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Abstract: Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous 
stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains 
unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has 
attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy 
requires transition to an immune environment conducive to embryo survival at the maternal–fetal interface. As an important member 
of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal–fetal interface. This 
review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA. 
Keywords: immune homeostasis, Treg cells, phenotype, maternal–fetal tolerance

Introduction
Immune self-stabilization is one of the three functions of human immune system.1 Regulatory T (Treg) cells are named for their 
powerful function in regulating the immune system and improving immunological self-tolerance, which plays an important role 
in immune homeostasis.2,3 Treg cells have been confirmed to be related to various immunological diseases such as rheumatoid 
arthritis (RA), type 1 diabetes, allergy and graft-versus-host disease (GVHD).4–7 In recent years, substantial evidence has shown 
that Treg cells play a major role in fetal-maternal tolerance.8–10 Treg cells not only suppress inflammation but also prevent the 
adverse effects of anti-fetal alloantigen, facilitating essential vascular adaptations crucial for placental morphogenesis at the 
maternal–fetal interface.11–14 In the first trimester of human pregnancy, T cells comprise 10% to 20% of decidual immune cells,15 

of which Treg cells account for 10–30% of the CD4+ T cells.16,17 Phenotypic plasticity is an important characteristic of Treg cells, 
and lineage stability of Treg cells is crucial for their function. Since the 1970s, scholars have made efforts to characterize Treg 
cells by reliable molecular markers.18 In the mid-1990s, Sakaguchi et al discovered that Treg cells constitutively and highly 
expressed CD25.19 In 2003, transcription factor Fork head box P3 (FoxP3) was found specifically expressed in CD25+CD4+ 

natural Treg cells in rodents and human,20–22 which is a key determinant of their suppressive function. Subsequently, in order to 
better elucidate its function and heterogeneity, more and more markers have been found to characterize its phenotype, such as 
Helios, neuropilin-1 (Nrp-1), inducible co-stimulator (ICOS), programmed cell death protein 1 (PD-1), ITIM domain protein 
(TIGIT) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), etc.23–27 However, phenotypic plasticity 
and lineage stability of Treg cells is still a controversial topic.

Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures according to the 
guidelines of the American Society of Reproductive Medicine.28 A lot of evidence indicates that RSA is related to 
genetic defects, immune disorders, abnormal genital structure, specific and nonspecific inflammation, endocrine disorders 
and other factors.29–32 The etiology of RSA is complex, and more than 50% of patients are unknown.33 As the number of 
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miscarriages increases, the likelihood of URSA women experiencing early miscarriage, premature birth, placenta previa 
and other related complications also increase when they become pregnant again.34,35 This can be serious adverse effects 
on women with URSA. In recent years, the immunological perspective in recurrent miscarriage (RM) has attracted 
widespread attention. Successful pregnancy requires the attachment of the embryo to the endometrium, decidualization of 
the endometrium, and the differentiation of blastocysts into trophoblasts to invade the decidua.10,36 Abundant immune 
cells reside in the decidua in close contact with paternally derived alloantigens and fetal tissues. They participate in the 
establishing, sustaining and terminating pregnancy extensively.10 As a member of regulatory immunity, the significance 
of Treg cells during the implantation and maintenance of the healthy pregnancy is evident. However, the role of Treg 
cells in URSA is still a topic worthy of further study. This review delves into the phenotypic plasticity and lineage 
stability of Treg cells and elucidates the relationship between Treg cell functions and URSA, aiming to present novel 
insights for immunological approaches to treating URSA.

Classification of Treg Cells
According to differentiation, Treg cells can be categorized into two groups: natural Treg (nTreg) cells and induced Treg (iTreg) 
cells. During thymus development, immature T lymphocytes produce nTreg cells, identified by the presence of 
CD4+CD25+Foxp3+ T cells. Conversely, mature CD4+CD25− T cells can convert into iTreg cells under stimulation of peripheral 
antigen or induction of immunosuppressive factors. iTreg cells can be divided into Type 1 regulatory T (Tr1) and Th3 subsets. Tr1 
Treg cells mainly produce interleukin (IL)-10, while Th3 cells primarily secrete transforming growth factor beta (TGF-β).4,37

