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Abstract
Background: We investigated how temporal context affects the learning of arbitrary visuo-motor associations. Human 
observers viewed highly distinguishable, fractal objects and learned to choose for each object the one motor response 
(of four) that was rewarded. Some objects were consistently preceded by specific other objects, while other objects 
lacked this task-irrelevant but predictive context.

Results: The results of five experiments showed that predictive context consistently and significantly accelerated 
associative learning. A simple model of reinforcement learning, in which three successive objects informed response 
selection, reproduced our behavioral results.

Conclusions: Our results imply that not just the representation of a current event, but also the representations of past 
events, are reinforced during conditional associative learning. In addition, these findings are broadly consistent with 
the prediction of attractor network models of associative learning and their prophecy of a persistent representation of 
past objects.

Background
Conditional associative tasks probe the ability of primates
to learn arbitrary sensorimotor mappings [1,2]. Typically,
the experimental design takes a set of visual stimuli from
the same category and maps them randomly onto a set of
motor responses. Subjects learn by trial and error which
response produces the reward in the case of each stimulus
(e.g., if stimulus A, then response X secures the reward). As
all stimuli are potentially associated with reward, the sub-
ject cannot simply learn stimulus-reward associations.
Instead, subjects must link each stimulus to the specific
response that ensures the reward in each case. This requires
not only stimulus recognition and response selection, but
also keeping track of (at least some of) the stimulus-
response pairings already tried and the outcomes obtained.
Depending on the size of the stimulus set, this may generate
a considerable memory load.

Studies with behaving primates reveal an extensive net-
work of brain areas underlying conditional associative tasks
[3,4]. The associative link between visual object recogni-
tion, subserved by inferior temporal cortex [5-8], and

response selection, mediated by prefrontal and premotor
cortex [9-11] does not, however, appear to involve a direct
interaction of these brain areas [12]. Instead, conditional
associative learning seems to rely on indirect pathways
through the striatum [13-16] and the medial temporal lobe
[17-20].

With more extensive stimulus sets, conditional associa-
tive tasks are suitable also for human observers. Functional
imaging studies confirm that such tasks involve a similar
network of prefrontal, parietal, and striatal areas in the
human brain as in the brain of non-human primates [21-24].

Attractor network models of associative learning [25,26]
predict that memories should be shaped by the order in
which different events are rehearsed. The reason is that the
neural representation of an event class - its attractor state -
should linger even after a triggering event has passed. Due
to this reverberatory 'delay activity', events that occur con-
sistently in a particular temporal order should eventually
become subsumed under the same event class in associative
memory. Importantly, it is the consistent temporal order, not
mere temporal proximity, that should lead to these
expanded memory representations.

Behavioral results from human observers are consistent
with the idea that temporal order shapes associative learn-
ing [27,28]. For example, observers suffer in their ability to
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distinguish two face images after viewing image sequences
in which the face identity changes as the head rotates [29].
Apparently, the correlated appearance over time leads
observers to classify the two faces as the same person. Sim-
ilarly, human observers come to classify two distinct
objects as "similar" when they have repeatedly viewed a
series of intermediate objects [30]. Importantly, the distinct
objects become associated only if the intermediate objects
were presented in a systematic order, starting with the most
similar and ending with the most dissimilar to the initial
object. Once again, it appears as if perceiving objects in a
consistent temporal order would merge their representa-
tions in associative memory. More generally, temporal
order effects are well documented for serial reaction time
tasks [31-33] and serial visual search tasks [34,35] with
human observers, as well as for serial button press tasks
with non-human primates [36,37].

More direct evidence for an effect of temporal order on
associative memory comes from electrophysiological
recordings in behaving non-human primates. When mon-
keys are trained to perform a delayed match-to-sample
tasks, neurons in the inferior temporal cortex exhibit stimu-
lus-selective activity during the delay period [38], as a con-
sequence of having formed a long-term associative memory
of a stimulus [39,40]. When different sample stimuli are
presented in a consistent order over successive trials, some
neurons develop a task-irrelevant selectivity for successive
sample pairs [40]. In monkeys trained to associate different
objects that are presented successively (paired-associate
tasks), delay activity for the first object and neuronal selec-
tivity for the pairs become evident concurrently and in the
same neurons [41,42] (see also [43]). These observations
directly link consistent temporal order, the presence of
'delay activity', and the merging of associative memory rep-
resentations.

Here, we introduce a novel approach to studying the
effect of temporal order on associative learning with human
observers. Our approach is patterned on established para-
digms of conditional associative learning and, unlike the
previous studies mentioned above, does not involve
sequences of self-similar images (e.g., incrementally
rotated [29] or morphed faces [30]). This choice was moti-
vated by several considerations. Firstly, we wanted to stay
as close as possible to the behavioral situation of the non-
human primate studies in which temporal order effects were
first described [39,40]. Secondly, we wanted more freedom
to manipulate temporal order than was possible with self-
similar images. Thirdly, we wanted to conceal the presence
of temporal order from observers, in order to minimize
complications arising from cognitive strategies that often
beset human studies.

Specifically, our observers viewed highly distinguishable,
fractal objects and learned to select one of four possible
motor responses for each object. Some objects were consis-

tently preceded by specific other objects, while other
objects lacked such a predictive temporal context (Figure
1). Our aim was to keep observers engaged in the immedi-
ate task (learning visuo-motor associations) and to discour-
age as far as possible any performance strategies relying on
temporal context. For this reason, we intermixed (in most
experiments) visual objects with and without temporal con-
text and ensured that knowledge of temporal context was
not necessary for accurate performance. Our results show
that observers expended comparable attention and/or mem-
ory resources on objects with and without temporal context,
confirming that observers applied comparable learning
strategies in both cases.

To better interpret our behavioral results, we devised a
model of reinforcement learning [44] for our behavioral
paradigm. In this model, response choice is based on multi-
ple action values, some attaching to the object of the current
trial and others attaching to objects of preceding trials. As a
consequence, our model exhibits a similar dependence on
temporal context as do human observers.

