deviation) after cross validation to the test set MAEs (Supplementary Table S1), for all models except 
for LightGBM, however, the LightGBM difference between train and test MAE represents only 5% of our full 
target range (7.75–39.60 mg/dl) suggesting that overfitting of the models is not an issue. Using our best models for 
each method considering r2 score, MAE and RSME (Root Mean Squared Error), our GP model performs com-
parably to other algorithms with its closest rival model generated with LightGBM (Fig. 2, Table 1). However, the 
inclusion of uncertainty measurements with GP also allows us to calculate a weighted RSME. The low uncertainty 
rate from our best GP model (0.470) results in the lowest observed RMSE (1.528) across all models after weight-
ing and the highest r2 score of 0.661 (Table 1, Fig. 1f). Furthermore, the inclusion of uncertainty measurements 
with GP gives additional benefit. We highlight a specific sample with a BUN level of 37.89 mg/dl consistent with 
potentially severe kidney dysfunction being ~10 mg/dl over the threshold for elevated BUN. For this sample, the 

Training 
dataset

L1000 gene 
expression

Chemical 
structure

L1000 gene 
expression 
plus chemical 
structure

L1000 gene 
expression 
plus chemical 
structure

L1000 gene 
expression 
plus chemical 
structure

L1000 gene 
expression 
plus chemical 
structure

L1000 gene 
expression 
plus chemical 
structure

Regressor
Gaussian 
Process

Gaussian 
Process

Gaussian 
Process

Gaussian 
Process + PCA 
57

Gaussian 
Process + tsvd 57

Gaussian 
Process + tsvd 
hierarchical Light GBM

Test set MAE 
score using best 
parameters

2.156 2.156 2.365 2.700 2.452 1.710 1.544

Test set RMSE 
score using best 
parameters

3.708
**3.708

3.708
**3.708

2.961
**2.240

3.359
**2.157

3.176
**2.047

2.419
**1.528 2.146

Test set r2 score 
using best 
parameters

0.013 0.028 0.418 0.464 0.520 0.661 0.656

Average SD of 
the predictive 
distributions 
(ASD)

3.283 3.283 0.683 0.427 0.425 0.470 —

Table 1.  ML analyses to predict BUN levels in rats. Showing the results from the analysis to compare the 
effect of combining chemical and gene expression data, the effect of using dimensionality reduction and finally 
comparing the best alternative classifier from the 8 tested, defined as producing the highest test prediction 
accuracy (lowest MAE balanced with highest r2 score). The best model overall is highlighted in bold. 
**Weighted RMSE.
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LightGBM model predicts a BUN level of 34.61 mg/dl decreasing it by 3.3 mg/dl. In contrast, the GP predicts 
37.23 mg/dl representing a 5-fold prediction improvement. Additionally, the GP’s low uncertainty estimate of 
0.661 confirms the close proximity of the prediction to the true value. Here, the absence of this extra information 
for the LightGBM model, could result in a case of severe kidney dysfunction that may need immediate interven-
tion, being mis-diagnosed for a more moderate condition.

Trust in a model, can also be improved by generating insight into the contributing factors to its predictions. To 
gain such insight into the genes whose expression profiles are most influential in our predictions, we investigated 
feature importance using two methods. Firstly, we used the ExtraTreesRegressor approach, trained on L1000 gene 
expression data and chemical structure information, therefore this does not consider the GP model. From this 
approach we observed that many features (632) contribute to the model at a significant level (>4E-09) (Fig. 3a). 
Overall 54.0% of cumulative feature importance is contributed by gene expression information and 46.0% from 
chemical structure information highlighting the benefit of combining the two information sources. Of the top 
10 most important features, 4 are L1000 genes with little or broad relevance: TUBB6 (tubulin beta 6 class V) 
contributing 14.3%, DAXX (Death Domain Associated Protein) that regulates a wide range of cellular signaling 
pathways for both cell survival and apoptosis contributing 5.4%, ZMIZ1 (Zinc Finger MIZ-Type Containing 1) 
that targets the urea transporter SLC14A1 contributing 4.9% and RALB (RAS Like Proto-Oncogene B) involved 
in cell division and transport contributing 3.7%.

Figure 2.  Results from BUN level prediction ML comparative regression analysis. Bar charts showing the 
RMSE and MAE scores for the test datasets (using best parameters) and the mean MAE training scores after 10-
fold cross validation with the standard deviation shown as error bars. Left y-axis is used for MAE/RMSE scores. 
Line plots show the R2 score for test datasets (using best parameters) with the right y-axis used for R2 scores. For 
Linear Regression, SVM, KNN, XGBoost and GP tSVDh dimensionality reduction was used whereas for other 
approaches it was not since resulting models were more predictive without it.

