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their role in COVID-19. Here, Kr€amer et al.

utilize longitudinal analysis of NK cells to

show early TNF and IFN-a signatures

associated with moderate and severe

COVID-19, respectively, and NK cell

functional impairment in severe disease.
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SUMMARY
Longitudinal analyses of the innate immune system, including the earliest time points, are essential to under-
stand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a
detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom
onset) from four independent cohorts using single-cell transcriptomics and proteomics together with func-
tional studies. We found elevated interferon (IFN)-a plasma levels in early severe COVD-19 alongside
increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-a signaling, while up-
regulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert
anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in
severe COVID-19. Further, NK cell dysfunctionmay be relevant for the development of fibrotic lung disease in
severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-a
and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-
a-induced NK cell response with poorer disease outcome.
INTRODUCTION

The clinical presentation of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection is highly variable, ranging

from asymptomatic to severe courses of coronavirus disease
2650 Immunity 54, 2650–2669, November 9, 2021 ª 2021 Elsevier In
(COVID-19) (Huang et al., 2020; Wang et al., 2020a; Zhou

et al., 2020). Besides epidemiological factors and certain comor-

bidities (Bennett et al., 2021; Williamson et al., 2020), an imbal-

anced immune response underlies the clinical manifestation of

COVID-19. Patients with severe disease, in particular, present
c.
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with elevated blood plasma levels of numerous cytokines

and chemokines (Chen et al., 2020; Giamarellos-Bourboulis

et al., 2020), as well as a dysregulated type I interferon (IFN)

response (Blanco-Melo et al., 2020; Hadjadj et al., 2020; Yao

et al., 2021). Further characteristics of severe COVID-19 are

high frequencies of circulating CD14hiCD16hi monocytes,

decreased CD14loCD16hi monocytes (Hadjadj et al., 2020;

Schulte-Schrepping et al., 2020; Su et al., 2020), proliferating,

type I IFN-activated HLAlo-suppressive monocytes, and emer-

gency granulopoiesis. Metabolically hyperactive plasmablasts,

IFN-activated circulating megakaryocytes, and erythropoiesis

are increased in critically ill patients (Bernardes et al., 2020; Ste-

phenson et al., 2021). T and B cell compartments are also altered

in severe COVID-19 (Huang et al., 2020; Braun et al., 2020; Gri-

foni et al., 2020; Ni et al., 2020; Schulien et al., 2021).

Despite many studies on important aspects of the immunopa-

thology of COVID-19, our understanding of this disease is still

incomplete. For example, the role of natural killer (NK) cells, a

heterogeneous family of innate immune cells, has not been suf-

ficiently studied. Although there is clear evidence for their role in

acute viral infections (Björkström et al., 2011; Blom et al., 2016;

Kokordelis et al., 2014), data on NK cells in SARS-CoV-2 infec-

tion are sparse (Maucourant et al., 2020; Rajaram et al., 2020).

A COVID-19 vaccine study demonstrated an anti-Spike-depen-

dent NK cell response in vaccinated macaques (Yu et al., 2020),

suggesting that NK cells exert functions against SARS-CoV-2-

infected cells. Accordingly, a potential therapeutic benefit of

NK cells in COVID-19 is currently being investigated in clinical tri-

als (ClinicalTrials.gov: NCT04797975, NCT04634370, and

NCT04280224). On the other hand, NK cells can potentially

exacerbate the extent of lung injury in viral respiratory infections

(Rajaram et al., 2020).

COVID-19 has been associated with NK cell activation,

increased frequency of CD57+ adaptive NK cells (Maucourant

et al., 2020; Varchetta et al., 2020), impaired cytolytic activity

(Osman et al., 2020), reduced peripheral NK cells (Giamarellos-

Bourboulis et al., 2020; Jiang et al., 2020; Wang et al., 2020b;
Wilk et al., 2020), and increased intra-pulmonary NK cell fre-

quencies (Chua et al., 2020; Liao et al., 2020; Xu et al., 2020).

However, due to heterogeneous study populations, including

patients under high-dose steroid therapy, the lack of longitudinal

analyses, and limited functional characterizations, the exact

effects of SARS-CoV-2 infection on NK cells and their role in

antiviral immune responses and the immunopathogenesis of

COVID-19 still need to be clarified.

Here, we performed a detailed longitudinal characterization

of NK cells in COVID-19 patients of different severities by

combining single-cell transcriptomics and proteomics in four in-

dependent cohorts with comprehensive functional analyses,

including studying NK cell activity against SARS-CoV-2-infected

cells.

We demonstrate that NK cells in early severe COVID-19

display signs of a strong IFN-a response with increased expres-

sion of IFN-stimulated genes (ISGs) and genes related to IFN-a

signaling, whereas in early moderate disease, NK cells were

characterized by a tumor necrosis factor (TNF) imprint. This dif-

ferential gene expression pattern was specific for the first week

after onset of symptoms and also enabled us to discriminate be-

tween patients with fatal outcomes of COVID-19 and those who

finally recovered. Moreover, we demonstrate an impaired anti-

SARS-CoV2 NK cell activity, which was particularly prominent

and prolonged in severe COVID-19. In summary, our data link

persistent NK cell dysfunction, induced by an exaggerated

IFN-a response, with an unfavorable disease course and thereby

support a role for NK cells in the immunopathogenesis of

COVID-19.

RESULTS

Multi-center study to determine NK cell molecular
phenotype and function
To assess the impact of SARS-CoV-2 infection on the function

and composition of the NK cell pool, we analyzed longitudinally

collected peripheral blood samples in a multi-center setting.
Immunity 54, 2650–2669, November 9, 2021 2651
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Figure 1. Multi-center study to determine NK cell molecular phenotype and function
(A) Overview of the study design.

(B) Overview of longitudinal patient distribution.

(legend continued on next page)
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Samples collected in Bonn (cohort 1) were analyzed on the

cellular level by multi-color flow cytometry and a micro-well-

based single-cell RNA sequencing (scRNA-seq) approach, while

plasma levels of soluble factors were studied using a bead-

based digital and planar-array ultrasensitive immunoassays.

For cohorts 2 and 3, collected in Berlin and Kiel, respectively,

as well as for the fourth cohort, assembled from two large co-

horts carried out in the UK (Stephenson et al., 2021) and the

US (Su et al., 2020), scRNA-seq was performed using a

droplet-based platform. Cohort 2 samples were additionally

analyzed bymass cytometry, cytometry by time of flight (CyTOF)

(Figures 1A and 1B; Table S1). Patients treated with dexametha-

sone were excluded from the analyses to avoid immunotherapy-

induced biases in the results. A total of 205 patients and 81 con-

trols, including 8 donors with flu-like symptoms, were studied.