In summary, we have studied the effect of temporal con-
text on conditional associative learning. Our behavioral sit-
uation is based on non-human primate paradigms but
conceals the presence or absence of temporal context from
human observers. We believe that this is a promising
approach to testing the predictions of attractor theory of
associative learning with human observers.

Results
Behavioral results
To ascertain whether temporal context influences the pro-
cess of associative learning (or not), we conducted five
behavioral experiments. In all experiments, observers
learned to recognize and to classify fractal objects [39]. The
objects were initially unfamiliar but highly distinguishable.
For each object, observers were asked to learn the 'correct'
motor response (one of four) associated with this object.
After the observer's choice, the response was identified as
'correct' or 'incorrect'. Most objects recurred multiple times
during the session ('recurring objects'), providing ample
opportunity for learning by trial and error. Some experi-
ments also used 'one-time objects', which appeared only
once.

A trial consisted of the presentation of one object, the
observer's response to that object, and reinforcement (Fig-
ure 1a). Trial sequences differed in length (56 to 336 trials)
and in the number of recurring objects (8 to 16 objects),
resulting in learning situations of greatly varying difficulty.
Each trial sequence used new and unfamiliar objects, forc-
ing observers to relearn the objects each time.

Pilot experiments established that human observers con-
sistently approach ceiling performance (P = 100% correct)
if the trial sequence is sufficiently long. A convenient per-
formance measure is therefore the negative logarithm of the
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distance to ceiling performance (- log2 [1 - P ]). In terms of
this measure, performance improves almost linearly with
every object appearance (Figure 2).

The 'correct' response of each trial was determined com-
pletely by the object of that trial, which thus provided 2 bits
of information. However, the object of the preceding trial
was sometimes informative as well. This 'temporal context'
information was redundant and, except in experiment 1,
observers appeared unaware of its availability. When asked
about their behavioral strategy, observers indicated consis-
tently that they had concentrated their efforts on the current
object.

The informativeness of the object in the previous trial
(about the correct response in the current trial) was quanti-
fied as percentage of informativeness of the current object
(see section entitled "Mutual information" in Methods).
Thus, the informativeness of this temporal context ranged
from 0% to 100% (Figure 1bc). Table 1 summarizes the
informativeness of the various temporal contexts employed
in experiments 1 to 5. The level of significance adopted for

all the statistical comparisons reported here was set at p <
0.05.
Experiment 1
Eight fractal objects appeared seven times each, in either a
deterministic or a random sequence (Figure 2a). Both types
of sequence were 56 trials long. In deterministic sequences,
each object was preceded (followed) seven times (100%
probability) by one particular of the other seven objects. In
random sequences, each object was preceded (followed)
once (14% probability) by each of the seven other objects.
Accordingly, the temporal context of deterministic and vari-
able sequences was, respectively, 100% and 2% as informa-
tive about the correct response as the current object itself
(see Table 1 and "Mutual information" in Methods).
Observers quickly understood the existence and nature of
the two types of sequences (even though the instructions
had been silent on this point). Accordingly, it seemed likely
that observers applied a different learning strategy in each
case. The average results for 10 observers are presented in
(Figure 2a). Post hoc t-tests revealed that learning was sig-

Figure 1 Experimental design (schematic). Each trial comprises three phases: stimulus presentation, motor response, and reinforcement. Firstly, a 
fractal object appears (center), surrounded by four response options (grey discs). Secondly, the observer reacts by pressing the key that corresponds 
to one response option (outlined disk). Thirdly, a color change of the chosen option provides reinforcement (green if correct, red if incorrect). (b) Ob-
ject sequence with temporal context. Target objects recur every 2 to 48 trials. Thus, successive trials always present different objects. A consistent tem-
poral context is created by the fact that each target object (e.g., trials t and t + m) is preceded consistently by a specific (other) object (trials t - 1 and t 
+ m - 1). (c) Object sequence without temporal context. Each time an object appears (trials t and t + m), it is preceded by a different object (trials t - 1 
and t + m - 1).

ReinforcementMotor responseStimulus presentation

(a) 
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Figure 2 (See figure legend on next page.)
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nificantly faster in deterministic than in variable sequences
(t(239) = 2.3, p < 0.03), exhibiting initial learning rates of
0.13 and 0.04 bit per appearance, respectively (average
across subjects). While this difference may have been due
to the disparate temporal contexts, it could also have
reflected differential allocation of attentional and/or mem-
ory resources on the part of the observers.
Experiment 2
To ascertain whether learning rate depends on the temporal
context of individual objects, we created sequences that
intermixed 'recurrent objects' with different temporal con-
texts as well as 'one-time objects'. In this situation, observ-
ers are less likely to allocate differential attentional and/or
memory resources to different object types.

Eight recurring objects appeared six times each, inter-
mixed with 24 one-time objects, in sequences of 72 trials
(Figure 2b). Each of two type A recurring objects was pre-
ceded by a one-time object and followed consistently
(100% probability) by one particular other recurring object
(type B). Each of two type B recurring objects was consis-
tently (100% probability) preceded by one particular other

recurring object (type A) and followed by a one-time
object. Each of four type C recurring objects was preceded
(followed) once (16.7% probability) by each of the three
other recurring objects (type C) and three times (50% prob-
ability) by a one-time object.

The temporal context of type A, B, or C objects was,
respectively, 0%, 100%, and 2.8% as informative as the
object itself (Table 1). The average results for 8 observers
are presented in (Figure 2b). Beginning with the second
appearance, learning was significantly faster for objects
with more informative (type B) than with less informative
(type C, type A) temporal contexts (type B vs. type A:
t(227) = 3.1, p < 0.01; type B vs. type C: t(227) = 2.9, p <
0.01). The initial average rates of learning were 0.12, 0.05,
and 0.03 bit per appearance for type B, C, and A objects,
respectively.
Experiment 3
The previous experiment demonstrated that learning rate
depended on the temporal context of each object in a
sequence. To ascertain whether this effect would persist
with a higher memory load, we conducted a similar experi-

Table 1: Informativeness of temporal context.

