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Diffuse gliomas have been hypothesized to originate from neural stem cells in the subventricular zone and develop along previously

healthy brain networks. Here, we evaluated these hypotheses by mapping independent sources of glioma localization and determin-

ing their relationships with neurogenic niches, genetic markers and large-scale connectivity networks. By applying independent

component analysis to lesion data from 242 adult patients with high- and low-grade glioma, we identified three lesion covariance

networks, which reflect clusters of frequent glioma localization. Replicability of the lesion covariance networks was assessed in an

independent sample of 168 glioma patients. We related the lesion covariance networks to important clinical variables, including tu-

mour grade and patient survival, as well as genomic information such as molecular genetic subtype and bulk transcriptomic pro-

files. Finally, we systematically cross-correlated the lesion covariance networks with structural and functional connectivity networks

derived from neuroimaging data of over 4000 healthy UK BioBank participants to uncover intrinsic brain networks that may that

underlie tumour development. The three lesion covariance networks overlapped with the anterior, posterior and inferior horns of

the lateral ventricles respectively, extending into the frontal, parietal and temporal cortices. These locations were independently

replicated. The first lesion covariance network, which overlapped with the anterior horn, was associated with low-grade, isocitrate

dehydrogenase -mutated/1p19q-codeleted tumours, as well as a neural transcriptomic signature and improved overall survival.

Each lesion covariance network significantly coincided with multiple structural and functional connectivity networks, with the first

bearing an especially strong relationship with brain connectivity, consistent with its neural transcriptomic profile. Finally, we identi-

fied subcortical, periventricular structures with functional connectivity patterns to the cortex that significantly matched each lesion

covariance network. In conclusion, we demonstrated replicable patterns of glioma localization with clinical relevance and spatial

correspondence with large-scale functional and structural connectivity networks. These results are consistent with prior reports of

glioma growth along white matter pathways, as well as evidence for the coordination of glioma stem cell proliferation by neuronal

activity. Our findings describe how the locations of gliomas relate to their proposed subventricular origins, suggesting a model

wherein periventricular brain connectivity guides tumour development.
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Introduction
Adult diffuse gliomas are among the most lethal brain

disorders, yet the aetiology and pathogenesis of this con-

dition is not well understood. A significant barrier to op-

timal treatment for gliomas is a lack of clarity regarding

the anatomical origins and migration patterns of the

tumours. In contrast to early ideas that gliomas originate

from mature glial cells in the same locations where they

are observed, current theories imply that the tumours ori-

ginate from neurogenic niches in the subventricular zone

(SVZ), from which they then migrate to populate distrib-

uted brain areas.1–3 This idea is supported by genomic

evidence from patients3 as well as the observation of sig-

nificantly elevated glioma frequency surrounding

neurogenic niches.4,5 In parallel, other research has indi-

cated that glioma stem cells travel along previously

healthy brain structures, including blood vessels and

white matter tracts, suggesting that large-scale connectiv-

ity networks may help facilitate glioma migration.6,7

However, the pathways by which adult diffuse gliomas

could progress from subventricular origins to their final,

most commonly cortical,8,9 destinations remain

speculative.

The natural progression of other neurological diseases,

such as frontotemporal dementias, Alzheimer’s disease

and Parkinson’s disease, has been most reliably investi-

gated using longitudinal brain imaging of large cohorts

of patients.10–12 This approach is difficult to apply to

brain tumours, which are typically treated only weeks
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after initial diagnosis. An alternative method for probing

brain development and degeneration from cross-sectional

data is the use of structural covariance analysis.13

Structural covariance networks identify correlations in brain

size (measured by cortical thickness or volume) between

brain regions across large cohorts of healthy or diseased

individuals.14 These interregional relationships reflect a

range of shared biological influences, including coordinated

development, connectivity and genetic similarity.15–17

Analogously, interregional correlations in brain atrophy

within defined neurological syndromes have been demon-

strated to reflect patterns of coordinated degeneration

and network spread of pathology.18 Pairs of brain

regions which are both consistently affected by a neuro-

pathology could have this relationship for a number of

informative reasons, such as a shared biological vulner-

ability, or a common pathway along which the disease

spreads.19 The latter possibility is supported by studies of

Parkinson’s and Alzheimer’s disease, which have unveiled

networks of brain atrophy and tau accumulation that fol-

low intrinsic functional connectivity networks.20,21 The

notion that patterns of collateral damage can reveal

insights into the aetiology of brain disease is also sup-

ported by the phenomenon of lesion covariance in stroke,

which stems from the vascular origins of the injury.22,23

An analysis of the networks of brain regions which tend

to be co-affected by glioma tumours, therefore, may re-

veal insights into the possible ventricular origins of these

deadly brain cancers, and point to pathways by which

the tumours spread throughout the brain.