In both cohorts 1 and 2, COVID-19 was associated with a

decreased absolute number of circulating NK cells (Figures 1C

and 1D). Longitudinal analysis in cohort 1 demonstrated a similar

loss of NK cells in both moderate and severe diseases in week 1.

In contrast, fromweek 2 onward, patients withmoderate disease

showed a normalization of NK cell counts, while severe

COVID-19 was characterized by persistent NK cell depletion

(Figure S1A). Percentages of CD56bright and CD56dim NK cells

did not differ between study groups (Figures S1B and S1C). Cor-

relation analysis demonstrated that the numbers of total and

CD56dim NK cells negatively correlated with C-reactive protein

(CRP), an acute-phase protein reflecting the intensity of inflam-

mation (Figure 1E). COVID-19 was associated with an increased

NK cell expression of the apoptosis marker active caspase-3

and CD95 (Figure 1F). SARS-CoV-2 nucleocapsid protein

induced active caspase-3 expression and a dose-dependent in-

crease in CD95 (Figure 1G). In summary, our findings indicate

that COVID-19 significantly affects the NK cell compartment.

COVID-19-specific composition of the circulating NK
cell compartment
In order to gain a more detailed insight into COVID-19-induced

alterations of the NK cell pool, we assessed transcriptional

changes of NK cells in the blood by scRNA-seq analysis. In

cohort 1, NK cell transcriptomes were extracted from COVID-

19 peripheral blood mononuclear cell (PBMC) scRNA-seq data

(Schulte-Schrepping et al., 2020) derived from 64 samples

from 17 COVID-19 patients (8 moderate and 9 severe) collected

between days 2 and 25 after symptom onset, and 13 sex- and

age-matched controls. Uniform Manifold Approximation and

Projection (UMAP) visualization of the NK cells in cohort 1 re-

vealed transcriptional alterations in diseased NK cells. Density

coloring stratified for cells from controls or moderate or severe

COVID-19 patients showed differential two-dimensional distri-

bution (Figure 2A). To investigate these disease-relevant differ-
(C) Absolute numbers of total NK cells and NK cells subsets in cohort 1.

(D) Absolute numbers of total NK cells and CD56dim NK cells in cohort 2.

(E) Pearson correlation between numbers of absolute and CD56dim NK cells and

(F) Frequency of NK cells positive for active caspase-3 or CD95 in cohort 1.

(G) Detection of CD95 and active caspase-3 in control NK cells co-incubated wi

Kruskal-Wallis (KW) test corrected for multiple comparison by controlling the false

***p < 0.01.

For n, see Table S6.
ences, differentially expressed genes (DEGs) were calculated

for severity groups (Figure 2B). Hierarchical clustering of the

DEGs revealed 5 different gene modules with specific patterns

according to the disease groups. Gene enrichment analysis of

the severe COVID-19-related module 3 and the moderate

COVID-19-related modules 4 and 5 revealed enrichment in the

Hallmark terms ‘‘IFN-a response’’ and ‘‘TNF signaling,’’ respec-

tively (Table S3), indicating that these pathways are discrimina-

tors for severe and moderate COVID-19 NK cells on the tran-

scriptional level.

To further explore the transcriptional heterogeneity within the

NK cell compartment, we performed a clustering analysis of

the single-cell transcriptomes, identifying 6 distinct subtypes

(Figure 2C). Comparison to previously published NK scRNA-

seq signatures (Smith et al., 2020) and cluster marker expression

revealed these 6 subtypes comprised inflamed CD56dim (high

IFN-related genes); proliferating CD56dim (MKI67); cytokine

CD56dim (CCL4, CCL3, IFNG); HLAhiCD56dim (HLA-DP, HLA-

DR); CD56dim (FCGR3A); and CD56bright (NCAM1) NK cells (Fig-

ure 2D; Table S2). NK cell transcriptomes from the other 3

cohorts (cohorts 2–4) (Bernardes et al., 2020; Schulte-Schrep-

ping et al., 2020), which were comprised of 49 samples from

18 COVID-19 patients and 22 control donors, 20 samples from

10 COVID-19 patients, and 5 control donors as well as 201

samples from 110 COVID-19 patients and 39 control donors,

respectively (Figures 1A and 1B; Tables S1 and S6), resulted in

3 validation datasets of 6,964, 15,369, and 97,764 single-cell

NK transcriptomes, respectively. Peripheral NK cell subtypes

identified in cohort 1 were similarly found in cohorts 2–4,

validating the subtype annotation (Figures S2A and S2B).

Next, we analyzed the distribution of NK cell subtypes across

different disease severities (Figures 2E and S2C). In severe

COVID-19 patients, both inflamed and proliferating CD56dim

NK cells were strongly overrepresented compared to moderate

COVID-19. The fraction of cytokine CD56dim NK cells was en-

riched in samples derived from patients with moderate disease.

All these subtypes were rather low in controls, emphasizing their

strong disease association. CD56dim NK cells represented the

main NK cell population in blood from control donors (Figures

2E and S2C). Taken together, inflamed and proliferating CD56dim

NK cells were associated with severe and cytokine CD56dim NK

cells with moderate disease, respectively.

In parallel, we applied flow cytometry in cohort 1 to study the

peripheral NK cell compartment based on protein markers (Fig-

ures 2F, S2D, and S2E; Table S2). Analysis of NKp80 and CD94

excluded contamination with ILC1s within the NK cell gate (Fig-

ure S2H). We identified inflamed CD56dim, proliferating CD56dim,

cytokine CD56dim, HLAhi CD56dim, CD56dim, and CD56bright

subpopulations analogous to the transcriptome analysis

(Figure S2E). Proportions of inflamed CD56dim, proliferating
serum CRP levels.

thout or with nucleocapsid.

discovery rate (FDR; Benjamini, Krieger, Yekutieli [BKY]); *p < 0.05, **p < 0.01,
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CD56dim, and HLAhi CD56dim subpopulations were increased in

COVID-19 patients (Figure 2G). Inflamed CD56dim, cytokine

CD56dim, HLAhi CD56dim, and CD56bright NK subsets were also

identified by CyTOF in cohort 2 (Figure S2G), where inflamed

CD56dim and HLAhiCD56dim NK cells were elevated in COVID-

19 patients (Figure 2I). The cytokine CD56dim subset was partic-

ularly increased in patients with flu-like symptoms. The

Cellular Indexing of Transcriptomes and Epitopes (CITE)-seq

data from cohort 4 identified 6 NK cell subtypes as seen by tran-

scriptome-based analysis, further corroborating subpopulation

structure at the protein level (Figures 2D and 2E). Single-marker

analysis confirmed elevated activation (both cohorts: CD69 and

HLA-DR; cohort 1: CD38) and proliferation (cohort 2: KI-67) in

severe patients. Furthermore, an increase of NK cell-specific re-

ceptor expression was detected for severe disease (cohort 1:

NKG2C) and flu-like illness (cohort 2: CD226), respectively (Fig-

ures S2H, gating, S2I, and S2J).