Object type

Experiment A B C D E F

1 100% 2.0%

2 0% 100% 2.8%

3 0% 100% 0.5%

4 1.5% 20.3%

5 0% 100% 0% 0%

Mutual information between predecessor object and correct response of current object, as a percentage of 2 bit, the mutual information 
between object and correct response (equations 10 and 11 in Methods section).

(See figure on previous page.)
Figure 2 Behavioral and modeling results. For each of five experiments, temporal context, behavioral performance, and predicted performance 
are shown (left, middle, and right columns, respectively). Trial sequences were composed of 'recurring objects' (types A-F) distinguished by their tem-
poral context. Error bars refer to the 95% confidence intervals (α = 0.05) for binomially distributed data. In (b)-(e), recurring objects were intermixed 
with 'one-time objects'. Type A objects were preceded by a one-time object and followed by one particular other recurring object (probability 100%). 
Type B objects were preceded by one particular other recurring object (probability 100%) and followed by a one-time object. Type C objects were 
preceded (followed) by one-time objects (probability 50%) and by each of several other recurring objects (cumulative probability 50%). Type D objects 
were preceded (followed) by one-time objects (probability 50%) and by one particular other recurring object (probability 50%). Type E objects were 
preceded by a one-time object and followed by each of four other recurring objects (probability 25%). Type F objects were preceded by each of four 
other recurring objects (probability 25%) and followed a one-time object. The relative informativeness of the temporal contexts is given in Table 1. (a) 
Eight objects appeared seven times each, in either deterministic or random sequences. In deterministic sequences, each object was preceded (fol-
lowed) seven times (100% probability) by one particular of the other seven objects. In random sequences, each object was preceded (followed) once 
(14% probability) by each of the seven other objects. (b) Eight recurring objects (2 type A, 2 type B, and 4 type C) appeared six times each, intermixed 
with one-time objects. (c) Sixteen recurring objects (4 type A, 4 type B, and 8 type C) appeared 14 times each. (d) Ten recurring objects (5 type C and 
5 type D) appeared eight times each. (e) Sixteen recurring objects (4 each of types A, B, E, and F) appeared 8 times each.
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ment with 16 (rather than 8) recurrent objects. To increase
the sensitivity of the measurements, each recurrent object
appeared 14 (rather than 6) times.

Sixteen recurring objects appeared 14 times each, inter-
mixed with 112 one-time objects, in sequences of 336 trials
(Figure 2c). Each of four type A recurring objects was pre-
ceded by a one-time object and followed consistently
(100% probability) by one particular other recurring object
(type B). Each of four type B recurring objects was consis-
tently (100% probability) preceded by one particular other
recurring object (type A) and followed by a one-time
object. Each of eight type C recurring objects was preceded
(followed) once (7% probability) by each of the seven other
recurring objects (type C) and seven times (50% probabil-
ity) by a one-time object.

The temporal context of type A, B, or C objects was,
respectively, 0%, 100%, and 0.5% as informative as the
current object (Table 1). The results of 5 observers are sum-
marized in (Figure 2c). Beginning with the fifth appear-
ance, learning was significantly faster for objects with more
informative (type B) than with less informative (type C,
type A) temporal contexts (type B vs. type A: t(59) = 2.2, p
< 0.04; type B vs. type C: t(59) = 2.7, p < 0.01). The initial
average rates of learning were 0.10, 0.06, and 0.05 bit per
appearance for type B, C, and A objects, respectively.
Experiment 4
Previous experiments compared temporal contexts that
were either maximally or minimally informative. In a fur-
ther experiment, we compared temporal contexts with an
intermediate degree of informativeness. To this end, we
presented each object in several contexts, only some of
which were informative.

Ten recurring objects appeared 8 times each, intermixed
with 40 one-time objects, in sequences of 120 trials (Figure
2d). Each of five type C recurring objects was preceded
(followed) once (12.5% probability) by each of the four
other recurring objects (type C) and four times (50% proba-
bility) by a one-time object. Each of five type D recurring
objects was preceded (followed) four times (50% probabil-
ity) by one particular other recurring object (type D) and
four times by a one-time object.

The temporal context of a type C or D object was, respec-
tively, 1.5% and 20.3% as informative as the object itself
(Table 1). Figure 2d summarizes the results of 10 observers.
Initial learning rates were comparable for type C and D
objects (0.06 and 0.07 bit, respectively), although type D
objects gained a modest advantage after further appear-
ances. Only at the eighth (last) appearance was there a sig-
nificant difference in learning between type D and type C
objects (t(689) = 2.2, p < 0.03). The fact that observers
failed to learn type D objects more rapidly than type C
objects suggests that partially informative temporal con-
texts do not accelerate learning. Of course, it remains possi-
ble that learning would be accelerated by temporal contexts