In recent years, scholars have recommended that Treg cells can be classified into two categories according to their origins. 
The aforementioned nTreg cells may be termed thymus-derived Treg (tTreg) cells, originating from the thymus with a T-cell 
receptor (TCR) featuring relatively high self-affinity.38 Periphery-derived Treg (pTreg) cells develop from CD4+ effector cells 
under TCR signal transduction or other factors (such as TGF-β, IL-2),39 which mainly exist in peripheral barrier tissues and 
play an important role in controlling local inflammation.40

According to the function and location, Treg cells can also be divided into central Treg (cTreg) cells and effector Treg 
(eTreg) cells.41 cTreg cells, expressing CC-chemokine receptor (CCR) 7 and L-Selectin (CD62L) at high levels, are 
mainly located in peripheral lymphoid tissue.42 eTreg cells are mainly found in non-lymphoid tissues and can be 
identified by the presence of surface markers like ICOS or CD44.43 They exhibit a remarkable ability to adapt and 
specialize to specific tissue environments.44,45

Immunosuppressive Mechanism of Treg Cells
The immunosuppressive effect of Treg cells is primarily accomplished through the interaction of their inhibitory surface 
molecules with other immune cells. TIGIT presented on Treg cells interacts with CD155 on dendritic cells (DCs) to 
suppress the activation of effector T cells (Teffs), Th1, and Th17, which is achieved by IL-10 augmentation and IL-12 
reduction.46–49 Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on Treg cells interacts with CD80 and CD86 on 
antigen-presenting cells (APCs), which results in the inhibition of antigen presentation and maturation functions of 
APCs.50 Furthermore, the activation of indoleamine 2,3-dioxygenase (IDO) expressed in DCs ultimately leads to the 
suppression of Teffs.51 PD-1 binds to its ligand PD-L1 and PD-L2 on DCs, which gives rise to the inhibition of Teffs via 
enhancing the transactivation of Smad3 by TGF-β.52 Binding of lymphocyte activation gene 3 (LAG-3) to major 
histocompatibility complex class II (MHC-II) molecules expressed on immature DCs induces inhibitory signaling 
pathways which suppresses DCs maturation and the activation of Teffs.53 Caspase-8 activated by the combination of 
tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and death receptor 5 (DR5) induces apoptosis in 
effector lymphocytes.54,55 CD25, also known as interleukin IL-2 receptor (IL-2R), has been demonstrated to control the 
acquisition of cytotoxic activity of CD4+T cells by competing for IL-2.56

In addition to the molecules mentioned above, Treg cells exert their immunosuppressive functions through soluble 
intermediates. New evidence emphasizes the significance of adenosine and cAMP in the ability of Treg cells to inhibit 
Teffs.57,58 Ectoenzymes CD39 and CD73 expressed on Treg cells were shown to raise the concentration of adenosine, 
which suppressed the function of Teffs through activating the adenosine A2A receptor.59,60 Granzyme-A, granzyme-B 
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and perforin ensure the cytolysis of Treg cells to other immune cells, such as B cells, NK cells and CD8+ T cells.61–64 

Anti-inflammatory cytokines, such as IL-10, TGF-β and IL-35, mediate the anti-inflammatory effect of Treg cells.65

The Relationship with Pregnancy
The Origin of Decidual Treg Cells
Decidual Treg cells originate from peripheral blood Treg cells, including tTreg cells and pTreg cells, exhibiting varying 
phenotypic heterogeneity according to the cycle and environment.27,66,67 Recruitment of Treg cells into the uterus 
commences in endometrial proliferation stage of each cycle and peaks at ovulation.68 Estrogen in uterine and TGF-β 
and prostaglandin (PGE) in seminal fluid play a role in recruiting macrophages and DCs, which makes them acquire M2 
macrophages and tolerogenic DCs (tDCs) phenotypes. Interferon-gamma (IFN-γ) and IL-10 secreted by uterine natural 
killer (uNK) cells, Granulocyte-macrophage CSF (GM-CSF) and chemokines secreted by uterine epithelial cells also 
facilitate the acquirement of M2 macrophages and tDC phenotypes.69,70 tDCs take up paternal alloantigens in seminal 
fluid and present antigen to Th0 cells in uterus-draining para-aortic lymph nodes (PALNs).71,72 Later, Th0 cells can be 
activated and differentiated into pTreg cells. In mice, systemic expansion and accumulation of tTreg cells in the PALNs 
and uterus occur during the estrous stage in response to elevated levels of estradiol (E2) at ovulation.73 During and before 
embryo implantation, pTreg and tTreg cells are recruited to the uterus and retained there. Treg cells increased in the early 
and middle trimesters and decreased prior to delivery, which is the similar pattern as Treg cells in peripheral blood.74