In this study, we applied independent component ana-

lysis (ICA) to tumour masks of patients with low- and

high-grade glioma to identify networks of brain regions

co-lesioned by gliomas (i.e. lesion covariance networks

[LCNs]). Next, we examined associations between these

networks and clinically relevant patient information, such

as tumour grade, molecular genetics, transcriptomic signa-

ture and overall survival. Finally, we related the LCNs to

large-scale functional and structural connectivity networks

to identify the potential pathways that underlie tumour

development. We hypothesized that LCNs would coincide

with the three horns of the lateral ventricles, and that the

connectivity patterns of periventricular brain regions

would correspond with the observed cortical locations of

the tumours.

Materials and methods
A schematic describing the study workflow is provided in

Fig. 1A.

Construction of lesion covariance
networks

Three dimensional neuroimaging data of patients with

low- and high-grade glioma were accessed from The

Cancer Imaging Archive (TCIA; www.cancerimagingarch

ive.net).24,25 This imaging dataset is linked to The Cancer

Genome Atlas (TCGA), which links each scan with gen-

omic, pathological and clinical information regarding the

patient. Pre-operative multimodal (i.e. T1w, T1w-Gd,

T2w and T2w-FLAIR) scans were obtained from 135

patients with high-grade gliomas and 108 patients with

low-grade gliomas (LGG) at 13 institutions with different

imaging sequences and protocols (mix of 1.5 T and 3.0 T

scans). These scans were skull-stripped, co-registered and

resampled to 1 mm3 voxel resolution before being entered

into GLISTRboost, 26 a top-ranked tumour segmentation

algorithm, which classified voxels into four classes: con-

trast-enhancing tumour, necrotic non-enhancing core,

peritumoural oedema and normal brain tissue. Labels

were then manually corrected by board-certified neuro-

radiologists. All preprocessing described above was per-

formed outside the current study and is described in

more detail in a prior publication.25

Demographic information of the patient sample is

included in Table 1. To limit our study to supratentorial

lesions, we removed one subject with a posterior fossa tu-

mour. No lesions were multifocal, 38 lesions were

‘butterfly’ gliomas which cross to the opposite hemi-

sphere, and each lesion overlapped with the cortex to

some degree. All patients were diagnosed with a diffuse

glioma of grade II or higher.

Patients were split into groups based on their diagnosis of

a glioblastoma (GBM) or LGG, as well as their molecular

genetic subtyping (isocitrate dehydrogenase [IDH]-wild-type

[wt], IDH-mut/1p19q codeleted and IDH-mut/1p19q non-

codeleted). Because this dataset contains patient diagnoses

over a long time span (from 1997 to 2013), no consistent

diagnostic guidelines were applied for all patients. However,

because the 2021 World Health Organization Classification

of Central Nervous System Tumour categorizes patients

purely by molecular genetics,27 the results based on the

most recent guidelines can be inferred from the genetic sub-

typing. Furthermore, we show in Supplementary Fig. 1 that

the inclusion of grade III gliomas into the LGG group does

not substantially affect the results.

T1-weighted images from each patient were nonlinearly

warped to the Montreal Neurological Institute 152 tem-

plate using Advanced Normalization Tools software, with

cost-function masking of abnormal brain tissue.28

Accuracy of nonlinear registration was checked manually.

Registered masks corresponding to contrast-enhancing tu-

mour and the non-enhancing core were taken to repre-

sent, and henceforth will be referred to as, the tumour

mask. To reduce the dimensionality of the data, each tu-

mour mask in the right hemisphere was flipped to the

left hemisphere, such that each mask was aligned to the

same cerebral hemisphere.

Tumour masks from the 242 subjects were combined

into one 4D data structure and then entered into

MELODIC (Multi-Exploratory Linear Optimized

Decomposition of Independent Components) ICA in the
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FMRIB (Functional Magnetic Resonance Imaging of the

Brain) Software Library (FSL).29,30 ICA is a source separ-

ation algorithm that decomposes a dataset into a fixed

number of statistically independent components (ICs).

Given our hypothesis that tumours would stem from the

anterior, posterior and inferior horns of the lateral ven-

tricles, we selected a dimensionality of three. The output

of ICA included three brain maps of Z statistics indicat-

ing the likelihood of each voxel belonging to the corre-

sponding IC, as well as three vectors indicating a score

for each patient representing their tumour’s spatial associ-

ation with each IC. Probabilistic maps for each lesion co-

variance network were generated using a mixture

modelling approach,31 and were used to threshold each

IC map at 0.5, excluding voxels with a higher likelihood

of belonging to a background noise class than to the IC.

