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Abstract: The design of new reductive routes to low
oxidation state aluminium (Al) compounds offers the
opportunity to better understand redox processes at the
metal centre and develop reactivity accordingly. Here, a
monomeric AlI compound acts as a stoichiometric
reducing agent towards a series of AlIII dihydrides,
leading to the formation of new low oxidation state
species including symmetric and asymmetric dihydrodia-
lanes, and a masked dialumene. These compounds are
formed by a series of equilibrium processes involving
AlI, AlII and AlIII species and product formation can be
manipulated by fine-tuning the reaction conditions. The
transient formation of monomeric AlI compounds is
proposed: this is shown to be energetically viable by
computational (DFT) investigations and reactivity stud-
ies show support for the formation of AlI species.
Importantly, despite the potential for the equilibrium
mixtures to lead to ill-defined reactivity, controlled
reactivity of these low oxidation state species is
observed.

Low oxidation state aluminium compounds are becoming
established in synthetic methodology for controlled chemical
reductions, having been shown to cleave a wide range of
strong chemical bonds.[1,2] Until recently, only a handful of
low oxidation state aluminium compounds were known, but
work from several research groups has seen a rise in the
number of stable and isolable monomeric and dimeric AlI

and AlII compounds.[3,4] However, the scope of these
reactions remains limited to a fairly select group of
supporting ligands that are able to tolerate the harsh
reductive conditions required to form the low oxidation
state Al centre.

The use of milder, more targeted reducing agents is one
strategy that could allow access to a more varied pool of low
oxidation state aluminium compounds. Jones’ MgI dimer has
already been employed as a stoichiometric reducing agent to
great effect for a range of metal compounds.[5–7] In 2014,
Nikonov and co-workers reported the reduction of an AlIII

dihydride, B, with the AlI monomer, A, to form the
dihydrodialane, C (Figure 1a).[8] Species A–C were all found
to exist in equilibrium, with C forming in approximately
50% yield at room temperature. Cowley and co-workers
subsequently proposed the reverse reaction to occur from
the dihydrodialane, D, which was itself formed by the
reduction of the AlIII dihydride with a MgI source at high
temperature (Figure 1b). Compound D was shown to
interconvert between a number of different diastereomers
and undergo crossover reactions with different AlIII dihy-
drides, which strongly supports the formation of F, though it
was not directly observed.[9] Subsequent work reported
isolation of the dialumene analogue of F, which upon
treatment with an alkyne formed an aluminium cyclo-
propene, supporting disproportionation to monomeric F
followed by a 2+1 cycloaddition.[10] These reactions are rare
examples of reversible redox behaviour at a main-group
centre, with Al switching between the AlI/AlIII and AlII/AlII

oxidation states. Other notable examples include C� H and
C� C bond breaking reactions, reversible alkene coordina-
tion and [4+1] cycloadditions.[11–17]

In terms of reactivity the equilibrium between A, B and
C (Figure 1a) is limiting due to the mix of species present,
however, the masked reactivity of D provides some
indication of how such equilibria may be harnessed.
Manipulation of the equilibrium between AlI, AlII and AlIII
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Figure 1. Examples of reversible reactions involving AlI and AlIII centres
(dipp=2,6-diisopropylphenyl, mes=2,4,6-trimethylphenyl, tBu= tert-
butyl).
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provides the opportunity to create synthetic routes to well-
defined low oxidation state species that cannot be accessed
by traditional reductive methods. Targeting asymmetric
systems is one such methodology which could allow these
equilibria to be exploited. Herein, we report the use of the
monomeric AlI compound, A, as a controlled and selective
reducing agent for a series of AlIII dihydrides. This reveals a
series of equilibrium processes leading to the formation of
new low oxidation state compounds, including symmetric
and asymmetric dihydrodialanes and a masked dialumene.
These compounds are proposed to form via a monomeric
AlI species; this has been probed through DFT and experi-
ment both of which support transient AlI formation.

The 1 :1 reaction of A and the AlIII dihydride (1) in
benzene-d6 at 25 °C saw the immediate formation of a new
asymmetric product, proposed to be the dihydrodialane, 2
(Scheme 1a).[18] This contained two characteristic Al� H
resonances (4.54 and 5.05 ppm) in the 1H NMR spectrum
integrating to one proton each, with the two ligands present

in a 1 :1 ratio (Figure S1). The product formed with
concomitant formation of two known literature compounds,
namely the AlIII dihydride, B, and the dihydrodialane, 3.[5,19]

