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To an increasing extent, astrocytes are connected with various neuropathologies.
Astrocytes comprise of a heterogeneous population of cells with region- and species-
specific properties. The frontal cortex exhibits high levels of plasticity that is required
for high cognitive functions and memory making this region especially susceptible
to damage. Aberrations in the frontal cortex are involved with several cognitive
disorders, including Alzheimer’s disease, Huntington’s disease and frontotemporal
dementia. Human induced pluripotent stem cells (iPSCs) provide an alternative
for disease modeling and offer possibilities for studies to investigate pathological
mechanisms in a cell type-specific manner. Patient-specific iPSC-derived astrocytes
have been shown to recapitulate several disease phenotypes. Addressing astrocyte
heterogeneity may provide an improved understanding of the mechanisms underlying
neurodegenerative diseases.

Keywords: astrocyte, frontal cortex, Alzheimer’s disease, Huntington’s disease, frontotemporal dementia,
neurodegeneration, induced pluripotent stem cells

INTRODUCTION

Astrocytes are implicated as active mediators of synaptic activity, synaptogenesis and neurogenesis
and are crucial in maintaining extracellular homeostasis and controlling blood-brain barrier
permeability (Zhao et al., 2015; Allen and Lyons, 2018; Marina et al., 2018). Considering their
versatile role in regulating brain function, it is no surprise that astrocyte malfunctions have been
connected to various neurodegenerative disorders (Phatnani and Maniatis, 2015). Astrocytes are
known as a morphologically and functionally diverse population of cells that differ both between
distinct brain regions as well as within specific areas (Vasile et al., 2017). This diversity is reflected
in their pathological features observed in psychiatric disorders (Rajkowska et al., 2002; Wallingford
et al., 2017). Drugs used to treat mood disorders affect astrocytes as well and antidepressant effect
on neurons is considered to be partially due to induction of astrocytic release of trophic factors
(Marathe et al., 2018). Combined astrocyte and neuron-mediated effects also influence responses
of antipsychotics (Khan et al., 2001). However, typical and atypical antipsychotics may display
differential effects on the gliotransmitter release and the inflammatory response of astrocytes

Abbreviations: 5-HT, 5-hydroxytryptamine receptor; Aβ, amyloid β; AD, Alzheimer’s disease; APOE, apolipoprotein E;
APP, amyloid precursor protein; BDNF, brain-derived neurotrophic factor; BG, Bergmann glia; cAMP, cyclic adenosine
monophosphate; CTE, chronic traumatic encephalopathy; C1q, complement component 1q; EAAT, excitatory amino acid
transporter; FAD, familial Alzheimer’s disease; FTD, frontotemporal dementia; GFAP, glial fibrillary acidic protein; GLAST,
glutamate aspartate transporter; GLT-1, glutamate transporter 1; HD, Huntington’s disease; Htt, huntingtin; Il-1α, interleukin
1α; iPSC, induced pluripotent stem cell; JAK/STAT3, Janus kinase/signal transducers and activators of transcription 3; ROS,
reactive oxygen species; SAD, sporadic Alzheimer’s disease; TNFα, tumor necrosis factor α; TDP-34, transactive response
DNA-binding protein 34; TrkB, tyrosine-related kinase B; VEGF-A, vascular endothelial growth factor A.
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(Tanahashi et al., 2012; Bobermin et al., 2018). Understanding
the function of astrocytes is therefore crucial for disease
modeling and for developing treatments. Heterogeneity of the
cell population and species-specific differences pose a challenge
in the study of astrocytes. A method developed by Takahashi
et al. (2007) allows the reprogramming of somatic cells into
iPSCs, which can be used to generate patient-specific cells of
a desired type (Takahashi et al., 2007). In this review, we
describe how iPSC-derived astrocytes have been used to model
neurodegenerative disorders involving frontal lobe malfunctions.

ASTROCYTE HETEROGENEITY IN THE
BRAIN

The generation of cortical glia is initiated once neurogenesis
has been completed. The temporal patterning is based on a
positive feedback signal from new-born neurons (Molofsky and
Deneen, 2015; Takouda et al., 2017). Astrocyte progenitors
migrate radially, obtaining their region specific properties upon
maturation and this process continues postnatally (Colombo
et al., 1997; Tsai et al., 2012). Several genes enriched in neuronal
progenitors are also expressed in astrocytes, suggesting that
astrocytes retain some proliferative potential even in the mature
brain (Cahoy et al., 2008). However, only a distinct subset of
astrocytes show neurogenic potential (Ghashghaei et al., 2007;
Bardehle et al., 2013).