Regulating Trophoblasts Invasion and Uterine Spiral Artery Remodeling
Embryo implantation necessitates trophoblast infiltration and remodeling of the uterine spiral arteries (SpA). During 
embryo implantation priming, the excessive production of IL-2 and IFN-γ enhances the development of cytotoxic CD8+ 

T cells, which subsequently contribute to fetal loss.75 Meanwhile, unrestrained Teffs release inflammatory cytokines and 
play cytotoxicity effect on trophoblast through antigen-dependent, which adversely affects placental development.75,76 

Decidual Treg cells may contribute to constraining Teffs in early pregnancy by expressing CTLA4, CD25, and PD-L1, 
and secreting TGF-β as well as IL-10.77,78

A variety of immune cells play a synergistic role in the embryo implantation, such as uNK cells, uterine dendritic cells 
(uDC) and uterine mast cells (uMC).79–81 Treg cells cooperate with them to support the formation of decidua and promote 
embryo implantation.59 M2 macrophages, tDC and uNK cells promote the peripheral differentiation of Treg cells and 
recruitment to the uterus.69,70 On the one hand, Treg cells respond to epithelial cell-derived chemokine C-C motif ligand 
(CCL) 3, CCL4, CCL5, and CCL19.82,83 Meanwhile, they inhibit the activation and function of Th1 and Th17 cells by 
consuming IL-2 or other inhibitory mechanisms.77,78,84 On the other hand, Treg cells control inflammation by releasing TGF- 
β, IL-10 and heme oxygenase-1 (HO-1) to interact with DCs and uNK cells.77,78,85 This eventually facilitated decidualization 
and embryo implantation.51,85–88 Besides, the regulatory loop between trophoblasts and maternal immune cell subsets might 
be bidirectional. An interesting finding suggests that trophoblasts regulated the differentiation of maternal CD4+T cells into 
immunosuppressive Treg cells, while CD4+T cells might promote the growth and invasiveness of trophoblasts.89

In recent years, increasing evidence has shown that Treg cells play an important role in the vascular endothelium and blood 
flow homeostasis.13,14 uNK cells regulate the invasion of extravillous trophoblasts as well as displacement of endothelial cells 
and smooth muscle cells (SMCs) by releasing IFN-γ, which ultimately facilitates the decidual vascular remodeling.81,90,91 

Treg cells suppress inflammatory activation and modulate the phenotypes of decidual uNK cells, macrophages and DCs by 
releasing TGF-β, IL-10 and HO-1, which promotes the decidual vascular remodeling.16,77,78,85 Treg cells restrict the activation 
and infiltration of M1 macrophages, so as to reduce the release of tumor necrosis factor α (TNF-α) and improve the vascular 
endothelial microenvironment.13,14 At the same time, they inhibit the erosive effect of Th1 and Th17 on blood vessels,12,78 

which gives rise to diminished vascular resistance and increased blood supply to the placenta (Figure 1).

The Phenotypes of Decidual Treg Cells
The Treg cell population during pregnancy exhibits remarkable diversity, both in the peripheral blood and at the 
maternal–fetal interface.9 Until now, the populations of Treg cells at the maternal–fetal interface and their contribution 
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to the decidual microenvironment have not been fully defined. Originally, a population of CD4+CD25+ T cells, expres-
sing intracellular CTLA-4, glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and OX40 
(CD134), was identified in the human decidua.92 It is implied that Treg cells exist in decidua and play an important role 
in the regulation of local maternal tolerance towards the fetus.92 Later, Dimova firstly demonstrated the presence and 
in situ distribution of CD4+ Foxp3+ cells in decidua,93 which were classified into CD4+ CD25++ Foxp3+, CD4+ CD25+ 

Foxp3+, and CD4+ CD25− Foxp3+ subpopulations on the basis of CD25 expression.93 These Foxp3+ cells were found to 
express TGFβ1 mRNA and exhibit surface molecules consistent with Treg phenotype, including CD45RO (a marker for 
memory lymphocytes), CTLA-4, CD103, Nrp-1, LAG-3, and CD62L.93

Recently, three distinct types of decidual CD4+ Treg cells in healthy pregnancies were investigated, whose pheno-
types are CD25HI FoxP3+, PD1HI FoxP3− IL-10+ and TIGIT+ FoxP3dim Treg cells.94 The characteristics of these three 
types of Treg cells are summarized in Table 1. In comparison to Treg cells in the blood, CD25HIFoxP3+ Treg cells in the 
decidual tissue exhibit higher levels of co-inhibitory proteins or mRNAs, such as CTLA-4, GITR, CD39, ST2, and 
LRRC32.94 This observation indicates an enhanced activation and suppressive function of Treg cells in the decidual 
tissue, which plays a crucial role in regulating inflammation at the maternal–fetal interface.