that are, say, 75% informative (i.e., more than 20%, yet less
than 100% informative).
Experiment 5
To allay any concern that observers might have allocated
differential attention/memory resources to different object
types, we conducted one further experiment on this point.
Specifically, we presented recurrent objects in ordered
pairs, some objects serving consistently as first members
and others consistently as second members of these pairs.
In some pairs (type A and type B objects), the first mem-
bers were informative about the second members whereas,
in other pairs (type E and type F objects), the first members
were uninformative about the second members. If consis-
tent object pairings had attracted additional attention/mem-
ory resources to the second member of each pairing, then
this should have been true for both types of pairs, resulting
in faster learning of both type B and type F objects. Sixteen
recurring objects appeared 8 times each, intermixed with 64
one-time objects, in sequences of 192 trials (Figure 2e).
Each of four type A objects was preceded by a one-time
object and followed consistently (100% probability) by one
particular other recurring object (type B). Each of four type
B objects was preceded consistently (100% probability) by
one particular other recurring object (type A) and followed
by a one-time object. Each of four type E objects was pre-
ceded by a one-time object and followed twice (25% proba-
bility) by each of four other recurring objects (type F). Each
of four type F objects was preceded twice (25% probability)
by each of four other recurring objects (type E) and fol-
lowed by a one-time object. The temporal context of type
A, B, E, or F objects was, respectively, 0%, 100%, 0%, and
0% as informative as the object itself. Figure 2e summa-
rizes the results of 5 observers. Beginning with the seventh
appearance, learning was significantly faster for objects
with more informative (type B) than less informative (type
A, type E, and type F) temporal contexts (type B vs. type A:
t(29) = 2.24, p < 0.04; type B vs. type E: t(29) = 4.5, p <
0.001; type B vs. type F: t(29) = 2.8, p < 0.01). The initial
average rates of learning were 0.15, 0.09, 0.06, and 0.09 bit
per appearance for type B, type A, type E, and type F
objects, respectively. In short, only informative temporal
context led to faster learning. Merely presenting objects as
consistent pairs (without the first object being informative
about the second) did not accelerate learning. This failure
shows conclusively that accelerated learning is due to infor-
mative temporal context, not to additional attention/mem-
ory resources.
One-time objects
As learning progresses, observers tend to react faster to
recurring objects (whether with or without temporal con-
text). However, reaction times to one-time objects remained
consistently slow throughout the trial sequence, suggesting
that observers do try to learn (i.e., expend attentional and
memory resources) even on one-time objects.
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To assess the predictive value, if any, of one-time objects,
we compared performance and reaction time for type C
objects that followed a one-time-object and for (the identi-
cal) type C objects that followed other type C objects
(experiments 2, 3, and 4). We found no significant differ-
ence in either performance or reaction time between type C
objects in these different contexts.

It remains possible that the (comparatively poor) perfor-
mance on type A objects may have benefitted from their
consistent temporal association with one-time objects.
However, our sequences lacked a suitable control object so
that we could not test this possibility.
Summary
An 'ideal learner' accumulates information about the correct
response to a particular object at an initial average rate of
0.5 bit per appearance (see below). Human observers per-
formed substantially less well, accumulating on average
0.09 and 0.07 bit during the initial appearance of a recurrent
object in experiments 1 and 2 (memory load 8 objects), 0.07
bit in experiment 4 (10 objects), and 0.07 and 0.1 bit in
experiments 3 and 5 (16 objects). These values represent
learning in the absence of any temporal context provided by
previous objects.

In the presence of temporal context, the accumulation of
information was accelerated by 0.13 bit during the initial
appearance of objects embedded in a fully predictive tem-
poral context (Figure 3a).

Computational results
Basic model, insensitive to context

A simple model for our situation is that response probabili-
ties are modified directly such as to maximize expected

reward. For each object n, four response probabilities ,

where j 8 {1, �, 4} and  must be learned.

When object n is observed, action k is selected, and reward
rk 8 {0, 1} is received, a suitable rule for updating response
probabilities is

where λ and μ are learning rates in the range of [0, 1] and
δjk is the Kronecker delta (which equals 1 if j = k and 0 if j ≠

k). This rule ensures  and . Choos-

ing λ >μ makes learning faster in rewarded than in unre-
warded trials. Choosing the maximal rates λ = μ = 1
implements an 'ideal learner'. Note that this simple model

ignores temporal context and focuses on the explicit task
(associating the current object with the rewarded choice).
As a result, this model does not predict any dependence of
learning rate on temporal context and therefore does not
account for our behavioral results.
Extended model, sensitive to context
We now introduce a more elaborate model that is sensitive
to temporal context. We choose an indirect actor model that
responds probabilistically on the basis of reward expecta-
tions.
Probabilistic response The probability of choosing
response k in trial t is

where  is the reward expected from response k in trial

t. The parameter β determines whether the model behaves
in a more exploratory or a more exploitative manner. We
use β = 20.
Reward expectation Reward expectations are based on
'action values' that have accumulated for the objects of the
current trial, t, and the two previous trials, t - 1 and t - 2.

Each object x is associated with 12 action values ,

where i indexes current, next, and after-next trials (i 8 {0, 1,
2}) and j indexes the response possibilities (j 8 {1, �, 4}).
In the case of a familiar object, action values reflect past
experience as to which responses were rewarded and which
unrewarded after the object in question had been observed.
In the case of unfamiliar objects, all action values are ini-
tialized to 0.

Specifically, if objects n", n', and n appeared in trials t - 2,
t - 1, and t, respectively, and if each object is recognized
unambiguously, the reward expectation for response j in
trial t is

combining action values of the current, the previous, and
the before-previous objects. Temporal context determines
which action values are reinforced consistently and, thus,
which values come to indicate the correct response. In the
absence of temporal context, only the current object's action
values are reinforced consistently and thus become indica-
tive of the correct response (Figure 4). Note that the model
does not assume any attenuation of past objects: current,
previous, and before previous objects all contribute equally
to reward expectation.
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Action values Action values are reinforced by a modified
Rescorla-Wagner rule [45]. If a response k receives a

reward  in trial t, the prediction error is

and the three action values , , and  asso-

ciated with action k are modified as follows:

where x = n, n', and n" when i = 0, 1, and 2 respectively, ε
is the general learning rate, and  is the specific learning
rate of object x 8 {n, n', n"} in trial t (see below). Action

values associated with other actions j ≠ k remain
unchanged.
Recognition parameter Human observers sometimes fail
to recognize an object they have seen before. To model this
confusion about object identity, we introduce a recognition
parameter γ, 0 ≤γ ≤ 1, which parametrizes the extent to
which an actual object is recognized as being present. The
value of γ affects learning in two ways. Firstly, it influences
the reward expectation by taking into account not only the
objects actually present but also all other objects. As a
result, (equation 3) becomes

where  for i 8 {0, 1, 2}

and x 8 {n, n', n"}. N is the total number of objects. Sec-
ondly, γ < 1 removes some reinforcement from action val-
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Figure 3 Actual learning rates and estimated parameters. (a) Acceleration of learning during the initial appearance of objects due to different 