Together, NK cells stratified by disease severity revealed

marked differences between severe and moderate COVID-19

in regard to gene expression and composition of NK cell

subtypes.

Longitudinal characterization reveals early and
persistent NK cell disparity between moderate and
severe COVID-19
To also include the aspect of disease dynamics in our analysis

(Figure 3A), peripheral NK cells of cohort 1 were stratified by

separate samples obtained the weeks after disease onset, and

DEGs were calculated comparing cells from the respective

severity groups. UMAP representation revealed prominent

time-dependent changes (Figure 3B). Calculated DEGs between

conditions were grouped into 15 modules by hierarchical clus-

tering (Figure 3C) and used as input for functional enrichment

analysis and transcription factor (TF) and upstream ligand pre-

diction (Figure 3D; Table S4). Modules 1 and 2 were highly ex-

pressed in moderate COVID-19 NK cells and enriched for the

terms ‘‘TNF signaling via NF-kB’’ and ‘‘response to IFN-

gamma,’’ indicating antiviral activity based on IFN and TNF

signaling. The modules included IRF1, IFITM3, CCL3, and

CCL4, which are induced by type I IFNs and genes such as

TNFAIP, NFKBIA, and FOSL2 relevant for TNF signaling. TF pre-
Figure 2. COVID-19-specific composition of the circulating NK cell co

(A) Cell frequency density by disease severity overlaid on the UMAP of cohort 1

(B) Heatmap of DEGs calculated based on the possible severity comparisons for a

Hochberg) and FDR cutoff of 5%. Hierarchical clustering of gene modules and

(KEGG) and Hallmark databases (Table S3).

(C) UMAPof NK cells fromcohort 1 (scRNA-seq; 10,927 cells). NK subtypes define

(D) Selected marker genes for each identified NK subtype from (C).

(E) Heatmap showing the proportion of each severity group for identified NK sub

(F) Cell frequency density plot by disease severity overlaid on the UMAP of coho

(middle top panel), and severe COVID-19 (left lower panel) patients. Phenograph

overlaid on the UMAP (right panel; alignment in Figures S2D and S2E).

(G) Box and whisker plots of identified NK subtypes in cohort 1 (FC data). KW and

0.01, ***p % 0.001, ****p % 0.0001).

(H) Cell frequency density plot by disease severity overlaid on the UMAP of co

moderate COVID-19 (third top panel), and severe COVID-19 (left lower panel) patie

scRNA-seq data overlaid on the UMAP (right panel; alignment in Figures S2F an

(I) Box and whisker plots of identified NK subtypes in cohort 2 (CyTOF). KWwith m

0.05, **p % 0.01, ***p % 0.001.

For n, see Table S6.
diction further underlined an IFN-induced response with STAT1/

2 and the TNF impact, with RELA among the top predicted TFs.

RelA is a component of nuclear factor kB (NF-kB) that drives

various transcriptional programs after TNF stimulation (Liu

et al., 2017). Module 3 was comprised of 46 genes characterized

by a strong expression in the second week of severe disease.

Functional enrichment analysis assigned the terms ‘‘E2F tar-

gets’’ and ‘‘DNA replication’’ to this module, indicating an

enhanced proliferative capacity. TF prediction pointed to mem-

bers of the E2F family as key TFs, further emphasizing the prolif-

erative functionality of these genes. HMGB2, a factor related to

cell proliferation in cancer (Zhang et al., 2019b), was predicted

as the top potential ligand. Module 4 was enriched in genes spe-

cifically upregulated in week 1 in severe COVID-19 NK cells.

Functional analysis of the 121 module genes revealed implica-

tions in ‘‘IFN-a response’’ and ‘‘negative regulation of viral pro-

cesses.’’ Correspondingly, the module contained numerous

IFN-related genes (MX1, ISG15, ISG20, and IFIH1). The top pre-

dicted ligands being members of the IFN-a family and the pre-

dicted TF including IFN-induced factors (STAT1, STAT2, and

IRF9) underlined the inflammatory character of this module.

These results indicated the relevance of IFN-a signaling for se-

vere COVID-19 NK cells in early disease. In conclusion, early se-

vere COVID-19 is dominated by IFN-a signaling (module 4) while,

in contrast to early moderate COVID-19, showing lower enrich-

ment for the TNF signaling pathway (module 1 and 2).

To assess the implication of the 6 NK cell subtypes (Figure 2C)

in disease-severity- and time-specific DEG modules (Figures 3C

and 3D), gene set enrichment analysis of each module for each

subtype was performed (Figure 3E). As expected by functional

enrichment and TF prediction, modules 1 and 2, specific for early

moderate COVID-19 NK cells, enriched especially in the cyto-

kine-producing CD56dim and partly in the inflamed CD56dim NK

cells, while module 4, enriched in week 1 after symptom onset

in severe COVID-19 NK cells, was dominated by inflamed

CD56dim NK cells, stressing the early differences in severe and

moderate COVID-19 and further highlighting the importance of

TNF for a milder disease course. The proliferating CD56dim NK

cells contributed exclusively to module 3, including prolifera-

tion-related genes upregulated in the second week of severe

COVID-19 (Figures 3C and 3D). Visualization of the proportions
mpartment

(scRNA-seq).

ll NK cells (scRNA-seq, cohort 1). Multiple comparison adjustment (Benjamini-

functional enrichment using the Kyoto Encyclopedia of Genes and Genomes

d by clustermarker expression and reference-basedNKannotations (Table S2).

types of cohort 1 (scRNA-seq).

rt 1 (flow cytometric [FC] data) of controls (left top panel), moderate COVID-19

clustering (middle lower panel) and NK cell subsets based on scRNA-seq data

Dunn’s multiple comparison test (not significant [ns]: p > 0.05, *p% 0.05, **p%

hort 2 (CyTOF) of controls (left top panel), flu-like-illness (second top panel),

nts. Phenograph clustering (middle lower panel) and NK cell subsets based on

d S2G).

ultiple comparison by controlling FDR (BKY) was performed; ns: p > 0.05, *p%
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Figure 3. Longitudinal characterization of NK cells in COVID-19

(A–D) Workflow of longitudinal analysis of scRNA-seq data from cohort 1 (A), UMAPs (B), heatmap generation (C), and analysis (D) are indicated.