Unlike the studies above, a systematic review discussed the heterogeneity within the FoxP3− Treg cell compartment and 
their role in pregnancy.9 FoxP3−HLA-G+Treg cells have been identified in both decidua and peripheral blood during 
pregnancy, which plays a crucial role in establishing a tolerogenic decidual microenvironment by secreting IL-10 and 
soluble HLA-G.95–97 Tr1 Treg cells, which primarily product IL-1098–100 and express co-signaling molecules such as PD-1, 
CTLA-4, TIM-3, ICOS, GARP (LRRC32), and latency associated peptide (LAP),101–103 are also found in both peripheral 
blood and human decidua.94,104 Additionally, the observation of mRNA cytokine profiles similar to Th3 represents the first 
description of a potential presence of Th3 cells in the decidua.93 The main suppressive effects of Th3 Treg cells are 
mediated by TGF-β in a cell-contact independent manner105,106 (Table 1).

Figure 1 Mechanisms of Treg Cells in Female Pregnancy. Estrogen and semen recruit macrophages and DCs, which promotes their polarization towards M2 macrophages 
and tDC phenotypes. tDCs uptake paternal antigens in semen and transport them to the PALN draining the uterus. Under the stimulation of paternal antigens, Th0 cells in 
PALN differentiate into pTreg cells. pTreg cells and tTreg cells converge in the peripheral circulation and re-enter the uterine cavity during the implantation stage to exert 
their functions. Decidual Treg cells restrict Teffs by secreting IL-10 and TGF-β and expressing CD25, CTLA4 and PD-L1, which directly promotes the embryo implantation. 
Additionally, they work in collaboration with decidual immune cells to promote decidualization and enhance endometrial receptivity. Treg cells not only directly inhibit Teffs 
and M1 macrophages, but also work in collaboration with M2 macrophages, uNK, and tDC cells to promote trophoblast invasion and vascular remodeling. PALN, para-aortic 
lymph node. (By Figdraw).
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The Relationship with URSA
CD4+ CD25+ Treg-deficient mouse model was established to demonstrate that allogeneic fetuses are consistently rejected 
without Treg cells.107 Transferring of Treg cells into mice prone to miscarriage resulted in an increase number of uMC, 
which possess a positive impact on the remodeling of the placenta and SpA.108 Both in the peripheral blood and decidua, 
the number and function of Treg cells are diminished in women experiencing recurrent pregnancy loss (RPL), when 
compared to women in control group.109 This evidence confirmed that insufficient Treg numbers or inadequate function 
were implicated in RSA.10 The following is the main hypothesis of the relationship between Treg cells and URSA.

Systemic Immune Imbalance
A number of scholars have analyzed the endometrial cytokine profile in normal female and patients with recurrent abortion. 
The luteal-phase endometrium of patients with URSA exhibited increased expression of the inflammatory mediators, such as 
TNF-α, IL-1β and IFN-γ.110,111 At the same time, the levels of TGF-β, IL-4, IL-10, leukemia inhibitory factor (LIF), and 
vascular endothelial growth factor (VEGF) were reduced in the endometrium of URSA patients during the luteal phase.110,111 

In addition, several studies demonstrated that the endometrium of women with URSA was accompanied by the alteration of 
uNK cells and reduced expression of key angiogenic regulators.112–115 TGF-β and IL-10 secreted by Treg cells were not only 
involved in immune regulation but also directly benefited the vasculature at the maternal–fetal interface.116 The increased 
level of TGF-β1 in serum may lead to a reduction in the abortion rate in a mouse model prone to miscarriage.117 Overall, this 
evidence indicates that the embryo may not survive in the inflammatory stage of implantation due to the failure to transition 
to an anti-inflammatory and proangiogenic immune environment. These dysfunctions may be associated with reduced 
numbers of Treg cells and the increase of Th17, Th1 and M1 macrophages in decidua and peripheral blood.118–123