degrees of temporal context. In the presence of a fully predictive temporal context, the accumulation of information was accelerated by 0.13 bit. Error 
bars in Figure 3a show the standard deviation across experiments for each object type. Plots (b)-(f) show regions of optimal values in the parameter 
space (?, γ), corresponding to the general learning rate and the recognition parameter, respectively. The color scales to the right of each plot refer to 

the fit quality fQ for each parameter pair (?, γ), which was computed as , where  and 

 are the mean values of performance correct in the i-th appearance for human observers and for the model simulations, respectively, and  

and  are the corresponding standard deviations. The higher the fQ values, the better the fit between measured and predicted data.
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ues of objects actually present and distributes the
reinforcement over the action values of all other objects.
Accordingly, (equation 5) modifies to

where i 8 {0, 1, 2} and x 8 {n, n', n"}.
The recognition parameter γ is an admittedly crude way

of modeling confusion about object identity. In human
observers, one might expect that recognition rates increase
with every appearance of a particular object. In our model,
the value of γ does not reflect this (hypothetical) improve-
ment and remains constant throughout the sequence.
Specific learning rates Specific learning rates reflect how
reliably a particular object is associated with the reward and
are computed by a Kalman-filter algorithm [46]. Let x(t) be

the augmented stimulus vector of trial t which comprises
three components for each object ni 8 {n1, ..., nN} (one com-
ponent for each the current, the previous, and the before-
previous trial). The values of x(t) reflect the recognition
parameter and differ for present and absent objects in the
following manner:

Here, j 8 {1, ..., 3N} and i = j mod N.
The specific learning rate of object xi is computed from
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Figure 4 Reinforcement of action values (schematic). Each object is associated with 12 action values. For the object in trial t, 4 action values inform 
the response of the current trial t, 4 values concern the response of the next trial t + 1, and the remaining 4 values contribute to the response of the 
second next trial t + 2. Correspondingly, the response of trial t is based on 12 actions values: 4 values of the current object t, 4 values of the previous 
object t - 1, and 4 values of the pre-previous object t - 2. Temporal context determines which action values are reinforced consistently. (a) In the ab-
sence of temporal context, only the current object's action values are reinforced consistently and come to reflect the correct choice. In this case, the 
decision in trial t is based on 4 action values of object t. (b) In the presence of temporal context, both the current and the previous object's action 
values are reinforced consistently. Thus, the decision in trial t is based on 4 action values of object t and 4 action values of object t - 1.
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where  is a drift covariance matrix that is accumu-

lated iteratively. The iteration algorithm is given in the
appendix.
Model fitting
In both basic and extended models, response choices
depend on 'action values' that are learned by reinforcement.
The basic model, in which action values are associated
exclusively with the current object, ignores temporal con-
text in choosing the current response. As a result, the basic
model does not account for the sensitivity to temporal con-
text exhibited by human observers. Nevertheless, the basic
model provides a useful benchmark to which human perfor-
mance can be compared.

With learning rates set to their maximal values of λ = μ =
1, the basic model implements an 'ideal learner'. Its average
performance increases from 25% correct on the first
appearance of an object, to 50%, 75%, and 100% correct on
the second, third, and fourth appearance of the object. The
combined entropy of response and reward falls from 2.81
bit on the first appearance, to 2.16 bit, 1.41 bit, and 0 bit on
the second, third, and fourth appearances, respectively.

In the extended model, action choices are influenced
equally by three objects: the current, the previous, and the
one preceding the previous object. In addition to this sensi-
tivity to temporal context, the extended model also allows
for probabilistic object recognition and employs differental
learning rates that depend on the reliability of a reward-
association [46].

The extended model has two free parameters, namely, the
general learning rate ε and the recognition parameter γ
(equation 7). The parameter β did not materially affect the
results and its value was kept equal to β = 20 throughout
(equation 2).

The extended model was fit to the behavioral results in
the ranges of 0 ≤ ε ≤ 1 and 0.25 ≤ γ ≤ 0.9 (Figure 3). The
results of experiment 1 are consistent with a comparatively
rapid learning rate of ε ≈ 0.48 and a near-perfect recogni-
tion probability of γ ≈ 0.9 (Figure 3b). Apparently, the sim-
ple sequence structure facilitated object recognition.

The results of experiments 2, 4, and 5 are consistent with
somewhat lower learning rates and reduced recognition
probabilities in the range of γ = 0.5 to 0.9 (Figures 3cef).
The learning rates appear to decrease with increasing object
number, with ε≈ 0.25 in experiment 2 (8 recurring objects
and 24 one-time objects), ε ≈ 0.16 in experiment 4 (10
recurring objects, 40 one-time objects), and ε ≈ 0.15 in
experiment 5 (16 recurring objects, 64 one-time objects).
Presumably, learning rates decrease as limited memory
capacity is spread 'more thinly' over a larger number of
objects.

At first glance, a second set of parameter values (ε ≈ 0.5
and γ ≈ 0.25) accounts comparably well (and sometimes
even better) for the experimental results (Figures 3df).

However, a closer look reveals that this 'second' fit results
from an intrinsic symmetry of the model: the overall learn-
ing rate is proportional to the product of ε and γ and thus
may be matched equally well by (ε, γ) ≈ (0.25, 0.5) and by
(ε, γ) ≈ (0.5, 0.25). In addition, low values of γ erode the
recognition probability and thus provide an indirect way of
adjusting the degree of context dependence. If one intro-
duces a further parameter to modify the relative weights of
current and previous objects, comparably good fits are
obtained with high values of γ (not shown).

Finally, the results of experiment 3 are consistent with a
learning rate of ε ≈ 0.14 and a wide range of recognition
probabilities γ, with the best fit obtained for γ ≈ 0.75. The
comparatively low value of ε reflects the memory load,
which was highest in this experiment (16 recurring and 112
one-time objects).

Discussion
We have compounded the learning of multiple visual-motor
associations in various sequential orders. In every trial, the
rewarded response was fully predicted by a visible visual
object. Additionally, however, the rewarded response was
predicted to varying degrees by the visual objects of previ-
ous trials. Five experiments showed consistently that learn-
ing is accelerated when objects of previous trials provide a
predictive temporal context.