Replication in an independent
sample

To determine whether the lesion covariance networks

identified in the TCIA dataset could be replicated, we

performed ICA on images from the Brain Tumour

Segmentation 2019 dataset.25,32,33 This dataset includes

manually segmented images from 335 low- and high-

grade glioma patients, pre-processed in the same way as

the TCIA dataset described above. We removed patients

who overlapped between the two datasets, resulting in

168 subjects. The resulting spatial maps from ICA

with three dimensions were cross-correlated with the

Figure 1 Lesion covariance networks of glioma localization revealed by ICA. (A) Study workflow. Lesion masks from 242 glioma

patients were mapped to one hemisphere then concatenated to form a voxel-wise matrix. This matrix was decomposed via ICA into (i) IC

scores, which were related to pathology variables and (ii) spatial maps (i.e. LCNs), which were cross-correlated with structural and functional

connectivity networks. (B) LCNs are displayed, thresholded to include positive voxels with over 50% likelihood of association with the IC.

Table 1 Demographic, clinical, and imaging variables

for 242 patients with glioma from TCIA

Variables of interest Mean (SD)

Demographic variables

Age (years) 52.9 (15.2)

Gender (M/F/NA) 133/107/2

Clinical variables

Grade (GBM/LGG) 135/107

Molecular subtype

(IDH-wt/IDH-mut-1p19q-codel/

IDH-mut-1p19q-noncodel/NA)

124/27/61/30

Imaging variables

LCN groups (LCN1/LCN2/LCN3) 69/87/86

Tumour volume (cm3) 52.4 (45.1)

M¼male; F¼ female; NA¼ not applicable; SD¼ standard deviation.
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LCNs from the TCIA dataset, and are displayed in

Supplementary Fig. 2.

Applying LCN mapping to GBM
and LGG cohorts separately

We conducted a supplemental analysis to determine whether

substantially different results are obtained if the above

methodology is applied to GBM and LGG lesions separate-

ly. Three LCNs were obtained from the 135 subjects from

GBM cohort and 107 subjects from the LGG cohort, re-

spectively, and are displayed in Supplementary Fig. 3.

Relating LCNs to clinical variables

To determine how the LCNs related to clinically relevant

information from the same cohort—including tumour

grade, molecular genetics and overall survival—we first

assigned each patient to one of the three groups based

on the LCN for which their tumour had the highest IC

score (i.e. the LCN with which their tumour was most

associated). To assess the possible ambiguity of such

assignments, we plotted the relationships between LCN

values across subjects, finding that no subjects exhibited

high values for multiple LCNs simultaneously

(Supplementary Fig. 4). Then, we used Chi-square tests

to assess the association between these location-based

groups and pathology variables such as tumour grade

(GBM versus LGG) and molecular genetic subtype (IDH-

wt versus IDH-mutant/1p19q codeletion versus IDH-mu-

tant/1p19q non-codeletion). To compare overall survival

outcomes between individuals in each LCN group, we

plotted a Kaplan–Meier curve. Finally, we performed

Cox proportional hazards regressions to quantitatively as-

sess the relationship between LCN group and overall sur-

vival. Two models were considered: the first model

included LCN group (with LCN3 as the reference level)

and demographic covariates (gender and age [binned by

the median]); the second model included LCN group,

demographic covariates and pathology variables (tumour

grade and molecular genetic subtype). Clinical and demo-

graphic data were accessed from TCGA.34–36 For each

analysis, patients with missing data were excluded, result-

ing in different sample sizes for different tests. These

analyses were also performed on the GBM-only and

LGG-only cohorts separately (Supplementary Table 1).

Bulk transcriptomic analyses

To determine if tumours corresponding to different LCNs

possessed distinct transcriptomic signatures, we performed

bulk RNA-sequencing (RNA-seq) analyses to relate LCN

groups to differential gene expression. Following a previ-

ously reported workflow,34 we downloaded 516 LGG

and 155 GBM primary solid tumour samples, 106 and

29 of which could be matched to MRI scans we had for

the TCIA-LGG and TCIA-GBM datasets, respectively. To

remove potential outliers, we performed an Array–Array

intensity correlation, which resulted in a square matrix

denoting the Pearson correlation across genes between

each TCGA sample (GBM and LGG). No samples were

removed after applying a previously established correl-

ation threshold (r> 0.6). Next, we normalized our RNA-

seq data using the EDAseq package, implementing: (i)

within-lane normalization to adjust for the effects of GC-

content on read counts; (ii) loess robust local regression,

global scaling and full quantile normalization37; and (iii)

between-lane normalization to adjust for differences be-

tween lanes, such as sequencing depth. Finally, we filtered

out mRNA transcripts with a quantile mean threshold of

0.25 across all samples, reducing the number of genes

considered from 198 66 to 14 899.

Using the edgeR package,38 we ran three differential

expression analyses comparing between patients included

and not included in each LCN group (e.g. LCN1 versus

LCN2 and LCN3, etc.). Negative binomial generalized

linear models were fit with tagwise dispersion estimated.

For each differential expression analysis, genes were

ranked by their log2 fold-changes, then entered into gene

set enrichment analysis (GSEA) to find enriched gene sets

associated with each LCN.39 Using Cytoscape and

Enrichment Map,40,41 GSEA results were displayed as an

annotation module network, where enriched gene sets are

plotted as nodes and the similarity between gene sets is

represented as edges. Because gene sets downregulated for

one LCN tended to be upregulated in another, we only

plotted positively enriched gene ontologies. These analyses

were also performed on the GBM-only and LGG-only

cohorts separately.