Mature astrocytes can be distinguished based on their
morphology and functional properties. In the human cortex,
astrocytes are morphologically categorized into four subtypes;
interlaminar, protoplasmic, varicose projections and fibrous
astroglia, located in the layers I and II, III and IV, V and VI
and in the white matter, respectively (Vasile et al., 2017). The
brain also contains other, both morphologically and functionally,
distinct astrocytes such as elongated radial glia-like tanycytes and
unipolar BG with several radially ascending processes. Tanycytes
specialized in the regulation of neuroendocrine functions are
located in the hypothalamus (Prevot et al., 2018) while BG
modulate the efficacy of the synaptic transmission of Purkinje
cells in the cerebellum (De Zeeuw and Hoogland, 2015).

Some astrocyte subtypes found in the human cortex are
not represented in the rodent brain. Furthermore, human
cortical astrocytes exceed their mouse counterparts both in
complexity and size, and propagate calcium signals several
times faster (Oberheim et al., 2009). Although human and
mouse astrocytes share similar properties related to their
effects on synapse formation, they differ in their function and
transcriptional profiles (Zhang et al., 2016). Species-specific
functional differences in glial cells are supported by improved
learning and memory in chimeric animals following engrafting
human glia into mouse brain (Han et al., 2013).

A higher relative number of astrocytes in the human frontal
cortex, compared to that of many other species including other
primates, is thought to be due to the high metabolomic cost
of maintaining a bigger brain size (Bass et al., 1971; Sherwood
et al., 2006). One of the key mechanism’s astrocytes apply to
provide energy to neurons is via the astrocyte-neuron lactate

shuttle. This metabolomic coupling is known to be crucial for
memory formation (Alberini et al., 2018). Astrocytes respond to
neuronal activity with spatially and temporally regulated Ca2+

fluctuations that shape neuronal activity via the regulation of
the gliotransmitter release (Semyanov, 2019). Molecular and
functional variations in astrocytes are considered to contribute to
differences in distinct neural circuit signaling (Chai et al., 2017;
Morel et al., 2017; Xin and Bonci, 2018). Another central role of
astrocytes is the regulation of neurotransmitter uptake including
glutamate via excitatory amino acid transporters 1 and 2
(EAAT1, EAAT2, respectively) in humans, or glutamate/aspartate
transporter (GLAST) and glutamate transporter-1 (GLT-1) in
rodents (Roberts et al., 2014; Meunier et al., 2017). Regulation of
the extracellular neurotransmitter levels is affected in a number
of neuropsychiatric disorders (John et al., 2012).

ASTROCYTES AS MEDIATORS OF
PATHOLOGIES AFFECTING THE
FRONTAL CORTEX

The frontal cortex is responsible for higher executive functions
such as cognition and working memory (Fuster, 2002). The
expression of genes involved in processes mediating synaptic
plasticity, memory and learning is, respectively, enriched in a
human and primate frontal cortex (Sjostedt et al., 2015; Garcia-
Cabezas et al., 2017). A high level of flexibility is necessary for
learning and memory functions but may also lead to increased
structural vulnerability, which may explain why aberrations in
the frontal cortex are connected to several neuropathologies
(John et al., 2012; Feresten et al., 2013; Torres-Platas et al., 2016).

Astrocytes contribute to the regulation of neuronal activity
that is altered in several frontal cortex pathologies (Braun
et al., 2009; Cao et al., 2013; Lima et al., 2014; Bull et al.,
2015; Ebrahimi et al., 2016; Beamer et al., 2017). A common
feature for brain diseases is the activation of astrocytes into
an inflammatory, reactive state (Chanaday and Roth, 2016).
White matter astrocytes in the frontal cortex appear to be
especially vulnerable to ischemic stroke, leading to disrupted
gliovascular interactions caused by astrogliosis (Chen et al.,
2016). Astrogliosis in the frontal cortex, upon aging, is also
linked to mood disorders (Miguel-Hidalgo et al., 2000; Narita
et al., 2006). Neurodegenerative disorders have overlapping
characteristics suggesting common underlying pathological
mechanisms. For instance, CTE caused by repeated head
injuries, displays a similar accumulation of neurofibrillary
tangles to that in AD but can be differentiated from AD
by astrocytic tangles that are considered a hallmark of CTE
(Turner et al., 2016; Hsu et al., 2018). Below, examples
of neurodegenerative disorders with fronto-temporal
pathologies and studies employing iPSC-derived astrocytes
are described.