(B) Cell frequency density plot by disease severity and weeks after onset overlaid on the UMAP of cohort 1 (scRNA-seq, for n, see Table S6).

(C) Heatmap of DEGs calculated based on the possible comparisons for severities and week after onset based on all NK cells (scRNA-seq, cohort 1). Multiple

comparison adjustment (Benjamini-Hochberg) and FDR cutoff of 5%. Hierarchical clustering of genes into modules (Table S4).

(D) Selected results from functional enrichment analysis using the Gene Ontology (GO), KEGG, and Hallmark databases, transcription factor (TF) prediction, and

upstream ligand prediction for each identified heatmap module from (C) (for the entire list, see Table S4).

(E) Heatmap of mean area under the curve (AUC) scores based on AUCell enrichment of heatmap gene modules from (C) for NK subtypes of cohort 1

(scRNA-seq).

(legend continued on next page)
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of different subtypes over time showed an enrichment of in-

flamed CD56dim NK cells in week 1 declining until mid week 2

(Figure 3F). In contrast to severe COVID-19, moderate disease

was characterized by a continuous presence of cytokine-pro-

ducing CD56dim NK cells. In severe patients, a strong increase

of proliferating CD56dim NK cells was observed starting approx-

imately 11 days after symptom onset until the end of week 3

(Figure 3F).

Next, we defined time-dependent and severity-specific alter-

ations of the 6 NK cell subsets in cohort 1 (Figures 3G, 3H, and

S3A) and cohort 2 (Figure S3B). The proportion of inflamed

CD56dim NK cells was slightly higher in early severe COVID-19

compared to patients with moderate disease in cohort 1 (Fig-

ure 3H) and cohort 2 (Figure S3C). Consistent with the scRNA-

seq data, proliferating CD56dim NK cells increased from week 2

to 3 in severe COVID-19 in cohort 1. Severe COVID-19 was also

associated with increased protein expression of the activation

markers CD38, CD69, and HLA-DR, especially in week 1 (Fig-

ure S3A and S3D). In cohort 2, the frequency of CD56dim HLA-

DRhi did not differ between moderate and severe disease but

was increased in COVID-19 compared to controls and flu-like

illness, respectively (Figures 3C and 3D). Finally, the proliferation

marker KI-67 was increased on NK cells in severe COVID-19.

Together, the predominant expression of activation markers

was observed both on RNA and protein levels in the early phase

of the disease course in severe COVID-19 patients.

Increased IFN-a and TNF signaling drive disease-
severity-associated transcriptional programs in COVID-
19 NK cells
To address the type I IFN system inmore detail, we extracted the

genes from the Hallmark term ‘‘IFN-a response’’ and visualized

those that were DEGs (Figure 4A). Both moderate and severe

COVID-19 patients showed elevated expression of these type I

IFN signature genes at disease onset, which subsided in week

1 in moderate patients and in week 3 in severe patients. Several

type I IFN target genes showed differential regulation between

moderate and severe COVID-19; for example, IFITM1 and

IFITM3 were mainly elevated in moderate disease while GBP4,

SELL, PSME2, CASP1, or TXNIP were only increased in severe

COVID-19 (Figure 4A). Even when using all ‘‘IFN-a response’’

genes for signature enrichment analysis, this response was

elevated early after infection and persisted into the second

week in severe disease (Figure 4B). Examination of the data of

cohorts 2–4 corroborated these findings, as the IFN-a response

was also enriched in COVID-19 NK cells in weeks 1 and 2, with a

stronger signal in severe cases.

While investigating plasma levels of IFNs and proinflammatory

cytokines (Figure 4C), we observed increased plasma concen-

trations of IFN-a together with other proinflammatory cytokines

(TNF, IL-6, and IFN-g) in week 1, especially in severe disease

(Figure 4C). In contrast to proinflammatory cytokines, plasma

levels of IFN-a dropped after week 1. Plasmacytoid dendritic
(F) NK subtype occupancy over time in days after symptom onset as average of

(G) Density plot of cell frequency by disease severity and weeks after onset over

(H) Heatmap divided by disease severity and weeks after onset showing the pro

(FC data).

For n, see Table S6.
cells (pDCs), a main producer of IFN-a, were reduced in both

moderate and severe COVID-19 in week 1 (Figures S4A and

S4B), which is in line with recent findings (Kuri-Cervantes et al.,

2020), and argued against pDCs being the major source for

elevated circulating IFN-a during this time.

When correlating IFNs and proinflammatory cytokines (week

1) with clinically determined disease severity, only IFN-a corre-

lated with both WHO classification and SOFA score (Figure 4D).

Hence, we used severe COVID-19 samples from all weeks after

symptom onset and showed that the IFN response signature is

elevated in patients from cohort 1 and 2 who succumbed to

infection (Figure 4E), which might therefore contribute to a fatal

disease course.

To study the role of TNF, we extracted the genes from the Hall-

mark term ‘‘TNF signaling via NF-kB’’ and visualized DE genes in

cohort 1 (Figure 4F). These genes showed a distinct distribution

from the ‘‘IFN-a response’’ Hallmark term with very strong sig-

nals in moderate compared to severe COVID-19, particularly in

week 1, with a prolonged expression for most genes. A few

genes included in the TNF-signaling Hallmark (AREG, IL7R,

andCEBPD) were only induced in severe COVID-19. Enrichment

analysis using the complete Hallmark for ‘‘TNF signaling via

NF-kB’’ demonstrated a strong enrichment in NK cells from

moderate COVID-19 patients that subsided over time, with no

enrichment in severe COVID-19 NK cells (Figure 4G). In cohorts

2–4, the TNF signature was enriched in moderate patients for the

earliest time points available in the cohorts. In contrast to the

IFN-a response signatures, the TNF signaturewasmost elevated

in NK cells from discharged patients, both in cohorts 1 and 2,

when analyzing severe samples from all weeks after symptom

onset (Figure 4H).