Connectivity analyses

We hypothesized that the LCNs would relate to large-

scale functional and connectivity networks involved in

guiding the development of the tumours. We accessed 21

functional connectivity and 12 structural connectivity net-

works derived from UK BioBank neuroimaging data of

over 4000 neurologically healthy individuals.42 Functional

connectivity networks were identified from a 25-dimen-

sional ICA decomposition of resting-state fMRI data.

Four non-neuronally driven components were excluded.

Structural networks were identified using XTract, an

automated tractography protocol to identify major white

matter pathways with standardized seed, exclusion and

termination masks.43 We considered four association

fibres (inferior fronto-occipital fasciculus, uncinate fascic-

ulus (UNC), inferior and superior longitudinal fasciculus),

five projection fibres (acoustic radiation, corticospinal

tract, anterior, posterior and superior thalamic radiations)

and two limbic fibres (cingulum, main part and hippo-

campal part). Each of these tracts has left and right coun-

terparts; therefore, streamline density maps from the left

and right tracts were aligned to the same hemisphere and

averaged. Functional connectivity networks, which also
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present bilaterally, were similarly mapped to one hemi-

sphere and averaged.

The correspondence between LCNs and structural con-

nectivity networks was quantified by calculating a voxel-

wise Spearman’s rank correlation between maps, whereas

LCN and functional connectivity correspondence was

assessed using Pearson’s correlations. The statistical sig-

nificance of brain map correspondence was determined by

comparing the empirical correlation coefficient with coeffi-

cients derived from correlations with 10 000 spatial auto-

correlation-preserving surrogate LCN maps generated by

BrainSMASH44 (one-sided, non-parametric test). This ap-

proach addresses the important confound of spatial auto-

correlation to allow for an accurate P-value estimation.

Specifically, a P-value was obtained by comparing the cor-

relation between a given connectivity network and given

LCN with the correlations between the same connectivity

network and surrogate LCNs with preserved spatial auto-

correlation to the original (see Supplementary Fig. 5 for a

detailed schematic). A prior study has demonstrated that

this approach performs similarly compared with the spin

test,45 another popular approach for brain map statistical

comparison.46 For the comparisons between LCNs and

functional connectivity, we correlated values correspond-

ing to the cortical and subcortical grey matter voxels of

each brain map. Comparisons between LCNs and struc-

tural connectivity involved voxels with >1% of the total

number of streamlines identified by the XTract protocol.

Finally, we systematically performed seed-based func-

tional connectivity (SBFC) analyses with each subcortical

grey matter voxel and correlated the resulting maps

with each LCN to identify structures that drive the cor-

respondence between connectivity and lesion covariance.

For each voxel in the Harvard–Oxford Subcortical

Atlas, we calculated functional connectivity between the

subcortical voxel and each cortical grey matter voxel,

using the principal components of the UK BioBank

Dense Functional Connectome.47 The resulting cortical

SBFC maps were then normalized using the Fisher Z-

transformation, and smoothed at 5-mm full-width half

maximum. For each LCN, P-values were assigned to

each subcortical voxel based on the significance of the

relationship between its SBFC map and the LCN map

using BrainSMASH. The three resulting subcortical P-

maps were then thresholded to control for multiple com-

parisons (voxel-wise P <0.001; cluster-level family-wise

error corrected P< 0.05).

Statistical analysis

All statistical analyses were performed using either

MATLAB 2019a or R version 4.0.3. Chi-square tests

were used to test for associations between LCNs and

pathology variables. Associations between LCNs and

overall survival were tested using Cox proportional haz-

ards regression with adjustment for potential confounding

variables. Correspondences between structural/functional

connectivity networks and LCNs were statistically

assessed using one-sided, non-parametric tests involving

spatial autocorrelation-preserving surrogate maps,44 with

false-discovery rate correction for multiple comparisons.

Correspondences between LCNs and SBFC maps from

subcortical seed voxels were assessed for significance

using the same non-parametric approach, controlling for

multiple comparisons using permutation-based cluster-

level family-wise error correction.48

Data availability

Anonymized lesion data for GBM and LGG, respectively,

are available at: https://wiki.cancerimagingarchive.net/dis

play/DOI/Segmentation+Labels+and+Radiomic+Features+for+

the+Pre-operative+Scans+of+the+TCGA-GBM+collection

and https://wiki.cancerimagingarchive.net/display/DOI/

Segmentation+Labels+and+Radiomic+Features+for+the+Pre-

operative+Scans+of+the+TCGA-LGG+collection. Clinical and

genomic data from TCGA can be downloaded in R by fol-

lowing the workflow described in https://www.bioconductor.

org/packages/release/workflows/vignettes/TCGAWorkflow/

inst/doc/TCGAWorkflow.html. UK BioBank neuroimaging

data are available at: https://www.fmrib.ox.ac.uk/ukbiobank/.