Alzheimer’s Disease
Alzheimer’s disease is a progressive neurodegenerative
disease that manifests through cognitive impairment, motor
abnormalities and behavioral changes. AD pathology is
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hallmarked by the accumulation of insoluble amyloid-β
(Aβ) plaques, amyloid deposits in the blood vessel walls and
aggregation of the microtubule protein tau, within neurons.
The abnormalities seen in AD usually occur first in the
frontotemporal region then spread progressively to other areas
of the neocortex (Masters et al., 2015).

The contribution of astrocytes in AD pathology comprises
of both the loss of neuroprotective features as well as the
acquirement of pathological properties. Initially, astrocytes
uptake and degrade Aβ and have a neuroprotective role.
However, disease progression often leads to impaired astrocytic
Aβ clearance and induces toxic gain-of-functions that contribute
to disease progression (Garwood et al., 2017). Neural plaques
adjacent to GFAP expressing astrocytes are known to induce
hypertrophy and there is also evidence showing that astrocyte
reactivity may precede plaque formation (Teneka et al.,
2005; Olabarria et al., 2010; Rodrieguez-Veitez et al., 2015).
Morphological aberrances in AD astrocytes that compromise
vascular coverage are detrimental to neurovascular regulation,
while disrupted potassium (K+) mediated neurovascular
coupling, due to downregulation of K+ channels Kir4.1
and BKCa, result in abnormal regional cerebral blood flow
(Acosta et al., 2017).

Aβ has been shown to alter the expression of metabotropic
glutamate receptor 5 (mGluR5) and nicotinic acetylcholine
receptors (nAchRs) in astrocytes, which leads to changes
in Ca2+ homeostasis and signaling (Haughey and Mattson,
2003; Xiu et al., 2005; Lim et al., 2013). Excitotoxicity is
a common characteristic of AD and astrocytes contribute to
excessive glutamate signaling. Insufficient clearance of glutamate
is connected to the reduced expression of glutamate transporters
and their aberrant trafficking, which has been linked to altered
cholesterol synthesis (Masliah et al., 1996; Tian et al., 2010;
Merlini et al., 2011; Talantova et al., 2013). Furthermore, the
release of glutamate has been shown to be enhanced in AD
astrocytes (Talantova et al., 2013).

Reactivity is a common feature of AD astrocytes. Aβ

induces the astrocytic release of pro-inflammatory mediators
and, in turn, pro-inflammatory signals stimulate astrocytic Aβ

production leading to a positive feedback loop between astrocyte
Aβ response and production (Gonzáles-Reyes et al., 2017).
S100β-positive astrocytes are connected to AD pathology and
they are reduced following immunization against Aβ (Neus Bosch
et al., 2015). S100β expressed by astrocytes is important for
the regulation of neuronal oscillations associated with cognitive
flexibility and depressive behavior (Stroth and Svenningsson,
2015; Brockett et al., 2018).

Glucose hypometabolism can precede clinical symptoms of
AD (Mosconi et al., 2006). There is evidence that carriers of
apolipoprotein Eε4 (APOEε4) allele, with an increased risk for
AD, have lower levels of glucose metabolism in various brain
regions, including the prefrontal cortex, before the manifestation
of clinical symptoms (Reiman et al., 2004). Dementia in AD is
related to altered lactate processing. Under normal circumstances
lactate-producing enzymes are down-regulated with age and an
increase in the expression of these enzymes improve memory
in wild type mice but leads to memory deficits in AD mice

(Harris et al., 2016). Astrocyte defects in AD have been described
extensively in a recent review (Acosta et al., 2017).