The lack of enrichment of TNF signature genes in severe

COVID-19 was discordant with the high level of TNF in plasma

in these patients (Figures 4C and S4C). The interplay between

the TNF and type I IFN pathways might be, in part, responsible

for differential gene induction in NK cells (Schultze and Aschen-

brenner, 2021). We tested this possible interaction by incubating

peripheral NK cells from control individuals with or without TNF in

the presence of two different IFN-a concentrations and as-

sessed IFN target genesMX-1, IFI6, and ISG15 (Figure 4I). While

the addition of TNF in the presence of high levels of IFN-a, remi-

niscent of severe COVID-19, led to a further increase of IFN

target gene expression, this was not observed under low-level

IFN-a. In a second set of experiments, TNF target genes were

assessed in presence of TNFwith or without low-level IFN-a (Fig-

ure 4J). Here, the addition of IFN-a reduced the expression of

TNF target genes, mirroring the transcriptional signatures in se-

vere COVID-19.

Collectively, we observed strong TNF signature gene induc-

tion in moderate but not severe COVID-19, while IFN-a response

genes were predominant in NK cells from severe COVID-19 and

were linked to IFN signaling being associated with an unfavor-

able outcome.
all samples stratified by severity.

laid on the UMAP of cohort 1 (FC data).

portion of each severity group for the three identified NK subtypes of cohort 1
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Figure 4. Increased IFN-a and TNF signaling drive disease-severity-associated transcriptional programs in COVID-19 NK cells

(A) Heatmap of genes of the intersection of the Hallmark IFN-a response and the previously calculated DEGs in cohort 1 (scRNA-seq) separated by disease

severity and week after symptom onset.

(legend continued on next page)
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NK cells display anti-SARS-CoV-2 activity but are
functionally impaired in COVID-19
Quantitative assessment of NK cell responses demonstrated a

marked dysfunction of circulating NK cells after stimulation

with K562 cells (Figures 5A and S5A). Disturbance of NK cell

function was more pronounced in patients with severe COVID-

19, who displayed reduction in percentages of IFN-g+, and

TNF+ cells in both CD56dim (Figure 5B) and CD56bright NK cells

(Figure S5B). However, cytotoxic degranulation was only

impaired in the CD56dim subgroup and not in the CD56bright sub-

group (Figures 5B and S5B). Kinetic analysis demonstrated that

cytokine production differed between moderate and severe

COVID-19 over time (Figure 5C), with NK cells in severe

COVID-19 showing a persistent functional disturbance after

more than 2 weeks (Figure 5C). Similar observations were

made when peripheral NK cells were stimulated with cytokines

(Figures S5C and S5D).

Next, we tested the anti-SARS-CoV-2 function of circulating

COVID-19 NK cells. To this end, Caco-2 cells and Vero E6

cells were infected with SARS-CoV-2 and co-cultured with

purified NK cells. Using SARS-CoV-2 Spike-specific nanobod-

ies (Koenig et al., 2021) for quantification of virus protein levels

in viable, active Caspase-3– cells, we found peripheral NK

cells from controls reduced viral protein levels both in Caco-

2 and Vero E6 cells (Figure 5D). In contrast, NK cells from

both moderate and severe COVID-19 displayed impaired anti-

viral activity independent of interleukin (IL)-2 pre-stimulation

(Figures 5E and 5F). Circulating NK cells increased the

expression of active caspase-3 in SARS-CoV-2-infected

target cells, especially after pre-stimulation with IL-2. Howev-

er, induction of active caspase-3 did not differ between

COVID-19 NK cells and controls (Figures 5G and 5H). To

test whether reduced NK cell IFN-g/TNF production might

be involved in impaired antiviral activity of COVID-19 NK cells,

different concentrations of IFN-g, TNF, or a combination of

both cytokines were added to virus-infected cells. Both IFN-

g and TNF led to reduced viral RNA titers (Figures S5E and

S5F) and decreased expression of the Spike protein (Figures
(B) AUCell-based enrichment of the Hallmark IFN-a response signature, and viol

cohorts (scRNA-seq). For cohorts 2 and 3, the enrichment of week 2 after sym

together with controls, are shown, respectively. FDR-corrected KW p value is in

(C) Heatmap of SARS-CoV-2 nucleocapsid, immunoglobulin G (IgG), and plasma c

19 (n = 8), and severe COVID-19 (n = 9).

(D) Heatmap showing the Spearman correlation coefficients of Sequential Organ F

of COVID-19 samples originating from week 1 after symptom onset (severe: n =

(E) AUCell-based enrichment of the Hallmark IFN-a response signature, and violin

disease outcome for cohort 1 (scRNA-seq) and cohort 2 (scRNA-seq). KW and Du

****p % 0.0001).

(F) Heatmap of genes of the intersection of the Hallmark TNF signaling and the pre

and week after symptom onset.

(G) AUCell-based enrichment of the Hallmark TNF signaling signature, and violin

(scRNA-seq). For cohorts 2 and 3, the enrichments of week 2 after symptom onse

controls, are shown, respectively. FDR-corrected KW p value is indicated.

(H) AUCell-based enrichment of the Hallmark TNF signaling signature, and violin p

outcome for cohort 1 (scRNA-seq) and cohort 2 (scRNA-seq). KW and Dunn’s mu

0.0001). For n, see Table S6.

(I) Relative expression of ISGHallmark transcripts (MX-1, IFI6, and ISG15; 2-DCq va

NK cells with recombinant IFN-a (pink line: 1ng/ml; violet line: 10ng/ml) in combi

(J) Relative expression of TNF Hallmark transcripts (MAP3K, TNF1IP3, and LIT

unstimulated or stimulated control NK cells with TNF (10 ng/ml) alone or TNF (10
S5G and S5H). In line with these findings, we found lower con-

centrations of IFN-g and TNF in supernatants of COVID-19 NK

cells compared to control cells after incubation with both cell

lines (Figures 5I and 5J).

Taken together, the antiviral activity of COVID-19 NK cells was

markedly diminished and is associated with a decline in IFN-g

and TNF production.