In the first experiment, the trial sequence separated
object-response-pairs with and without temporal context
into distinct blocks, so that the difference was evident to
observers. Reaction times were significantly shorter for
objects with temporal context than for objects without tem-
poral context, indicating that observers might have applied
differential cognitive strategies. In the second experiment
(and all others), trials with and without temporal context
were intermixed, so that the difference remained concealed
from observers. Reaction time patterns showed no evidence
that observers allocated attentional/memory resources dif-
ferentially to trials with and without temporal context. The
third experiment raised task difficulty by doubling the num-
ber of visual objects (from 8 to 16), but confirmed the basic
result: object-response-pairs with temporal context are
learned faster than pairs without such context. In the fourth
experiment, a partially predictive (20.3%) temporal context
failed to accelerate associative learning. In the fifth and last
experiment, the objects in successive trials formed ordered
pairs, some predictive and others not. Only predictive pair-
ings accelerated learning.

A number of previous studies have manipulated temporal
context that (i) was irrelevant to the overt behavioral task
and (ii) remained concealed from the observer. Typically,
temporal context is altered by repeating a given set of trials
in either fixed or random order.

In serial reaction time tasks [47], human observers
respond as rapidly as possible to the locations of successive

Pij
t( )
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visual targets. After training, reaction times are faster when
the target locations follow a repeating rather than a random
pattern, which is taken as evidence of 'sequence learning'
[31-33,48]. Importantly, observers do not have to be aware
of the repeating sequence in order to benefit from it [49]. In
serial button press tasks [36], non-human primates are pre-
sented with pairs of visual targets and learn to press two
corresponding buttons in a particular order. Both within and
between daily sessions, learning is facilitated when target
pairs follow each other in a repeating rather than reversed
or random order [50,51]. However, the animals do not seem
to acquire choice responses for individual target pairs but
rather motor sequences for 'hyper-sets' of several successive
pairs [37,50].

In visual search tasks, human observers locate a single
target (which is identified by certain distinguishing charac-
teristics) among multiple distractors. Search performance
benefits from the 'spatial context' that is provided by recur-
ring distractor configurations [34]. Interestingly, observers
are unaware of the repeating configuration and contextual
learning depends on an intact hippocampus [35,52,53].
Similar benefits accrue from the 'temporal context' created
when a fixed sequence of target locations is used in succes-
sive trials [54,55]. This temporal effect is also implicit and
appears to be mediated by visual selective attention, in that
observers learn to shift attention to the next target location
predicted by contextual information. Finally, when different
visual threshold discriminations (e.g., contrast, motion-
direction) are compounded, visual learning accelerates sig-
nificantly if different displays appear in a fixed (rather than
random) temporal sequence [56]. It has been proposed that
predictive temporal context may facilitate the activation of
an appropriate visual template for each trial [57].

The present study differed from previous investigations in
a number of ways. Firstly, it forced observers to become
familiar with a number of initially unfamiliar fractal pat-
terns. This emphasis on visual recognition was modeled on
paradigms developed for behaving non-human primates
[15,39,40].

Secondly, we ensured that observers associated individual
fractal patterns with particular responses and foiled alterna-
tive strategies such as acquiring motor sequences that span
several successive trials. We achieved this by keeping con-
sistent sequences short (two trials in most experiments) and
by intermixing trials with different temporal contexts. This
sets our situation apart from serial reaction time [47] or
serial button press tasks [36].

Thirdly, observers were able to attend fully to the sole
visual object presented on each trial. This stands in contra-
distinction to visual search paradigms, where training
improves performance mainly through the anticipatory
guidance of visual selective attention [54,57,58].

Our behavioral results are quantitatively consistent with a
model of reinforcement learning [44]. In this model,

response choice is probabilistic but follows reward expecta-
tions, which are being accumulated in the form of 'action
values'. The reinforcement rule increments (decrements)
these 'action values' when a chosen response receives more
(less) reward than expected. The key feature is that
response choice is influenced by multiple 'action values',
some attaching to the object of the current trial and others
attaching to objects of preceding trials. Their effect is
cumulative in the sense that the more 'action values' favor a
particular response, the more likely this response is chosen.
Accordingly, when successive objects appear in a consistent
order, more than one 'action value' will favor the correct
response, which will therefore be chosen more frequently.

The model accounts qualitatively and quantitatively for
our behavioral observations, provided suitable values are
chosen for learning rate ε and recognition parameter γ. The
value of ε decreases as the number of fractal objects
increases. The value is smaller than unity, which implies
that observers concurrently acquire only a subset of stimu-
lus-response pairings. Overall, the values of ε are consistent
with the possibility that two to three pairings are being
formed concurrently (i.e., at the ideal learner rate), while
the remaining pairings are being ignored. The value of γ
also decreases with the number of fractal objects, consistent
with growing uncertainty about object identity.

In the present series of experiments, the task set remained
stable in the sense that the same stimulus-pairings were
rewarded throughout each trial sequence. However, stable
tasks sets pose only a weak test of the model and its under-
lying assumptions. Far stronger tests can be devised with
experimental designs that vary the task sets (e.g., task
reversal). To illustrate this point, we outline a hypothetical
experiment with variable task set:

Consider trials i - 2, i - 1 and i with stimuli Si-2, Si-1, Si and
trial i with response Ri. While the overt task is to acquire the
pairing Si T Ri, the model additionally reinforces the pair-
ings Si-2 T Ri and Si-1 T Ri. How will the model perform

when either stimulus Si is replaced by  or response Ri

replaced by ε In the former case, two out of three pair-

ings remain valid (Si-2 T Ri and Si-1 T Ri), so that predicted
performance remains above chance. In the latter case, how-
ever, all pairings become invalid and predicted performance
falls below chance. Accordingly, this hypothetical experi-
ment would test the model's key assumption, namely, the
reinforcement of pairings between past stimuli and present
response (Si-2 T Ri and Si-1 T Ri).