Phenotypic Plasticity and Lineage Stability
Cytokines, hormones, micro-RNAs, the reproductive tract microbiome, and seminal fluid composition all have the 
potential to interfere with the response of Treg cells,124–127 because the newly generated pTreg cells are susceptible to 
lineage instability and phenotype switching.128 CD4+ T cells from patients with RM were cultured with DCs and the 
partner’s seminal fluid antigens, which suggested that CD4+IL-17+and CD4+IFN-γ+cells proliferated excessively.129 At 

Table 1 Different Phenotypes of Treg Cells During Pregnancy

Phenotypes Characteristics Function References

CD25HIFoxP3+ High expression of CD25, FoxP3 and Helios; the 
lack of CD45RA and CD127

Production of the lowest level of IL-10, IFN-γ and  
IL- 2; suppression of IFN-γ and TNF-ɑ secreted by 

CD4+ and CD8+Teffs

[90]

PD1HIFoxP3−IL-10+ High expression of PD-1; the lack of FoxP3 and 
Helios; low CD25

Generation of the highest level of IL-10 and IFN-γ; 
suppression of proliferation of CD4+ (but not 

CD8+) Teffs in an IL-10-dependent manner

[90]

TIGIT+FoxP3dim High levels of TIGIT; low levels of FoxP3, Helios, 
PD-1 and CD25

Expression of the high levels of IFN-γ and IL-2 and 
low levels of IL-10; inhibition of CD4+Teffs 

proliferation

[90]

FoxP3−HLA-G+ Secretion of sHLA-G and IL-10; cell interaction with 
HLA-G

The reduced killing capacity of T cells and NK cells; 
induction of the tolerant macrophages and DC cells

[91–93]

Tr1 Express CD49b, LAG-3, PD-1, CTLA-4, TIM-3, 

ICOS, GARP and LAP; produce IL-10 and TGF-β; 
low levels of IFN-γ, IL-5, IL-2, and granzyme B; KIR 

receptors, ectoenzymes CD39 and CD73

Suppression of T cell proliferation and in favor of 

creating the tolerogenic decidual microenvironment; 
inhibition of other immune cells (such as DC and Mφ)

[90,94–100]

Th3 Express Helios, LAP and GARP; secretion of TGF-β 
and IL-10

Induction of DC-10s and Treg cells by IL-10; 

inhibition of NK cells and T cells and APC by TGF-β
[89,101,102]

Abbreviations: FoxP3, Forkhead box P3; IL-2,10, Interleukin-2,10; IFN-γ, Interferon-gamma; TNF-ɑ, The TNF-related apoptosis-inducing ligand; PD-1, Programmed death-1 
ligand; Teffs, Effector T cells; TIGIT, The ITIM domain protein; HLA-G, Human Leukocyte Antigen G; sHLA-G, soluble Human Leukocyte Antigen G; NK, natural killer; DC, 
Dendritic; Mφ, macrophages; APC, Antigen-presenting cell, TGF-β, Transforming growth factor beta; LAG-3, Lymphocyte activation gene 3; CTLA-4, Cytotoxic T lymphocyte 
associated antigen-4, TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; ICOS, Inducible co-stimulator; LAP, Latency associated peptide.
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the same time, the study revealed that fewer CD4+CD25+FoxP3+ Treg cells were generated by patients with RM 
compared with fertile controls.129 High levels of IFN-γ could skew Th0 differentiation toward Th17 cells and caused 
Treg cells to transdifferentiate.130,131 In addition, deficiency in IL-10 triggers an unstable Treg response in the decidua, 
resulting in a quicker conversion of phenotypes and impairing ability to effectively anti-inflammation during the later 
stages of pregnancy.132,133 There remains a highly contentious topic: pTreg cells shift the phenotypes and express 
cytokines that are characteristic of Teff lineages within hyperinflammatory environment.128,131 Treg cells undergoing 
trans-differentiation into Th1 or Th17 cells were known as exTreg cells, which promote inflammation and other immune 
responses.128 The phenotypic plasticity and switching abilities of Treg cells may contribute to the maternal ability to 
invest differently in reproductive opportunities. In normal circumstances, Treg cells maximize the maternal decidual 
receptivity and offspring adaptability by interacting with the environment, hormones, and cells.126,128,134 However, there 
is also study showing that excessive immune adaptation during pregnancy might predispose pregnant females to the 
susceptibility of viral infections.135 The ability of Treg cells to transdifferentiate into Teffs under conditions of severe 
infection, excessive inflammation, or disruption of fetal development allows for the termination of pregnancy to preserve 
maternal survival.136