Results

Lesion covariance networks
implicate horns of the lateral
ventricles

We applied ICA to spatially aligned masks of tumour

volume derived from a validated imaging processing pipe-

line applied to pre-surgical brain MRIs of 242 high-grade

and LGG patients.25 ICA identified three ICs with scores

across patients and voxels (Fig. 1A). Given the similarity

of the methodological approach to functional connectivity

and structural covariance analyses, we decided to refer to

the resulting ICs as lesion covariance networks.

ICA revealed three LCNs which extended into the front-

al, parietal, and temporal lobes, respectively (Fig. 1B).

Notably, each LCN overlapped with a distinct horn of

the lateral ventricles, with LCN1 covering the anterior

horn, LCN2 covering the posterior horn and LCN3 cov-

ering the inferior horn.

The same LCN locations were replicated in an independ-

ent set of 168 glioma patients (P< 0.0001 for all matching

LCNs; Supplementary Fig. 2). We also observed similar

LCN locations, with each component remaining in contact

with the lateral ventricles, when the cohort was split into

GBM and LGG subsets (Supplementary Fig. 3).

Interestingly, a frontal component does not appear when

ICA is applied to the GBM-only cohort alone, instead

replaced by an LCN contacting the body of the lateral ven-

tricle. This finding is likely the result of reduced representa-

tion of LCN1 tumours among GBM lesions (Fig. 2A).

6 | BRAIN COMMUNICATIONS 2021: Page 6 of 13 A. S. Mandal et al.

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab289#supplementary-data
https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-GBM+collection
https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-GBM+collection
https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-GBM+collection
https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-LGG+collection
https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-LGG+collection
https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-LGG+collection
https://www.bioconductor.org/packages/release/workflows/vignettes/TCGAWorkflow/inst/doc/TCGAWorkflow.html
https://www.bioconductor.org/packages/release/workflows/vignettes/TCGAWorkflow/inst/doc/TCGAWorkflow.html
https://www.bioconductor.org/packages/release/workflows/vignettes/TCGAWorkflow/inst/doc/TCGAWorkflow.html
https://www.fmrib.ox.ac.uk/ukbiobank/
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab289#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab289#supplementary-data


Clinical outcomes associated with
LCNs

To determine how the LCNs related to important path-

ology variables such as cellular pathology and molecular

genetics derived from the same patient sample, we first

assigned each patient to one of three groups based on

the LCN with which their tumour was most associated.

Chi-square tests indicated significant associations between

LCN group and tumour grade (v2(2) ¼ 11.1;

P¼ 0.0038), as well as between LCN group and IDH/

1p19q-status (v2(2) ¼ 6.7; P¼ 0.03) (Fig. 2A). Post hoc

tests with Bonferroni correction indicated that LCN1 was

significantly overrepresented in LGG (Pearson

residuals¼ 3.29; P¼ 0.0059) and IDH-mutated/1p19q-

codeleted tumours (residuals¼ 5.65; P< 1e-6), but under-

represented in GBM (residuals¼ �3.29; P¼ 0.0059) and

IDH-wt tumours (residuals¼�4.05; P¼ 0.00046). LCN2

was positively associated with IDH-wt tumours

(residuals¼ 2.84; P¼ 0.04), whereas LCN3 was negative-

ly associated with IDH-mutated/1p19q-codeleted tumours

(residuals¼�3.39; P¼ 0.006). These results implicate

LCN1 as a potential radiological signature of IDH-

mutated/1p19q-codeleted status, which is pathognomonic

of oligodendroglioma.

Next, we related the LCNs to overall survival, first by

visualizing Kaplan–Meier curves stratified by LCN group

(Fig. 2B). Patients in the LCN1 group had notably pro-

longed survival compared with patients in the other

groups. This association was confirmed statistically and

shown to be independent of potential confounding demo-

graphic variables through a Cox proportional hazards re-

gression model (Table 2). Interestingly, the effect of

LCN1 was no longer significant after pathology variables

(i.e. tumour grade and IDH/1p19q-status) were included

in the model, suggesting that the association between

LCN group and tumour molecular genetics drove the dif-

ferences in survival outcome. Ability to achieve gross

total resection, which is often easier in the frontal lobe,

could also contribute to differences in clinical out-

come.49,50 Survival outcomes of the LCN groups roughly

reflect previously reported survival outcomes stratified by

molecular genetic subtyping, wherein IDH-wt, IDH-mut/

1p19q non-codeleted and IDH-mut/1p19q non-codeleted

tumours rank in the order of lowest to highest in median

overall survival.36 LCN groups did not relate significantly

with survival outcome when the cohort was stratified

into GBM-only and LGG-only cases (Supplementary

Table 1).