Attractor network models of associative learning [25,26]
are typically tested with electrophysiological recordings
from behaving non-human primates [59-63]. However,
behavioral observations from human observers can also fur-
nish useful evidence, at least with respect to the more quali-

′Si

′Ri
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tative predictions of these theories. For example, behavioral
experiments with sequences of self-similar images suggest
that initially distinct classes of objects in associative mem-
ory become merged when exemplars of the two classes are
repeatedly presented in the same temporal order [29,30].
This confirms the qualitative prediction that events occur-
ring consistently in the same temporal order are eventually
subsumed under one and the same event class in associative
memory [27,28,64-66].

We have presented behavioral evidence that is consistent
with another qualitative prediction of attractor network
models, namely, the persistent representation of past events
('delay activity'). Patterning our behavioral situation on
established paradigms of conditional associative learning,
we have demonstrated that the presence of consistent tem-
poral context significantly improves choice performance.
This finding implies that not just the representation of a cur-
rent event, but also the representations of past events, are
reinforced during conditional associative learning.

Conclusions
We believe that we have developed a promising novel
approach for studying temporal context effects with human
observers. Building on our current findings, we plan to
characterize this persistent representation of past events
more comprehensively in future experiments.

Methods
A total of 38 female observers (mean age: 22.5; range: 20 -
32) were recruited from the university campus. All observ-
ers reported normal or corrected-to-normal visual acuity
and were naive about the purpose of the experiment.
Observers completed an informed-consent form approved
by the ethics committee of the university.

Apparatus and Stimuli
Highly distinguishable fractal objects with characteristic
shapes and colors [39] were generated in Matlab using Psy-
chophysics Toolbox (Brainard, 1997; Pelli, 1997) with an
Apple computer (Dual 2 GHn PowerPC G5; 3.5 GB
SDRAM, OS × 10.4). Stimuli were displayed on a grey
background of an 22 inch Iiyama color monitor with a reso-
lution of 1900 × 1200 pixels and a frame rate of 100 Hn.
The display subtended 53° at the viewing distance of 50
cm. Fractal objects were presented foveally (diameter 4°)
and four response options (grey disks of diameter 4°)
appeared at 4° of eccentricity above, below, to the left and
to the right.

Task
Observers were instructed to learn to respond 'correctly' to
each fractal object. It was explained that, for each fractal
object, one of the four possible responses was 'correct',
while the other three responses were 'incorrect'. Observers

were told that they had to become familiar with and learn to
recognize each fractal object and that they had to learn the
'correct' response of each object by trial and error. They
were further told that there was no pattern or system that
would enable them to predict which response a particular
fractal object required. No mention of or reference to the
sequence of trials and fractal objects was made.

Procedure
Each trial comprised three phases (Figure 1a): 500 ms
foveal presentation of a fractal object and four response
options; 500 - 2000 ms response interval (terminated by the
pressing of either 9, T, |, or $ on the keyboard); 500 ms
reinforcement (the chosen response option turned green if
correct and red if incorrect). Blocks of 56 to 336 trials
('sequences') were performed without interruption. Each
sequence used a new set of fractal objects, which had never
been seen by the observer.

All sequences contained 'recurring objects', each of which
appeared a certain number of times (6 to 14 times) during
the sequence. At least 2 trials intervened between succes-
sive recurrences of the same object. Observers typically
learned the correct motor response of recurring objects
(although usually the sequence was terminated before per-
formance reached 100% correct). With sufficiently long
sequences observers do reach ceiling performance.

In experiments 2 to 5, sequences also contained 'one-time
objects', which appeared only once per sequence. Obvi-
ously, observers could not hope to learn the 'correct'
response for such objects. However, the results suggest that
observers did not distinguish between recurring and one-
time objects and expended comparable effort on both types
of objects.

Temporal context
We manipulated the sequence of objects to create a more or
less predictive 'temporal context'. The current object com-
pletely determined the correct response (1 of 4 possible
responses), corresponding to 2 bits of information. It is con-
venient to express the information provided by objects of
previous trials about the correct response in the current trial
as a percentage of 2 bits.

For example, the sequences in experiment 1 were either
maximally deterministic or maximally variable. In the
deterministic sequence, each object from an earlier trial was
just as informative about the correct response in the current
trial as the current object (100% information). In the vari-
able sequence, objects from earlier trials carried no infor-
mation about the correct response in current trials (0%
information). The informativeness of the temporal contexts
used in different experiments is summarized in Table 1. In
experiments 2 to 5, different temporal contexts were inter-
mixed in the same sequence: some objects were consis-
tently embedded in a highly informative context (and other
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objects in a highly uninformative context). The types of
temporal contexts used can be conveniently classified into
types A to F.
Type A
objects were preceded by a one-time object and followed by
one particular other recurring object (probability 100%).
The temporal context provided by the preceding object was
0% in experiments 2, 3, and 5.
Type B
objects were preceded by one particular other recurring
object (probability 100%) and followed by a one-time
object. The temporal context provided by the previous
object was 100% informative (experiments 2, 3, and 5).
Type C
objects were preceded (followed) by one-time objects
(probability 50%) and by each of several other recurring
objects (cumulative probability 50%). On average, the pre-
vious object was 2.8%, 0.5%, and 1.5% as informative as
the current object (experiments 2, 3, and 4).
Type D
objects were preceded (followed) by one-time objects
(probability 50%) and by one particular other recurring
object (probability 50%). On average, the previous object
was 20.3% as informative as the current object (experiment
4).
Type E
objects were preceded by a one-time object and followed by
each of four other recurring objects (probability 25%). The
previous object was 0% informative.
Type F
objects were preceded by each of four other recurring
objects (probability 25%) and followed a one-time object.
On average, the previous object was 0% as informative.