Manipulation of the reaction stoichiometries allowed prod-
uct formation to be controlled. Conducting the reaction with
a 1 :2 stoichiometry of A to 1 first led to the aforementioned
mixture of compounds, but after 24 h at room temperature
this mixture had equilibrated, with 3 and B being the sole
products of the reaction (Scheme 1b and Figure S2). Sim-
ilarly, conducting the reaction with a slight excess of A at
25 °C, led to the exclusive formation of the dihydrodialane 2,
with no evidence of products 3 and B forming when the
reaction was monitored over several days. Whilst it was not
possible to obtain crystals suitable for single crystal XRD,
DOSY NMR analysis in benzene-d6 confirmed all the proton
signals assigned to 2 belong to the same species (Figure S3,
S33).[20]

The formation of the AlIII dihydride, B, provides strong
evidence for a monomeric AlI intermediate, which in the
presence of a second equivalent of 1, goes on to form the
symmetric dihydrodialane 3 (Scheme 2). Further evidence
for the formation of an AlI species was obtained by heating
a sample of 2, formed by reaction of 1 with a slight excess of
A in benene-d6 at 80 °C (Scheme 1c). After 1 hour a bright
red solution was observed, and continued heating for 5 days
led to the clean formation of a new amidinate compound
(Figure S4, 1H NMR spectrum), in addition to B. Bright red
crystals suitable for single crystal X-ray diffraction were
isolated from a hexane solution and revealed the formation
of the dialumene:benzene adduct, 4 (Figure 2, Table 1). The
complex is highly distorted, with the amidinate ligands
pinched back, exposing the dialumene:benzene ring system.
The Al� Al bond length (2.5419(7) Å) is shorter than that of
two previously reported examples of dialumene:arene
adducts,[21,22] but longer than that of the recently reported
dialumene from Cowley and co-workers (2.5190(14) Å).[10]

The bond lengths in the benzene fragment are indicative of
a dearomatized cycloaddition product with two double
bonds (C2� C3, 1.337(3) Å; C5� C6, 1.338(4) Å) and four

Scheme 1. The reaction of A and 1 (dipp=2,6-diisopropylphenyl,
Ar=p-tolyl). Isolated yield (%).

Scheme 2. Proposed reaction pathway for the formation of 2–4 and B. Species in dashed boxes are not directly observed, but inferred based of
product formation (M06L; Al (SDDAll), C H N (6-31G**)+ΔEsolv (PCM, benzene)). Gibbs free energies relative to starting reagents, normalised
versus A+1 (kcalmol� 1).
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single bonds (1.497–1.501 Å). The Al� C bond lengths
(Al1� C1, 2.017(2) Å; Al2-C4, 2.018(2) Å) are comparable to
a previously reported dialumene:benzene adduct,[22] but
slightly longer than in a related dialumene:toluene adduct.[21]

Compound 4 is proposed to form via a cycloaddition
reaction with a dialumene intermediate, which itself forms
from a monomeric AlI species generated by the dispropor-
tionation of 2 (AmAl(I)-d, Scheme 2).[23] A related adduct
was reported by Power and co-workers, following treatment
of an aluminium diiodide with potassium graphite in
toluene.[21] This was also proposed to occur via the transient
formation of a dialumene, but only the partially reduced 1,2-
diiodoalane could be isolated. Analysis of 4 by 13C{1H} NMR
did not show any signals for the C6D6 fragment, and only
two broad resonances at 2.68 and 5.35 ppm were observed in
the 2H NMR spectrum. This indicates that the C6D6 frag-
ment is undergoing dynamic exchange processes, a phenom-
enon that was also observed by Tokitoh and co-workers in a
dialumene:benzene adduct.[22] However, attempts to ex-
change the benzene for alternative arenes or alkynes were
unsuccessful suggesting exchange is intramolecular.[24] Sim-
ilarly, there was no reaction with dihydrogen which has been
observed for other dialumene:benzene adducts, perhaps due
to the comparative steric bulk of the amidinate ligand.[25]

The reaction of 1 and excess A (Scheme 1c), as well as a
1 :1 reaction of 3 and A, were conducted in cyclohexane-d12,
in an attempt to isolate the arene-free dialumene. In both
cases, peaks corresponding to a new amidinate compound
were observed in the 1H NMR spectra (Figures S8–S10 and
S12). However, neither reaction could be driven to comple-
tion indicating the species exist in equilibrium and all
attempts to isolate crystals have thus far been
unsuccessful.[26]