Recently, evidence has focused on immune checkpoint molecules and stability markers of Treg cells, such as Foxp3, 
Helios, Nrp-1, ICOS, PD-1, TIGIT and TIM-3, which is aimed to explain the stability of inhibitory function of Treg cells.23–27 

The signature of endometrial Treg transcriptomic was identified.118 The researchers observed increased expression of 
sphingosine-1-phosphate receptor 1 (S1PR1) and decreased levels of TIGIT protein in women with primary URSA, which 
suggested reduced inhibitory capacity of Treg cells in women with primary URSA.118 In addition, Hu et al discovered that 
Tim3+ Treg cells constituted over 60% Treg cells in the mouse decidua during early pregnancy.8 Meanwhile, they observed the 
significantly lower Tim-3 expression on Treg cells in URSA, indicating that decreased Tim-3+ Treg cells might have a close 
relationship with impaired immunologic tolerance in women suffering URSA.8 In addition, Treg cells from women with RM 
exhibited fewer CD45RA– cells and reduced expression of CTLA4 and Ubc13(an ubiquitin E2 conjugating enzyme),66 which 
implied that the stability of Treg cells was reduced in URSA120,129,137 (Figure 2).

Therapeutic Prospects for Targeting Treg Cells
Reproductive disorders caused by instability or insufficient production of Treg cells pose a challenging problem to be 
addressed, which may be the result of multiple factors in the biological evolution process.27,66,134,138 Interventions aimed 
at increasing the number and improving the function of Treg cells are currently being developed and are showing promise 
in the treatment of tissue transplantation and autoimmune diseases. With the rapid progress in Treg cell therapeutics, 
there is a great potential for targeting Treg cells to address URSA.139 Here, we propose three points:

Signaling of Treg Cells and Stability
In recent years, some scientists have proposed promoting the stability of Treg cells through selective gene knockout. 
However, the safety concerns associated with this approach must be taken into consideration. For example, IL-6 triggers 
the signal transducer and activator of transcription 3 (STAT3) transduction pathway, which then induces the expression of 
the DNA methyltransferase 1 (DNMT1).140,141 This leads to the methylation and subsequent downregulation of the 
Foxp3 site, ultimately resulting in the development of naive T cells into Th17 cells.142 Therefore, targeting IL-6 receptor 
(IL-6R) or STAT3 in Treg cells could be a viable strategy to enhance the stability of Treg cells and protect them from 
alterations caused by IL-6 signaling.143 In human, IL-6R-targeted antibodies have been identified as a potential 
therapeutic approach for inflammatory and autoimmune diseases like RA, Crohn’s disease, and systemic lupus erythe-
matosus (SLE).144–146

IL-2 plays a crucial role in the generation, survival, stability, and function of Treg cells.147 In the absence of IL-2, 
Treg cells undergo apoptotic death, which leads to autoimmunity.148 Therefore, various strategies have been developed to 
utilize IL-2 as a therapeutic pathway to improve the stability, effectiveness and survival of Treg cells in vivo.147,149 The 
hypothesis suggests that administering low doses of IL-2 would primarily activate Treg cells and restrict the activation of 
Teffs, which is contrary to the impact of high doses of IL-2.150–153 Two therapeutic strategies targeting IL-2 have 
primarily been developed, and IL-2 low-dose therapy and monoclonal antibodies that target IL-2. F5111.2, a fully human 
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anti-IL-2 antibody, were recently developed to induce the preferential expansion of human Treg cells by blocking IL-2Rβ 
and reducing IL-2Rα.152

Interventions to Increase Treg Cell Numbers
The decrease in number of Treg cells in the decidua of women with URSA is likely a consequence of impaired generation or 
recruitment of Treg cells during pregnancy establishment,118,154 which suggests that Treg cells possess therapeutic potential 
in women with URSA.155 Co-expression of a chemokine receptor, which could identify chemokines in an inflammatory 
environment, may improve Treg cell functionality.143 In related studies, overexpression of chemokine receptors has been 
found to improve chimeric antigen receptor (CAR) T cells homing to the tumor, resulting in enhanced antitumor activity and 
improved survival.156–158 A recent study elucidated that histone methyltransferase Nsd2 upregulated the expression of 
C-X-C chemokine receptor type 4 (CXCR4) through the H3K36me2 modification, which plays a crucial role in promoting 
the recruitment of Treg cells into the decidua and ultimately improved pregnancy outcomes in mice.159