Soluble factors mediate COVID-19-associated NK cell
dysfunction
Enhanced expression of immune checkpoint molecules on NK

cells is suggested to be involved in ineffective antiviral immune

responses (Hadjadj et al., 2020; Vabret et al., 2020; Wilk et al.,

2020, Kong et al., 2020; Schultheiß et al., 2020). scRNA-seq

analysis revealed an increased expression of several immune

checkpoint genes in COVID-19, but no consistent differences

were found between moderate and severe disease (data not

shown). On the protein level, increased frequencies of PD-1+,

LAG3+, and TIGIT+ peripheral NK cells, especially in severe

COVID-19, were observed in cohort 2, and higher proportions

of TIM-3+ NK cells were observed in cohort 1 (Figures S6A and

S6B). The proportion of TIM-3+ and PD-1+ NK cells was rather

low, and there was no correlation between IFN-g production

and the frequency of TIM-3+ or PD-1+ NK cells (Figure S6C).

Regarding TIGIT, we found more increased IFN-g production in

TIGIT- than in TIGIT+ NK cells, irrespective of COVID-19 severity.

The severe COVID-19-associated impairment of IFN-g produc-

tion was detected for both TIGIT+ and TIGIT- subpopulations

(Figure S6D). In summary, little evidence was found for a defini-

tive involvement of the checkpoint molecules, PD-1, TIGIT, LAG-

3, or TIM-3, in functional NK cell impairment in COVID-19.

Given the increased concentrations of inflammatory and

immunosuppressive cytokines observed in early severe

COVID-19 (Figure 4C), we next incubated peripheral control

NK cells with plasma from COVID-19 patients or controls. Incu-

bation with severe COVID-19 plasma resulted in a marked func-

tional impairment with decreased IFN-g (Figures 6A and 6B) and

TNF (Figure 6C) production, whereas plasma from patients with
in plots of the AUC scores per severity group and week after onset for all four

ptom onset and for cohort 4 the enrichment of week 1 after symptom onset,

dicated.

ytokines in samples from patients of cohort 1: control (n = 6), moderate COVID-

ailure Assessment (SOFA) score andWHOordinal scale, with plasma cytokines

9, moderate: n = 9). Statistically significant correlations are indicated.

plots of the AUC score of controls and severe COVID-19 samples stratified by

nn’smultiple comparison test (ns: p > 0.05, *p% 0.05, **p% 0.01, ***p% 0.001,

viously calculated DEGs in cohort 1 (scRNA-seq) separated by disease severity

plots of the AUC per severity group and week after onset for all four cohorts

t and for cohort 4 the enrichment of week 1 after symptom onset, together with

lots of the AUC of controls and severe COVID-19 samples stratified by disease

ltiple comparison test (ns: p > 0.05, *p% 0.05, **p% 0.01, ***p% 0.001, ****p%

lues related to 2 housekeepers) in unstimulated (black line) or stimulated control

nation with recombinant TNF (0, 10, or 25 ng/ml) for 18 h.

AF; Z scored data obtained from 2-DCq values related to 2 housekeepers) in

ng/ml) combined with IFN-a (1 ng/ml) for 18 h.
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Figure 5. NK cells display anti-SARS-CoV-2 activity but are functionally impaired in COVID-19

(A) Schematic experimental setup.

(B) Detection of IFN-g, TNF-a production, and CD107a expression of CD56dim NK cells severe, n = 41.

(legend continued on next page)
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moderate disease had only minor effects. A more detailed anal-

ysis revealed these differences between moderate and severe

COVID-19 mainly resulted from differences at week 2 and later,

resembling our ex vivo observations (Figure 5C). Ex vivo NK cell

cytokine production per patient correlated with in vitro IFN-g and

TNF production of control NK cells after incubation with plasma

from the respective COVID-19 patient (Figure 6D). These findings

indicated that soluble factors were involved in COVID-19-asso-

ciated NK cell dysfunction. In line with this hypothesis, we found

IFN-a, TNF, and IL-6 suppressed NK production of IFN-g (Fig-

ure S6E). However, neither blockade of individual cytokines

nor simultaneous blockade of different cytokine combinations

(data not shown) resulted in normalization of severe COVID-19

NK cell functions (Figure 6E). Yet, when culturing severe

COVID-19 NK cells in the presence of plasma from controls,

cytokine production and degranulation were almost completely

restored (Figures 6F and 6G). To test whether there was a direct

effect of viral components, particularly the SARS-CoV-2 nucleo-

capsid on NK cell function, we incubated NK cells from control

donors with different concentrations of nucleocapsid and

analyzed IFN-g production after co-culture with K562 cells.

Neither with nor without IL-2 did control donor NK cells show dif-

ferences in IFN-g production after incubation with nucleocapsid

(Figure S6F).

While transcriptome analyses had illustrated altered transcrip-

tional programming of NK cells in COVID-19, functional assays

show that this is not an inherent cell-intrinsic characteristic but

a dysfunctional state triggered by severe COVID-19-associated

soluble plasma components.

COVID-19 NK cells display impaired anti-fibrotic activity
Severe COVID-19 beyond the second week is characterized by

persisting clinical symptoms (Grasselli et al., 2020; Guan et al.,

2020). We therefore investigated the molecular phenotype of

NK cells in later stages of the disease. Comparison of severe

COVID-19 samples from week 3+ versus all others in cohort 1

distinguished a group of differentially regulated genes, which

were then assessed in the other cohorts (Figure 7A). While these

genes also appeared to be differentially regulated in week 3+ for

cohorts 2 and 3, the genes were already differentially regulated in

week 2 for cohort 4. 14 genes showed similar average log fold

changes in all cohorts (Figure 7B). Late-phase NK cells from pa-

tients with severe disease were characterized by downregulated

expression of IFN-related genes but higher expression ofDUSP2

(a regulator of the ERK signaling pathway) (Jeffrey et al., 2006) as

well as the glucocorticoid-inducible factor TSC22D3 and RNA-

binding protein ZFP36L2, which are linked to immunosuppres-

sion (Salerno et al., 2018; Yang et al., 2019b). In addition, we
(C) Functional capacity of K562-stimulated CD56dim NK cells separated accordin

(D) Detection of SARS-CoV-2 Spike protein in Caco-2 and Vero E6 cells cultured

(E) Detection of SARS-CoV-2 Spike protein in Caco-2 cells cultured with control

(F) Detection of SARS-CoV-2 Spike protein in Vero E6 cells cultured with contro

(G) Detection of active caspase-3 in SARS-CoV-2-infected Caco-2 cells cultured

(H) Detection of active caspase-3 in SARS-CoV-2-infected Vero E6 cells cultured

(I) IFN-g concentrations in cell culture supernatants obtained from (E) and (F).