In order to further investigate the formation of mono-
meric AlI and dialumene intermediates, asymmetric reac-
tivity was expanded to include a series of β-diketiminate
AlIII dihydride compounds. Reaction of two equivalents of 5
with A in benzene-d6 at 25 °C led to the facile formation (<
3 h) of the aluminium dihydride B and the symmetric
dihydrodialane, 7 (Scheme 3a). During the course of the
reaction two characteristic peaks corresponding to the back-
bone methine proton of the β-diketiminate ligands were
observed to form in a 1 :1 ratio at 4.57 and 4.73 ppm in the
1H NMR spectrum (Figure S5). This is indicative of an
asymmetric dihydrodialane akin to 2, however, its formation
was short lived and manipulation of the reaction stoichiome-
tries consistently led to a mixture of products. Compound 7
displayed a single characteristic Al� H resonance at
4.70 ppm in the 1H NMR spectrum, and single crystal XRD
analysis confirmed the formation of a dihydrodialane with
terminal hydrides, which were freely located (Figure 2,
Table 1). This had a typical structure involving a distorted
tetrahedral geometry at aluminium, where the two alumi-
nium hydrides face in opposing directions.[5] The Al� Al
bond length (2.6353(8) Å) was similar to that observed for
the amidinate analogue, 5, and within the range of bond
lengths observed for the series of dihydrodialanes (D)
reported by Cowley and co-workers (2.6586(16)–2.886-

Figure 2. Solid-state structures of compounds 4, 7 and 8.

Table 1: Table of bond lengths [Å] and bond angles [°] for compounds
4, 7 and 8.

Al1� Al2 Al1� C1 Al2� C4 C1� C2 C3� C4

4 2.5419(7) 2.017(2) 2.018(2) 1.501(3) 1.337(3)
Al� Al Al1� H Al1� N1 Al1� N2 N1� Al1� N2

7 2.6353(8) 1.51(3) 1.940(1) 1.947(1) 93.4
8 2.6315(5) 1.51(2) 1.942(1) 1.935(1) 92.1

Scheme 3. The reaction of A with β-diketiminate AlIII dihydrides 5, 6 and
9 (dipp=2,6-diisopropylphenyl, mes=2,4,6-trimethylphenyl, dep=2,6-
diethylphenyl). Isolated yield (%).
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(2) Å).[5,9] Near identical reactivity was observed for the 2,6-
diethylphenyl (dep) substituted AlIII dihydride (6), leading
to formation of the symmetric dihydrodialane, 8, in less than
1 hour (Scheme 3a). Orange crystals of 8 were grown from
hexane and the structure was shown to be significantly more
distorted (Figure 2, Table 1), with the terminal aluminium
hydride planes just 73° apart (7: 180°). That said, bond
lengths and angles were similar to that of 7 and no
significant difference in the Al� Al bond was observed. As in
the amidinate system (Scheme 2), both 7 and 8 are proposed
to form via a monomeric AlI intermediate. In contrast, the
stoichiometric reaction of A with the less sterically hindered
AlIII dihydride 9 led to the immediate formation of the
asymmetric dihydrodialane, 10 (Scheme 3b). This species
was persistent in solution, and only after 7 days in benzene-
d6 was there any evidence for the formation of B. No further
reaction was observed after addition of a second equivalent
of 9 and heating the reaction for 1 h at 80 °C only resulted in
formation of B, along with various unidentified degradation
products (Figure S6). This indicates that in this instance the
proposed monomeric AlI intermediate is highly unstable,
which exposes the limits of β-diketiminate stabilised low
oxidation state aluminium species. Compound 10 was found
to co-crystallise with a small amount of a hydroxide
decomposition product (10%, Figure S22). Nevertheless, it
can be determined that the hydrides lie in alternate planes
of the molecule and that the Al� Al bond length is
comparable to 7 and 8. The N� Al� N bond lengths of 7, 8
and 10 (91.6–93.8°), which are formally AlII, sit in between
the those observed for A (89.9°) and related AlIII com-
pounds (�96°).[27]

To further explore the feasibility of a monomeric AlI

intermediate in the formation of 3, 4, 7 and 8, we sought to
investigate the equilibrium processes using DFT. Geo-
metries were optimised in the gas phase, using the M06 L
functional and a split 6-31G**(C, H, N)/SDDAll (Al) basis
set; a single point benzene solvent correction (PCM solvent
model) was applied. The formation of the asymmetric dimer,
2, was found to be exergonic relative to A and 1 (ΔG=

� 20.9 kcalmol� 1). However, from here disproportionation
of 2 to the alternate AlI/AlIII species (AmAl(I) and B) was
endergonic, ΔG=17.1 kcalmol� 1, although overall this com-
bination is slightly more favourable than A and 1 (ΔG=