Huntington’s Disease
Huntington’s disease (HD) is characterized by motor
dysfunction, cognitive impairment and neuropsychiatric
features. HD is an inherited neurological disorder caused by
CAG trinucleotide repeat expansion in the gene encoding Htt.
The expansion gives rise to a mutated form of Htt (mHtt) with
an abnormally long polyglutamine sequence which leads to the
formation of mHtt aggregates (Bates et al., 2015). Clearance of
aggregates is more efficient from astrocytes than from neurons,
rendering astrocytes more resistant to mHtt accumulation (Zhao
et al., 2016; Jansen et al., 2017; Zhao T. et al., 2017). Eventual
accumulation of mHtt into astrocytes results in altered glutamate
homeostasis and, sub-sequentially, neuronal excitotoxicity (Shin
et al., 2005; Bradford et al., 2009). In addition to the enhanced
release of glutamate, the presence of mHtt in astrocytes decreases
the expression of glutamate transporters in an age-dependent
manner (Lievens et al., 2001; Estrada-Sanchez et al., 2009;
Faideau et al., 2010; Lee et al., 2013). However, excitotoxicity
in HD neurons has also been reported without defects in the
glutamate clearance (Parsons et al., 2016).

Huntington’s disease astrocytes possess an altered K+

signaling due to the decreased expression of Kir4.1 (Tong
et al., 2014; Zhang et al., 2018). Restoration of Kir4.1 function
can ameliorate impaired GLT1-mediated homeostasis and, sub-
sequentially astrocyte Ca2+ signaling, implying a causative effect
of Kir4.1 dysfunction on these mechanisms (Tong et al., 2014;
Jiang et al., 2016). Kir4.1 defects precede the appearance of
reactive astrocytes, indicating that inflammation is a secondary
effect of HD pathology possibly induced by neurotoxicity
(Tong et al., 2014).

Both reactive astrocytes and microglia have been implicated
in the pathogenesis of HD (Khakh et al., 2017). Microglia
promote the reactivity of astrocytes via the secretion of pro-
inflammatory factors such as Il-1α, TNFα, and C1q (Liddelow
et al., 2017). Reactive astrocytes have an impaired ability
for synaptic maintenance and decreased phagocytic capacity
(Bradford et al., 2009; Haim et al., 2015). Additionally, they
promote degeneration of a subset of neurons and mature
oligodendrocytes (Liddelow et al., 2017). Activation of the
JAK/STAT3 pathway appears to be a common pathological
feature of HD and AD. Astrocyte specific inhibition of this
pathway, in animal models, reduces the reactive astrocyte
phenotype (Haim et al., 2015). Interestingly, some studies have
shown that reactive astrocytes can also have a neuroprotective
role in HD (Haim et al., 2015; Liddelow et al., 2017).

Accumulation of mHtt disrupts exosome secretion from
astrocytes (Hong et al., 2017). This can be connected to the
reduced BDNF release from astrocytes (Hong et al., 2016). BDNF
signaling is associated with HD pathogenesis and restoration
of BDNF release from astrocytes has been shown to have
neuroprotective effects (Giralt et al., 2010; Hong et al., 2016; Reick
et al., 2016). However, there is also evidence that at early stages
of HD, TrkB signaling is altered due to an indirect effect of p75
neurotrophic receptor (p75NTR) activity, indicating that signaling
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defects may precede aberrant secretion of BDNF, a ligand of both
TrkB and p75NTR (Plotkin et al., 2014).

Frontotemporal Dementia
Frontotemporal dementia (FTD) is an umbrella term for
neurodegenerative diseases affecting the frontal or temporal
lobes. Behavioral changes and deficits in executive functioning
and language characterize FTD (Bang et al., 2015). The role
of astrocytes in FTD is not fully understood. However, FTD
pathology is known to involve astrogliosis that occurs at an
early stage of the disease progression and precedes neuronal loss
(Su et al., 2000; Kersaitis et al., 2004). Astrocytic degeneration
is marked by the expression of apoptotic markers, such as
caspase-3, and morphological changes (Su et al., 2000; Broe
et al., 2004). Apoptotic astrocytes in FTD have been correlated
with the degree of frontotemporal atrophy and significant
astrogliosis has been observed to overlap with areas showing
disturbed cerebral perfusion (Martinac et al., 2001; Broe et al.,

2004). In theory, astrocyte degeneration could cause disruptions
similar to those seen in AD and HD, but the possible role of
astrocyte degeneration in FTD pathogenesis remains unclear
(Su et al., 2000).