LCN groups diverge in their
expression of neural versus
inflammatory genes

In a subset of patients for whom bulk RNA-seq data

were available, we performed differential expression anal-

yses to identify genes upregulated among the primary

Figure 2 Clinical and genomic correlates of LCNs. (A) Mosaic plots represent the proportion of gliomas within each LCN associated with

pathology variables, including tumour grade and molecular subtype. (B) Kaplan–Meier curves show overall survival outcomes stratified by LCN

group. (C) Gene ontology networks associated with differentially expressed genes for each LCN. Enriched gene sets are plotted as nodes, with

gene set size proportional to node size, and the similarities between gene sets are represented as edges. Network components with the three

highest numbers of nodes are displayed.
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tumours of each LCN group relative to the other groups.

GSEAs were performed on the resulting ranked gene lists,

and the enriched ontologies were visualized as a network

(Fig. 2C). LCN1 was positively enriched with a large

number of gene sets associated with neurological proc-

esses, such as synaptic signalling and cognition, as well

as ontologies involving synapse formation and vesicular

transport. The largest network components, comprised

gene sets enriched in LCN2 and LCN3, related respect-

ively to T-cell proliferation and immunological signalling.

While gene sets overlapped to some degree between

LCN2 and LCN3, positively enriched gene sets were

mostly distinct (of 297 total gene sets enriched in either

LCN2 or LCN3, 10 were enriched in both). The finding

of a neural transcriptomic signature for LCN1 is consist-

ent with prior reports of synaptic enrichment among low-

grade tumours and oligodendrogliomas,51,52 which each

utilized sample sizes larger than implemented here.51,52

To determine whether these enrichments were exclusively

driven by LCN1’s association with pathology, we per-

formed a follow-up GSEA for LCN1 where tumour grade

and IDH/1p19q status were included as covariates, and

found that LCN1 remained enriched for synaptic signal-

ling ontologies (Supplementary Fig. 6). Similar gene

ontologies were observed to be enriched when these anal-

yses were performed on the GBM-only and LGG-only

cohorts separately (Supplementary Fig. 7).

LCNs coincide with large-scale
connectivity networks

Next, we assessed anatomical correspondence between

LCNs and large-scale connectivity networks, by correlat-

ing the three LCNs with 21 functional connectivity net-

works and 11 white matter pathways derived from a

large, healthy neuroimaging dataset.42 LCN1 significantly

corresponded with four functional connectivity networks

each with strong frontal components, including the cin-

gulo-opercular, anterior salience, dorsal attention and

frontoparietal networks. LCN1 also corresponded to two

major white matter pathways: the anterior thalamic radi-

ation (ATR) and the UNC. LCN2 corresponded with two

white matter pathways and two functional networks,

including the posterior default mode network (pDMN),

whereas LCN3 corresponded with the auditory network.

LCNs were mostly related to projection fibres, as well as

some longitudinal fibres that connect subcortical and cor-

tical areas, prompting subsequent focus on subcortical–

cortical functional connectivity patterns. Effect sizes and

P-values for all connectivity networks that were statistic-

ally significant after correction for multiple comparisons

are shown in Table 3. The strongest correspondences be-

tween LCNs and large-scale connectivity networks are

displayed in Fig. 3A, while other significant associations

are shown in Supplementary Fig. 8. In both figures, the

connectivity network is displayed on the opposite hemi-

sphere of the LCN purely for visualization purposes—

correlations were performed with both networks aligned

to the same hemisphere.

Cortical LCN locations match
functional connectivity with
periventricular brain areas

Finally, to identify subcortical structures that may drive

the correspondence between connectivity and cortical le-

sion location, we performed SBFC analyses with all sub-

cortical grey matter voxels and correlated the resulting

maps with each LCN. We identified subcortical, periven-

tricular clusters of voxels with cortical functional con-

nectivity patterns that significantly matched each LCN

(voxel-wise P< 0.001, cluster-level P< 0.05; Fig. 3B). To

determine the particular structures driving the observed

relationships, we generated a scatterplot to highlight

Table 2 Cox proportional hazards models relating LCN group and demographic/clinical covariates with overall

survival

Demographic covariates only OS (n 5 232, deaths 5 145) Demographic and clinical covariates OS (n 5 206, deaths 5 121)

HR SE(HR) P HR SE(HR) P

LCN group

LCN1 0.62 0.23 0.036 0.89 0.25 0.63

LCN2 1.04 0.18 0.82 1.07 0.21 0.75

LCN3 1 (ref) – – 1 (ref) – –

Demographics

Age at diagnosis is above median 3.07 0.17 1.8e-10 1.83 0.20 0.0028

Gender, male 1.18 0.18 0.34 0.95 0.19 0.78

Pathology variables

GBM – – – 1 (ref) – –

LGG – – – 0.57 0.31 0.069

IDH-wt – – – 1 (ref) – –

IDH-mut/1p19q-codel – – – 0.22 0.54 0.0054

IDH-mut/1p19q-non-codel – – – 0.29 0.37 0.00097

OS¼ overall survival; HR¼ hazards ratio; SE¼ standard error.