Sequences
Experiment 1
Eight fractal objects appeared seven times each, in either a
deterministic or a variable sequence. Both types of
sequence were 56 trials long. In deterministic sequences,
each object was preceded (followed) seven times (100%
probability) by one particular of the other seven objects. In
random sequences, each object was preceded (followed)
once (14% probability) by each of the seven other objects.
Target objects recur every 8 to 16 trials.
Experiment 2
Four recurring objects were used to form two consistent
pairs (1 - 2 and 3 - 4), each of which appeared six times in
the sequence. The 'predecessor' objects (1 and 3) were
termed type A and the 'successor' objects (2 and 4) type B.
Four additional recurring objects were used to form twelve
random pairs (5 - 6, 5 - 7, ..., 8 - 6, 8 - 7), each appearing
once per sequence (type C). Random pairs and consistent
pairs were alternated and separated by 24 one-time objects
to form sequences of 72 trials.

Experiment 3
Eight recurring objects were used to form four consistent
pairs (1 - 2, 3 - 4, 5 - 6, and 7 - 8), each of which appeared
fourteen times in the sequence. The 'predecessor' objects
(odd numbers) were termed type A and the 'successor'
objects (even numbers) type B. Eight additional recurring
objects were used to form 56 random pairs (9 - 10, 9 - 11,
..., 16 - 14, 16 - 15), each appearing once per sequence.
Random pairs and consistent pairs were alternated and sep-
arated by 112 one-time objects to form sequences of 336
trials.
Experiment 4
Five recurring objects were used to form five consistent
pairs (1 - 2, 2 - 3, 3 - 4, 4 - 5, and 5 - 1), each of which
appeared eight times in the sequence. In contrast to earlier
experiments, each object occurred in both the 'predecessor'
and the 'successor' position. To mark this difference, we
termed these objects type D objects. Five further recurring
objects were used to form twenty random pairs (6 - 7, 7 - 8,
..., 8 - 10, 9 - 10), each of which appeared twice per
sequence. As before, these objects were termed type C
objects.

Random pairs and consistent pairs were alternated and
separated by 40 one-time objects to form sequences of 120
trials.
Experiment 5
Eight recurring objects were used to form four consistent
pairs (1 - 2, 3 - 4, 5 - 6, and 7 - 8), each of which appeared
eight times in the sequence (type A and B). Eight further
recurring objects were used to form sixteen semi-consistent
pairs (9 - 13, ..., 12 - 13, 9 - 14, ..., 12 - 16), each of which
appeared twice in the sequence. The 'predecessor' objects
were termed type E (9, 10, 11, 12) and the 'successor'
objects were termed type F (13, 14, 15, 16). Consistent and
semi-consistent pairs were alternated and separated by 64
one-time objects to form sequences of 192 trials.

Mutual information
We quantified the informativeness of temporal contexts in
terms of mutual information. Assuming that responses are
selected randomly (as is necessarily the case for unfamiliar
objects), we computed the Shannon entropy H of the joint
distribution of reward and motor response, conditional on
the previous object

where p(rt, mt|st-1) is the joint probability of a reinforce-
ment rt 8 {0, 1} and a motor response mt 8 {1, 2, 3, 4},
given that a particular object st-1 occurred at the preceding
trial t - 1.

H p r m s p r m st t t t t t

m r

= − − −∑ ( , | ) log ( , | )
( , )

1 2 1 (10)
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When temporal context is uninformative, a previous
object does not restrict the set of possible next objects. In
this case, the reward probabilities associated with the four
responses are (1/4, 1/4, 1/4, 1/4). The full probability matrix
for the joint occurrence of a particular response and a par-
ticular motor response is then

corresponding to an entropy of Hmax = 2.8113 bit. When
temporal context is fully informative, the presence of a pre-
vious object completely determines the next object. In this
case, the reward probabilities change to (1, 0, 0, 0) and the
full probability matrix becomes

with an entropy of Hmin = 2 bit. The mutual information
between the current object and the rewarded response is the
difference between these values, or 0.8113 bit.

More generally, the informativeness of a previous object
(trial t - 1) about response-reward realization in the current
trial was computed according to

where the Hmax = 2.8113 bit and Hmin = 2 bit.
In the deterministic sequence of experiment 1, the previ-

ous object changes reward probabilities to (1, 0, 0, 0) (H = 2
bit), whereas, in the variable sequence, the previous object
changes reward probabilities to (2/7, 2/7, 2/7, 1/7) (H =
2.7953 bit). Accordingly, in deterministic and variable
sequences the previous object provides, respectively, 100%
and 2.0% of the information that is provided by the current
object. Conditioning on the preceding object alters the
reward probabilities for type A and type B objects to (1/4,
1/4, 1/4, 1/4) and (1, 0, 0, 0), (entropy H = 2.8113 and H = 2
bit) respectively. Accordingly, the temporal context of type
A and type B objects is 0% and 100%, respectively, as
informative as the objects themselves. Conditioning on the
predecessors of type C objects alters the average reward
probabilities to (7/24, 7/24, 7/24, 3/8) in experiment 2 (H =
2.789 bit), to (15/56, 15/56, 15/56, 11/56) in experiment 3
(H = 2.8075 bit), and to (9/32, 9/32, 9/32, 5/32) in experi-
ment 4 (H = 2.7992 bit), resulting in 2.8%, 0.5%, and 1.5%
informativeness. Conditioning on the predecessors of type
D objects in experiment 4 alters the average reward proba-
bility to (5/8, 1/8, 1/8, 1/8) with an entropy of H = 2.6463

bit. Thus, the predecessors are 20.3% as informative as the
objects themselves. The predecessors of type E and type F
objects in experiment 5 leave reward probabilities
unchanged and thus are 0% informative.

Appendix: drift covariance matrix
In order to update the drift covariance matrix P (t) we used
the same equation as the one given in [46]:

where I is the identity matrix and x is the augmented
stimulus vector. Once initialized (P(0) = I), the drift covari-
ance matrix P(t) is computed recursively and an iteration
takes place as follows:

1. 

2. 

3. 

4. 

5. 

The superscript T in AT indicates the transpose of A and
(·)-1 denotes the inverse matrix, which is the reciprocal in
case of numbers.
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