(J) TNF-ɑ concentrations in cell culture supernatants obtained from (E) and (F).

Statistical analysis in (C)–(E): KW test corrected for multiple comparison by con

****p % 0.0001.

For n, see Table S6.
observed an increased expression of the chemokine receptor

CXCR4 and AREG (encoding for amphiregulin [AR]), an

epidermal growth factor receptor ligand involved in pulmonary

fibrosis (Ding et al., 2016). Analysis of COVID-19 bronchoalveolar

lavage fluid (BALF) samples (Liao et al., 2020) revealed the pro-

portion of NK cells expressing higher levels of AREG and

CXCR4 to be increased in severe COVID-19 (Figure 7C). Multi-

color flow cytometry (MCFC) confirmed CXCR4 upregulation

on circulating CD56dim NK cells (Figures 7D, S7A, and S7B)

and AR expression on NK cells in late severe COVID-19

(Figure 7E).

Plasma from severe COVID-19 patients but not controls upre-

gulated CXCR4 and AR (Figures 7F and 7G). We observed a pos-

itive correlation between the post-culture expression of CXCR4

and AR (Figure S7C), resembling our findings on the transcrip-

tome level (Figure S7D). Similar to severe COVID-19 (Figures

7C and S7E), upregulation of AREG, DUSP2, ZFP36L2, and

TSC22D3 in pulmonary NK cells is also found in lung fibrosis

(Habermann et al., 2020) (Figure 7H). To test the impact of

COVID-19 NK cells on fibrotic activity of human lung fibroblasts,

expression of the pro-fibrotic marker genesCOL1A1 and ACTA2

were assessed (Figures 7I, 7J, and S7F–S7H). Incubation with

non-activated peripheral NK cells from COVID-19 patients had

no effect on the expression of pro-fibrotic genes in the fibro-

blasts (Figure S7F). However, after activation with IL-2, NK cells

from control individuals reduced the expression of pro-fibrotic

genes in fibroblasts, which was not the case after incubation

with severe COVID-19 NK cells (Figure 7I). Following activation

with IL-2, NK cells from severe COVID-19 were impaired in

inducing active caspase-3 compared to controls and moderate

COVID-19 in human lung fibroblasts (Figures 7J and S7G).

Without activation, COVID-19 NK cells induced lower caspase-

3 than control NK cells, though no difference was observed

regarding disease severity (Figure S7H). Moreover, we observed

that AREG expression negatively correlated with several genes

involved in cytotoxic NK cell functions (Figure S7I), which might

indicate a high expression of AREG to define an NK cell popula-

tion with low anti-fibrotic activity.

Collectively, these data support a diminished role of NK cells in

prohibiting fibrosis development in COVID-19.

DISCUSSION

NK cells are an essential part of the innate immune response and

are importantly involved in antiviral immune responses (Björk-

ström et al., 2011; Blom et al., 2016; Kokordelis et al., 2014).

Increased intra-pulmonary NK cell frequencies (Chua et al.,

2020; Liao et al., 2020; Xu et al., 2020) and anti-Spike-dependent
g to study groups and weeks after onset.

with or without control NK cells.

versus COVID-19 NK cells.

l versus COVID-19 NK cells.

with control versus COVID-19 NK cells.

with control versus COVID-19 NK cells.

trolling FDR (BKY) was performed; ns, *p % 0.05; **p % 0.01, ***p % 0.001,
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Figure 6. Soluble factors mediate COVID-19-associated NK cell dysfunction

(A) Schematic experimental setup.

(B) Effects of COVID-19 versus control plasma (severe, n = 27; moderate, n = 27) on NK cell IFN-g production.

(C) Effects of COVID-19 and control plasma on NK cell TNF production.

(D) Pearson correlation between ex vivo IFN-g or TNF production of K-562 stimulated NK cells of a specific COVID-19 patient and in vitro cytokine production of

control NK following incubation with plasma of this same COVID-19 patient.

(E) Effects of the indicated blocking antibodies on cytokine production of purified control NK cells incubated with plasma obtained fromCOVID-19 patients before

stimulation with K562 cells.

(F) Schematic experimental setup.

(legend continued on next page)
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NK cell responses observed in vaccinated macaques (Yu et al.,

2020) suggest that NK cells also may play a role in SARS-

CoV-2 infection. However, our understanding of the role of NK

cells in COVID-19 is still limited. Here, we combined single-cell

transcriptomics and proteomics together with comprehensive

functional analyses for in-depth longitudinal characterization of

NK cells during acute COVID-19. We analyzed a total of 205 pa-

tients (403 samples; days 2 to 41 after symptoms onset) from

four independent cohorts, which also allowed for cross-valida-

tion of our findings.

In line with earlier studies, we found COVID-19 to be associ-

ated with a decrease in circulating NK cells (Giamarellos-Bour-

boulis et al., 2020; Jiang et al., 2020; Wang et al., 2020b; Wilk

et al., 2020) and validated expression of NK cell activation

markers, especially in severe COVID-19 (Maucourant et al.,

2020; Varchetta et al., 2020).

We found increased expression of ISGs and genes involved in

IFN-a signaling to be characteristic for NK cells in severe COVID-

19, whereas in moderate disease, an upregulation of TNF-

related genes was observed. Integrating our findings with earlier

reports (Arunachalam et al., 2020; Blanco-Melo et al., 2020; Had-

jadj et al., 2020; Lucas et al., 2020; Schulte-Schrepping et al.,

2020; Stephenson et al., 2021; Su et al., 2020), a picture emerges

in which a type I IFN response is seen in early disease with a sub-

sequent decline of IFN-mediated signatures after week 1 inmod-

erate COVID-19 while they stay elevated during week 2 in severe

disease. Cross-regulation by different cytokines may play a role

and explain our finding of downregulated expression of TNF-

related genes in severe disease despite TNF plasma levels being

similar or even higher than in moderate COVID-19. Indeed, TNF

increased IFN-a-induced ISG expression, whereas IFN-a pre-

vented upregulation of TNF-related genes in NK cells, indicating

a cross-regulatory interaction of these two cytokines (Cantaert

et al., 2010; Karki et al., 2021). The clinical relevance of the dys-

regulated IFN-a response in early COVID-19 was supported by

our findings that plasma levels in week 1 were positively corre-

lated to clinical parameters such as SOFA score and WHO

severity grade and our observation that an IFN-a imprint clearly

discriminated between patients with fatal outcome and those

that eventually recovered. Thus, further studies are needed to

fully address the role of differential IFN-a versus TNF responses

in COVID-19.