Bold values are significant at p< 0.05.
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subcortical structures with high functional correspondence

and involvement with the three LCNs (Fig. 3C), impli-

cating the caudate, thalamus and amygdala, respectively.

Discussion
In this study, we demonstrated replicable patterns of gli-

oma localization with clinical relevance and spatial cor-

respondence with large-scale functional and structural

connectivity networks. Our findings provide evidence for

the subventricular origins of glioma, delineate an imaging

signature linked to tumour genetics, and contribute to a

growing literature on the bidirectional relationship be-

tween gliomas and their neural microenvironment.

Subventricular origins of glioma

Contact with the lateral ventricles is a known prognostic

factor for gliomas, predicting poorer overall survival53–56

and tumour recurrence.57,58 These observations have

motivated the popular notion that neurogenic niches of

the SVZ act as a tumour reservoir, contributing to the

therapeutic resistance of diffuse gliomas.59 However,

there remains a point of debate as to whether gliomas

spread to the SVZ or if the tumour originates in this

area. Our findings inform this debate by establishing: (i)

that gliomas cluster around the horns of the lateral ven-

tricles and (ii) that connectivity with periventricular

regions corresponds significantly with cortical tumour

locations. Our results are most consistent with a model

where gliomas originate in any of the three horns of the

lateral ventricles, then migrate along neural pathways to

arrive at their cortical destinations. The results also sug-

gest that for cases of glioma that appear from radiologic-

al imaging to spare the SVZ, the SVZ may nevertheless

harbour oncogenic stem cells. This conclusion is consist-

ent with a recent study that found cancer-driving muta-

tions in radiologically tumour-free SVZ tissue in GBM

patients.3

While our statistical decomposition of glioma distribu-

tion captures the lesion locations common to the majority

of these tumours, it is worth noting that there are glio-

mas which do not fit the patterns of the main lesion co-

variance networks described in this study. For example,

none of the LCNs derived from the main cohort substan-

tially covered the supplementary or primary motor areas,

where gliomas are sometimes observed. This tumour loca-

tion did appear in the LCNs of the GBM-only cohort,

extending from the central body of the lateral ventricles,

but not in the LGG-only or main cohorts. Future work

could decompose glioma distribution with a higher

dimensionality and subgroup specificity in order to more

comprehensively characterize glioma localization patterns.

Spatial correlates of glioma
molecular subtype

The accurate prediction of molecular genetic subtype

from tumour imaging is a crucial goal of the burgeoning

field of radiogenomics5,60–62 and a potentially transforma-

tive clinical tool to aid early and precise glioma diagno-

sis. Research in this area has illustrated important

associations between tumour location and molecular gen-

etic signatures, the most robust of these being a propen-

sity for IDH-mutated gliomas to localize to the rostral

end of lateral ventricles.63,64 However, the previous stud-

ies in this area used voxel-based lesion symptom map-

ping, an approach that necessitates stringent multiple

comparisons correction,65 thereby reducing their power

to detect localization differences between subtypes of

Table 3 Functional and structural connectivity networks with significant correspondence to LCNs

Functional networks

LCN Functional connectivity networks R values P (uncorrected) P (Bonferroni-adjusted)

1 Dorsal attention (IC 7) 0.30 <0.0001 <0.0063

1 Cingulo-opercular (IC 15) 0.44 <0.0001 <0.0063

1 Salience (IC 17) 0.32 <0.0001 <0.0063

1 Fronto-parietal (IC 22) 0.24 0.0003 0.0189

2 Posterior default mode (IC 21) 0.37 <0.0001 <0.0063

3 Auditory (IC 18) 0.28 0.0002 0.0126

Structural networks

LCN Structural connectivity networks P-values P (uncorrected) P (Bonferroni-adjusted)

1 Anterior thalamic radiation 0.57 <0.0001 <0.0033

1 Cingulum (main part) 0.09 <0.0001 <0.0033

1 Inferior fronto-occipital 0.31 0.0003 0.0099

1 Uncinate fasciculus 0.49 <0.0001 <0.0033

2 Posterior thalamic radiation 0.32 0.0001 0.0033

3 Acoustic radiation 0.25 0.0001 0.0033

3 Cingulum (hippocampus) 0.21 <0.0001 <0.0033

3 Uncinate fasciculus 0.36 <0.0001 <0.0033
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IDH-mutated tumours. We limited the number of statis-

tical comparisons involved in our study by first reducing

the dimensionality of the lesion data. As a result, our

method was able to reproduce a previously known asso-

ciation between IDH-mutated/1p19q-codeleted status

(pathognomonic of an oligodendroglioma tumour) and le-

sion location in frontal cortex.60,66 This result is consist-

ent with reports from other, more qualitative

neuroimaging studies investigating oligodendroglioma lo-

calization.60,66 This replication provides evidence that the

presented methodology is suitable for detecting localiza-

tion differences between lesion subtypes. Similarly, we

also note an overlap between LCN3 and the insula, a

classic GBM location with notoriously poor outcomes.