� 3.8 kcalmol� 1). Cao and co-workers have previously
proposed that the related dihydrodialane, C, forms via a low
energy transition state (�8 kcalmol� 1), as estimated by a
scan of the potential energy surface. However, in both their
work and here it was not possible to locate a precise
transition state.[28] Dimerisation of AmAl(I), to form AmAl-
(I)-d, was found to be slightly more energetically favourable
(� 12.3 kcalmol� 1) suggesting a transient low oxidation state
species is more likely to exist as a dialumene. Initial DFT
calculations indicate AmAl(I)-d has a trans-bent structure
similar to that observed for the dialumene reported by
Cowley and co-workers, which was found to have small but
significant multiple bond character.[10] The formation of 3
and 4 are both equally favourable, with just 0.4 kcalmol� 1

separating the energies of the products. However, exper-
imentally, we only observe 4 forming at elevated temper-

ature, indicating this pathway has a higher energy transition
state(s). Compounds 3 and 4 are both reaction sinks and
their formation appears to be non-reversible. Experimen-
tally, heating a 1 :1 mixture of 3 and B does not result in the
formation of 4, however, 3 can react with one equivalent of
A at 80 °C to yield 4 and B (Figure S7, S11).[29]

Formation of the asymmetric dihydrodialane in the
reaction of A with 5 was less favourable than for 2 ((ΔG=

� 12.0 kcalmol� 1), which may explain the short-lived nature
of this intermediate (Figure S27). Experimentally, the facile
formation of the symmetric dihydrodialane, 7, was observed,
a process which was much slower with 1 and A. This can be
rationalised by the monomer dimer equilibrium, mesBDIAl
(I) to mesBDIAl(I)-dimer, being slightly endergonic (ΔG=

1.8 kcalmol� 1) meaning reaction with a second equivalent of
5 to form the dihydrodialane is more favourable than in the
amidinate system (Figure S27).

DFT indicates monomeric AlI species are viable inter-
mediates in the formation of the dihydrodialanes 3, 7 and 8,
as well as the masked dialumene, 4. The formation of 3,
however, appears to be non-reversible;[30] in contrast, the
formation of compound 7 is less thermodynamically favour-
able (ΔG= � 5.2 kcalmol� 1, Figure S27), indicating reversi-
bility reactivity might be observed. Conducting a variable
temperature 1H NMR experiment on the products of a 1 :1
reaction of A and 5 showed consumption of the proposed
asymmetric dihydrodialane intermediate and reformation of
A at high temperature (Figure S13). However, there was no
change in the spectrum of a 1 :1 mix of 7 and B (Figure S14).
We therefore sought to trap the proposed low oxidation
state intermediates using reagents known to oxidatively add
to AlI centres.[31,32] However, reaction of 7 with one
equivalent of diphenylacetylene instead saw alkyne addition
directly to the Al� Al bond, suggesting this process is faster
than disproportionation of the AlII dimer. No reaction was
observed at room temperature, but after 1 h at 80 °C clean
formation of the 1,2-dialumination product (11) was ob-
served (Scheme 4a). Single crystal XRD showed compound
11 to exists with Z-stereochemistry at the alkene with a C� C
bond length of 1.368(3) Å (Figure 3). Related insertions into
Al� Al single bonds have previously been reported, but this
is the first example from a dihydrodialane.[33,34]

Reaction of 7 with an excess of C6F6 at 25 °C saw the
slow formation of a new C� F bond activated product, as
identified by characteristic 19F NMR signals (Scheme 4b).
Heating the reaction for 30 minutes at 80 °C led to the
complete consumption of 7, and the formation of a mixture
of two major products (12a, b), in addition to a minor
product (12c) present in �10% (Figure S16). 19F NMR
peaks at � 119.6, � 153.6 and � 161.8 ppm are proposed to
correspond to 12b and exist alongside a broad doublet at
� 157.6 ppm, corresponding to 12a.[35] A set of smaller peaks
at � 118.7, � 152.6 ppm and a broad singlet at 162.3 ppm are
consistent with the formation of 12c and match previously
reported data for this compound.[35] Whilst the major
products 12a, b are likely to form from oxidative addition
across the Al� Al bond of 7, the formation for 12c provides
evidence that competitive disproportionation also occurs,
being consistent with C� F bond activation at a monomeric
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AlI centre.[32,36] Although H/F scrambling has previously
been reported,[35] in an independent sample containing 12a
and 12b, the formation of 12c was not observed.

To conclude, we have been able to access a range of new
low oxidation state Al compounds using A as a stoichio-
metric reducing agent. Monomeric AlI species are proposed
to be key intermediates in the equilibrium processes that
determine product formation, with both DFT and reactivity
studies providing early evidence supporting this theory and
work to provide further support ongoing. These reactions
highlight how careful tuning of the ligand environment can
have a drastic effect on product formation, and have allowed
us to access low oxidation state compounds not accessible
through traditional reductive routes. Future efforts will
focus on making such routes to low oxidation state Al

compounds more scalable, with the aim of making Al
reagents more synthetically viable.
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