MODELING PSYCHOPATHOLOGIES
USING HUMAN CELLS

In recent years, a number of astrocyte differentiation methods
have been developed and advances on the use of iPSC-derived
astrocytes have been reviewed in a recent paper (Zheng et al.,
2018). Below, the application of iPSC-derived astrocytes and their
use to model frontal cortex defects are discussed. The studies
represented are summarized in Table 1.

Defects in both the clearance and production of Aβ,
associated with AD, can also be seen in iPSC-derived AD
astrocytes and appear to involve aberrant lipid metabolism

TABLE 1 | Summary of studies on iPSC-derived astrocytes in modeling frontocortical pathologies.

Disease Mutation Astrocyte differentiation Key findings Reference

AD PSEN (FAD)
APOE4+/+ (SAD)

iPSC-derived NPC conversion to astroglia in the
presence of CNTF, BMP2, FGF2, EGF.

Both SAD and FAD astrocyted exhibited
reduced morphological heterogeneity, aberrant
expression of S100β, and altered cytokine
secretion. Altered EAAT1 distribution only seen
in SAD.

Jones et al.,
2017

AD PSEN1 1E9 Expansion of NPCs in suspension culture in the
presence of FGF2 and EGF. Astrocyte
differentiation in the presence of CNTF and
BMP4.

Astrocytes produce Aβ with aberrant uptake.
Altered cytokine secretion, increased
production of ROS. Induce aberrant Ca2+

signaling in healthy neurons.

Oksanen et al.,
2017

AD APOEε4/ε4

APOEε3/ε3
Neural induction in suspension culture followed
by neural rosette formation and generation of
NPCs. Astrocyte differentiation in the presence
of CNTF, BMP4, and Heregulin-β.

ApoE isoforms have distinct properties with
APOEε3/ε3 astrocytes having greater
neuroprotective and synaptogenetic potential.

Zhao J. et al.,
2017

AD APOE4 APOE3 NPCs generation in an adherent culture.
Astrocyte differentiation in the presence of
FGF2 and BMP4.

Aberrant production and uptake of Aβ. In 3D
culture Aβ starts to accumulates in the
organoids. Changes in the gene expressions
related to lipid metabolism.

Lin et al., 2018

AD APP-KO
APPswe/swe APP
V717F

NPCs were generated in an adherent culture.
Astrocyte differentiation in a suspension culture
in the presence of FBS and EGF.

Astrocytes have aberrant cholesterol
metabolism. Lipoprotein and Aβ endocytosis
are impaired.

Fong et al.,
2018

HD Hit NPCs were generated in suspension in the
presence of growth factors. Astrocyte
differentiation was induced by plating the NPCs
in the absence of FGF2.

Generated astrocytes exhibited enhanced
cytoplasmic vacuolation under basal conditions.

Juopperi et al.,
2012

HD Hit Astrocyte differentiation of iPSCs in neural
differentiation medium in the presence of CNTF.

Blocking soluble TNFα suppresses pathological
inflammatory response in astrocytes.

Hsiao et al.,
2014

HD Hit Astrocyte differentiation of iPSCs in neural
differentiation medium in the presence of CNTF.

Increased inflammatory response and
expression of VEGF-A in HD-astrocytes lead to
compromised vascular reactivity.

Hsiao et al.,
2015

FTD/ALS TDP-43
M337V

NPCs were cultured in the presence of LIF and
EGF in followed by expansion with FGF2 and
EGF. Terminal differentiation into astrocytes
induced by growth factor withdrawal.

Astrocytes showed accumulation of
cytoplasmic TDP-43 resulting in lowered cell
survival.

Serio et al.,
2013

FTD MAPT
N279K

NPC differentiation induced by lentiviral
induction of SOX10 followed by treatment with
SAG, PDGF, FGF2, NT3, IGF, and LDN.
Astrocyte differentiation in the presence of IGF,
CNTF, and dbcAMP

Astrocytes showed changes in TAU expression,
hypertrophy, increased vulnerability to oxidative
stress and altered transcriptomic profile. In
co-culture system FTD astrocytes altered
responses to oxidative stress in healthy
neurons.