Our findings also suggest that tumours with different

molecular genetic signatures preferentially arise from dif-

ferent portions of the ventricular lining. A possible ex-

planation for this result is that some gliomas may need a

specific metabolic niche in order to thrive and develop

into a symptomatic brain tumour. Consistent with this

idea, some studies have proposed that high glutamate

flux, and the restricted expression of hominoid-specific

glutamate dehydrogenase enzymes in the prefrontal cor-

tex, support the survival of IDH-mutant glioma cells in

this region.67,68 Thus, the observed localizations of glio-

mas to particular brain regions or tissue types could pro-

vide insight into the aetiology and development of the

tumour. Symbiotic relationships between cancer cells and

Figure 3 LCNs of glioma relate to periventricular brain connectivity. (A) Structural and functional connectivity networks with the

strongest correspondence with each LCN. Significance of correspondence was assessed by comparison with spatial autocorrelation-preserving

surrogate LCN maps.44 LCNs are coloured with the same scale as in Figure 1. Structural connectivity networks (where streamline density is

represented by a winter colour scale) and functional connectivity networks (where connectivity strength is represented by a hot colour scale)

are displayed on the opposite hemisphere of the LCN for visualization in axial and coronal slices. See Supplementary Fig. 8 for other significantly

associated connectivity networks. (B) Subcortical voxels are coloured based on the significance of the association between their SBFC map and

the cortical values of each LCN map (voxel-wise P < 0.001; cluster-level P< 0.05). The LCNs are also shown with the same colour scale as in

Figure 1. (C) Scatterplots illustrate subcortical structures with both high functional correspondence and involvement with each LCN, found in

the upper right quadrant of each plot.
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the tumour microenvironment, often framed within the

‘seed and soil hypothesis’, have helped explain the meta-

static patterns of other cancers and likely also bear rele-

vance for glioma development.69,70

Network spread of glioma tumours

Migration of glioma tumours along pre-existing brain

structures, including blood vessels and white matter

tracts, has been acknowledged since the 1930s.71,72 Over

the last decade, it has been demonstrated that migration

along these structures is not simply a stochastic process

by which tumours follow paths of least resistance.6

Rather, glioma cell migration is coordinated, in part, by

signalling molecules secreted during neuronal firing, in a

process of activity-dependent glial cell proliferation that is

also a key mechanism in healthy brain development.7,73,74

Our findings contribute to this literature by illustrating,

in human patients, that glioma localization follows intrin-

sic functional and structural connectivity networks. This

result is consistent with prior work from our group dem-

onstrating that gliomas localize to functional brain hubs.4

Early studies of glioma development noted differences

between tumour subtypes in their tendency to grow along

pre-existing brain structures.75 Therefore, some glioma

subtypes may be expected to follow brain connectivity

networks more closely than others. Our study found sup-

port for this idea in that LCN1 related to eight connect-

ivity networks, while the other two LCNs related to just

two and four connectivity networks, respectively.

Moreover, in addition to possessing the strongest corres-

pondence to brain connectivity, LCN1 was also enriched

with genes involved in neuronal processes such as synap-

tic signalling and synapse formation. A recent study illus-

trated that glioma cells enriched with these types of genes

integrate into neural circuits involved in lexical process-

ing, and that this neural integration supports tumour pro-

liferation.76 The genomic signature of a glioma may thus

be an important predictor of the tumour’s eventual mi-

gration patterns.

We interpret the correspondence between functional

connectivity and glioma localization to reflect tumour mi-

gration along neuronal networks that support glioma cell

proliferation. However, neuronal networks are known to

relate intimately with the brain’s vasculature, which has

been noted to be a critical spreading substrate for glio-

mas.77 Neuronal and vascular networks converge on

similar anatomy in adults,78 potentially reflecting the syn-

ergistic growth of neuronal and vascular processes during

development.79,80 Therefore, one possible interpretation

of our results is that the functional networks serve as a

proxy for regions with common vascular inputs, and that

gliomas invade these territories along the vasculature.

This possibility is not mutually exclusive with our pri-

mary interpretation, given that neuronal activity could

still be driving the migration along blood vessels. The

exact physical substrate of activity-dependent glioma cell

migration should be investigated further.

Conclusions
A better understanding of the origins and migration pat-

terns of gliomas could inform surgical and radiation

treatments intended to comprehensively obliterate tumour

cells. We demonstrated that gliomas cluster around dis-

tinct horns of the lateral ventricles, and that these tumour

distribution patterns relate to diagnostic genomic signa-

tures and large-scale connectivity networks. Our study

connects two separate literatures on the subventricular

origins of glioma and symbiotic glioma–neuron relation-

ships to propose a model wherein periventricular brain

connectivity guides glioma development.
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