In addition to the methods of increasing number of Treg cells endogenously, methods of artificially supplementing Treg 
cells have been developed. The method of adoptive transplantation of Treg cells to improve the prognosis of spontaneous 
abortion has demonstrated effectiveness in mouse models and is anticipated to be a promising immunological treatment for 
women with URSA.155 Evidence suggests that Treg cells from umbilical cord blood display higher repertoire diversity and 

Figure 2 The relationship between Decidual Treg cells and URSA. In human, cytokines, hormones, micro-RNAs, the reproductive tract microbiome, and seminal fluid 
composition all have the potential to interfere with the immune balance at the maternal–fetal interface. High levels of IL-6 and IFN-γ could skew Th0 differentiation toward 
Teffs and cause Treg cells to transdifferentiate. Newly generated pTreg cells are susceptible to lineage instability and phenotype switching. High levels of IL-2, TNF and low 
levels of IL-10 could skew pTreg cells differentiation toward Teffs. If pTreg cells express additional markers associated with functional stability, such as Foxp3, ICOS, TIGIT, 
and TIM3, it could potentially shift the immune balance at the maternal–fetal interface towards immune tolerance. This may lead to elevated TGF-β, IL-10, M2 macrophages 
and tDC cells, which promotes trophoblast invasion, vascular remodeling and placental development. Conversely, if the newly generated pTreg cells are unstable, it could 
shift the immune balance at the maternal–fetal interface towards pro-inflammation. This could result in elevated IL-6, IL-17, TNF, M1 macrophages, Th1 cells and etc, which 
may hinder trophoblast invasion, vascular remodeling, and ultimately causing placental dysplasia and URSA. (By Figdraw).
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lineage stability compared to those from adult peripheral blood, providing a feasible basis for Treg cell therapy.160 Before the 
development of endogenous Treg cells from a donor’s bone marrow cells, using cord blood-derived Treg cells could offer 
a temporary solution.143

Behavioral and Pharmacological Interventions in URSA
Metabolic, autoimmune conditions, inflammatory exposures and age strongly affect the immune response.139,161–163 

Metabolic imbalance, such as hyperglycemia and insulin resistance, will skew the energy source driving the T cell pool, 
which eventually results in an increased number of Th17 cells and declined in the number of Treg cells.164 Microbiome 
disorders, deficiencies in micronutrients and vitamins have a specific impact on Treg cells. Treating these disorders and 
deficiencies is anticipated to enhance uterine immune function,165 which may improve the prognosis of URSA in turn.

Besides, preexisting health conditions and lifestyle factors are also significant in male partners, because of the 
affection of seminal fluid quality and healthy female response.166 Incompatibility or insufficient disparity of HLA 
between partners may lead to low immunogenicity of male alloantigens, leading to either excessive inhibition or 
activation of uNK cells or hindering the priming and expansion of the Treg cell population.167 Providing guidance on 
seminal fluid priming during preconception planning may be a promising approach for nulliparous women without 
known compatibility issues.167 More interestingly, exercise and sunlight exposure potentially increase Treg cells by 
regulating their homeostasis.168,169 Intravenous immunoglobulin, prednisolone, and TNF inhibitors, initially developed 
for other autoinflammatory or specific autoimmune diseases,61,170–172 have been investigated in patients with URSA and 
recurrent implantation failure. However, the clinical data supporting efficacy are limited.173 Progesterone has been shown 
to effectively inhibit the generation of Th1 and Th17 cells while also inducing Treg cell differentiation.61,174–176

Conclusion and Prospects
The combination of animal models and clinical studies provide evidence that decidual Treg cells play a role in reducing 
inflammation during the early pregnancy. They also contribute to creating an environment in the decidua that supports 
implantation receptivity and placenta formation. Immune maladaptation or imbalance leading to instability or insufficient 
of Treg cells, which may be a cause of URSA. A large number of studies should be devoted to investigate the subsets of 
Treg cells, which can gain more insights into their functions and roles in URSA. It is necessary to continually explore 
ways to improve the number and stability of Treg cells, which may be a therapeutic target for URSA.
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