Hallmann et al.,
2017
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(Oksanen et al., 2017; Fong et al., 2018; Lin et al., 2018). When
studying the effects of APOE genotype Lin et al. (2018)
demonstrated that APOE4 astrocytes show differences in the
transcriptomic profile compared to isogenic APOE3 cells, as
well as a diminished ability in clearing Aβ (Lin et al., 2018).
The role of ApoE in the Aβ clearance is still unresolved and
some studies claim that ApoE is crucial for the degradation and
removal of Aβ, while others have shown that ApoE promotes
neurodegeneration (Holtzman et al., 1999; Koistinaho et al.,
2004; Liao et al., 2014; Shi et al., 2017). In co-culture studies
APOE3 exhibited a greater ability to promote neuronal support
and synaptogenesis (Zhao J. et al., 2017). Different properties
of APOE isoforms in human astrocytes are in agreement with
previous studies in mice (Wang et al., 2005). Jones et al. (2017)
studied the function of AD astrocytes generated from iPSCs
modeling early-onset FAD with mutation in PSEN and late-
onset SAD with the APOE4 genotype. Both FAD and SAD
astrocytes showed reduced morphological heterogeneity and
aberrant expression of S100β. However, altered distribution of
EAAT1 was only seen in SAD astrocytes (Jones et al., 2017).
Altered secretion of inflammatory cytokines was found in both
FAD and SAD, as well as in astrocytes with the PSEN1 1E9
genotype generated by Oksanen et al. (Jones et al., 2017; Oksanen
et al., 2017). PSEN1 1E9 astrocytes also displayed changes in
Ca2+ homeostasis, mitochondrial metabolism, ROS production
and lactate secretion, thus covering all classical features of AD
pathology (Oksanen et al., 2017).

Inflammatory responses were studied by Hsiao et al. (2015) in
iPSC-derived HD astrocytes and an increase in the expression of
VEGF-A, with further up-regulation after inflammatory cytokine
treatment, was found. This leads to the enhanced proliferation
of endothelial cells and the compromised survival of pericytes.
As a result, poor pericyte coverage of blood vessels cause
vascular reactivity and disrupts the blood-brain-barrier (Hsiao
et al., 2015). Additionally, they demonstrated that the TNFα

inhibitor XPro1595 successfully suppressed the inflammatory
responses both in human astrocytes as well as primary astrocytes
propagated from the brain of a transgenic HD mouse model
(R6/2) (Hsiao et al., 2014). Juopperi et al. (2012) showed that HD
astrocytes display increased cytoplasmic vacuolization (Juopperi
et al., 2012). This phenotype is also present in HD lymphoblasts
(Nagata et al., 2004; Martinez-Vicente et al., 2010). The findings
in iPSC-derived HD astrocytes are consistent with astrogliosis as
a key characteristic of HD pathology.

Frontotemporal dementia astrocytes, derived from iPSCs
with mutations in genes encoding microtubule-associated
protein TAU (MAPT) and TDP-34, demonstrated an increased

susceptibility to oxidative stress and compromised survival (Serio
et al., 2013; Hallmann et al., 2017). In M337V TDP-34 astrocytes,
lowered survival paralleled the accumulation of TDP-43 (Serio
et al., 2013). This phenomenon has been implicated in astrocyte
dysfunction in CTE (Jayakumar et al., 2017). In N279K MAPT
astrocytes, the expression of 4R-TAU isoform was increased
as reported in FTD patients (Ghetti et al., 2015; Hallmann
et al., 2017). N279K MAPT astrocytes displayed morphological
changes and increased GFAP expression, usually linked to
reactivity, as well as altered gene expression profiles. In co-culture
assays with healthy neurons, N279K MAPT astrocytes increased
the vulnerability of neurons to oxidative stress (Hallmann et al.,
2017). However, M337V TDP-34 astrocytes did not exert toxic
effects on neurons, although astrocytic expression of mutated
TDP-43 has been reported to induce neuronal cell death (Tong
et al., 2013; Serio et al., 2013) suggesting that other cell types, such
as microglia, are required for the neurotoxic effect. Altogether,
the results indicate that astrocyte degeneration is a common
feature of FTD.

CONCLUSION

An increasing number of studies have connected astrocyte defects
to frontal cortex pathologies. Species-specificity of astrocytes
poses a challenge in translating results obtained from animal
studies to humans, and patient-derived iPSCs offer an alternative
to disease modeling. Studies presented above demonstrate
that iPSC-derived astrocytes successfully recapitulate various
disease phenotypes. Further challenges still include addressing
the heterogeneity within the astrocyte population and
developing protocols to generate regionally defined human
astrocyte subtypes.
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