Figure 3.  Investigation into feature importance for ML model. Showing the results from (a) the ExtraTreesRegressor 
approach, trained on L1000 gene expression data and chemical structure information. Showing feature importance 
as a bar chart for the 964 landmark genes and 166-bit MACCS chemical fingerprints, alongside a cumulative line plot 
of feature importance and (b) the highest feature contributions (>0.5) for the gene expression-based dimension with 
the shortest length scale in our best GP model.
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Secondly, we use the length scales of our GP that are fitted per feature to give insight into the impact specific 
features have on our model – the shorter the length scale, the higher the impact. Since we built our features using 
t-SVD, it is necessary to use an inverse projection to relate the reduced feature space to the original, physically 
interpretable, features. We achieve this by building a dummy feature vector in which only the features we want to 
examine are switched on, and then use the inverse transform of the 57 dimensional t-SVD matrix to regenerate 
a dummy feature in the full space, which we can then examine to determine the contributions. We followed this 
methodology for the dimension with the shortest length scale in our best GP model based on gene expression and 
focused on the genes that represent this reduced feature space. The top three genes that represent this reduced 
feature space have relevant roles including (Fig. 3b): CCL2 that is linked to renal damage24, FOSL1 that regulates 
cell proliferation and survival and GLRX that is known to be expressed in the kidney and to contribute to the 
antioxidant defense system. This analysis differs from the ExtraTreesRegressor approach since it considers the GP 
model that we have built and, as a result, the highlighted most important gene is more closely associated to the 
biological purpose of the model i.e. to predict renal dysfunction or toxicity.

Conclusions
ML has an important role to play in toxicity prediction in the context of reducing animal testing. ML has its own 
challenges, arising from the data (sparsity, low data volume, lack of structure) as well as from the user (require-
ments for transparency, reliability and trust). Our approach combines computational techniques to predict BUN 
levels in rats from transcriptomics profiles derived from human cell lines. While doing so, we satisfy both the data 
and user centric challenges that hinder the adaptation of ML for problems like these. In our study, hierarchical 
t-SVD when used with GP displays superior predictive power and reduced uncertainty. The predictive uncertain-
ties recovered from the GP improve the transparency and trustworthiness of the model, allowing the end users to 
understand when it can and cannot be used. Finally, we further improve transparency by providing insight into 
the feature-wise contributions to the prediction – a starting point for explainable AI for health and pharmaceu-
tical related applications.

Methods
Development of ML feature sets.  We trained ML models to predict compound induced rat BUN levels 
from compound chemical structure and L1000 gene expression profiles generated after application of the same 
compound to human cell lines. Our training dataset, L1000 gene expression profiles and chemical structures, 
was collated and processed by12 and encompassed 964 genes with L1000 gene expression information plus 166 
features that encoded the chemical fingerprint for the chemical compound that was used to generate the gene 
expression profile. Our L1000 and chemical structure training dataset includes 31,029 perturbations (different 
compounds, cell lines and treatments) with information for 964 “Landmark” genes following small molecule 
treatment.

L1000 gene expression information is available as −1, 0 and 1 values to represent down-regulation, no change 
and up-regulation of a gene’s expression level12. We used a single dose and treatment of each compound tested 
to avoid redundancy between datapoints for the chemical structure feature set and also the L1000 dataset since 
multiple doses were found to yield similar profiles after conversion to −1, 0 and 1 values (90.0% of measurements 
show a standard deviation of 0 between doses and overall an average standard deviation between doses of 0.081). 
Therefore, for this analysis we used the highest dose and longest length treatment of each compound to maximize 
the observable compound effect in the human cell line L1000 signature. As such all 8 of the human cell lines 
(A375, A549, HA1E, HCC515, HEPG2, HT29, MCF7, and PC3) are represented in the final test set. Further work 
could attempt to more closely match the compound treatment dosage between the human cell line treatment 
and the rat treatment although, the different natures of these experiments make matching doses challenging. 
Chemical structure information for the small molecule compounds was in the form of a 166-bit MACCS chemi-
cal fingerprint matrix that was computed using Open Babel25.

ML target dataset.  Our target to predict, was rat BUN level (mg/dl) after compound administration that 
was available from DrugMatrix (https://ntp.niehs.nih.gov/results/drugmatrix/index.html). The datasets used here 
were generated after drug compounds were administered daily to rats at concentrations ranging from 0.0375–
6000 mg/kg across timescales of 0.25–7 days dependent on compound composition. These targets are continuous 
variables ranging from 7.75–39.60 mg/dl and encompass a wide range from low or safe levels of BUN to high 
levels that significantly exceed known health indicator limits. We matched the compound induced L1000 gene 
expression signatures with rat blood test results where the same compound had been used. This allowed us to 
match L1000 profiles with 429 rat BUN level measurements and therefore 429 different chemical compounds have 
been included in the training set.

ML application.  We used Scikit Learn (v3.7) for the ML analysis17. 80% of the data was used for training and 
the remaining 20% of divergent compounds was held out for testing. 10-fold cross validation was performed on 
the training data. We trialed both ShuffleSplit and K-fold methodologies for cross validation (n_splits = 5 and 
shuffle = True) where we observed little difference between the two methods and no difference in our overall 
conclusions and as such here we report only the results using ShuffleSplit. The methods’ hyperparameters were 
optimized using a grid search to test a range of parameters for 8 regressors; Linear regression, Random Forest, 
Support Vector Regressor, XGBoost, Gradient Boosting, GP, KNN and LightGBM (Supplementary Table S3).
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Data availability
The processed L1000 and chemical structure information datasets analysed during this study are available 
from https://maayanlab.net/SEP-L1000/#download [File for L1000 information: LINCS_Gene_Experssion_
signatures_CD.csv.gz and file for 166-bit MACCS chemical structure fingerprint matrices: MACCS_bitmatrix.
csv.gz] with processing information detailed by Wang et al.12. The rat BUN level datasets analysed during this 
study are available from the DrugMatrix repository at https://ntp.niehs.nih.gov/results/drugmatrix/index.html. 
The hyperparameters for our best GP model and closest competitor model generated with LightGBM are detailed 
in Supplementary Table S4.
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