We further demonstrated that NK cells exert anti-SARS-CoV-2

activity but are functionally impaired in COVID-19. Type I IFNs

have been shown to be of critical importance for IFN-g produc-

tion by NK cells in several viral infections (Baranek et al., 2012;

Lee et al., 2017). Conversely, type I IFN can also suppress this

NK cell function (Ahlenstiel et al., 2011; Lee et al., 2019), depend-

ing on the timing and the extent of type I IFN produced (Marshall

et al., 2006). For instance, NK cells exert a basally high sensitivity

to IFN-mediated STAT4 activation for IFN-g production but in-

crease in IFN-a production during virus infection, which results

in an increase in STAT1, thereby inhibiting IFN-g production

(Miyagi et al., 2007). Such a scenario, in which a robust and
(G) Effects of control versus COVID-19 plasma on functional capacity of severe

Statistical analysis in (A), (B), and (E): KW test corrected for multiple comparison by

****p % 0.0001.

For n, see Table S6.
punctual IFN-a response early after infection promotes effective

antiviral immunity while a prolonged and excessive IFN-a pro-

duction is detrimental, may also be relevant regarding the

observed association of inborn errors in IFN-a immunity (Zhang

et al., 2020) or autoantibodies against type I IFNs (Bastard

et al., 2020) with life-threatening COVID-19. Here, dysregulation

of IFN-a responses due to genetic defects or the pre-existence

of autoantibodies may promote viral spread and propagation in

the lung, while longer lasting and excessive IFN-a production

may finally result in impaired immune responses as observed

in our study. However, impaired NK cell function was also

observed after the decline of IFN-a plasma levels and normaliza-

tion of ISG expression. Furthermore, blocking IFN-a with a spe-

cific antibody was insufficient to prevent NK cell dysfunction

induced by COVID-19 plasma, indicating additional factors are

involved.

Our data also suggest that NK cell dysfunction not only affects

antiviral immune responses but may also be relevant with

respect to the development of fibrotic lung disease in severe

COVID-19. NK cells have been shown to limit hepatic and car-

diac fibrosis progression (Ong et al., 2015; Radaeva et al.,

2006) and impaired antifibrotic NK cell activity has been associ-

ated with accelerated liver fibrosis (Gl€assner et al., 2013). Here,

we found that NK cells in late-phase severe COVID-19 display

a decreased antifibrotic capacity. Of note, NK cells in the later

stage of severe COVID-19 expressed high levels of ZFP36L2

and TSC22D3, which have been linked with immunosuppressive

effects inmemory T cells (Salerno et al., 2018; Yang et al., 2019b)

and thus may also interfere with NK cell activity. On the other

hand, we found NK cells in late severe COVID-19 to display an

increased expression of DUSP2 and high surface expression

of CD69 and CD38, indicating ongoing cell activation and inflam-

matory cell signaling (Jeffrey et al., 2006), which have been

shown to induce NK cell dysfunction (Alvarez et al., 2019; Merino

et al., 2019). Moreover, we observed an elevated expression of

AREG, encoding AR both in circulating and lung NK cells. Data

regarding the role of AR in lung fibrosis are controversial (Branzk

et al., 2014; Ding et al., 2016; Monticelli et al., 2011), and little is

known regarding the role of amphiregulin-expressing NK cells.

Interestingly, the increased expression of AREG, DUSP2,

ZFP36L2, and TSC22D3 was also shown in pulmonary NK cells

in non-specific interstitial pneumonia (NSIP) and idiopathic pul-

monary fibrosis, a fibrotic lung disease which resembles

COVID-19 with respect to radiological and clinical findings.

Collectively, our study points to differential IFN-a versus TNF

responses as an important mechanism in the early phase of

COVID-19 and describes a link between an exaggerated, pro-

longed IFN-a-induced NK cell response and persistent NK cell

dysfunction with an unfavorable course of the disease.

LIMITATIONS OF THE STUDY

Small differences in scRNA-seq analysis between the 4 cohorts

might be explained by different geographical location, local
COVID-19 NK cells.

controlling FDR (BKY) was performed; ns, *p% 0.05; **p% 0.01, ***p% 0.001,
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Figure 7. COVID-19 NK cells display impaired anti-fibrotic activity

(A) Rank-rank analysis plot indicating commonly up- and downregulated genes.

(B) Heatmap showing the average log FCs of commonly up- and downregulated genes identified in (A).

(legend continued on next page)
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SARS-CoV-2 variants, different experimental setups, or different

sampling strategy, e.g., longitudinal (cohorts 1–3) versus cross-

sectional sampling (cohort 4). Still, longitudinal studies of

COVID19 utilizing single cell omics are rare, and it would be

probably beneficial if, for cell types such as NK cells but most

likely evenmore important for other rare immune cell types, addi-

tional studies are conducted that would allow an increase in the

number of patients and the number of cells to be analyzed.

Our study uncovered soluble factors to be responsible for NK

cell dysfunction, as evident from experiments using patients’

plasma. Yet, while we excluded many options, further studies

are necessary to clarify which other components might account

for this effect.
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KEY RESOURCES TABLE
REAGENT or RESOURCES SOURCE IDENTIFIER

Antibodies

A0251 anti-human Hashtag 1 Biolegend Cat# 394601; RRID:AB_2750015

A0252 anti-human Hashtag 2 Biolegend Cat# 394603; RRID:AB_2750016

A0253 anti-human Hashtag 3 Biolegend Cat# 394605; RRID:AB_2750017

A0254 anti-human Hashtag 4 Biolegend Cat# 394607; RRID:AB_2750018

A0255 anti-human Hashtag 5 Biolegend Cat# 394609; RRID:AB_2750019

A0256 anti-human Hashtag 6 Biolegend Cat# 394611; RRID:AB_2750020

A0257 anti-human Hashtag 7 Biolegend Cat# 394613; RRID:AB_2750021

active Caspase 3 PE BD Cat# 550914; RRID:AB_393957

Amphiregulin APC ebioscience Cat# 17-5370-42; RRID: AB_2716941

Anti-APC 163Dy Fluidigm Cat# 3163001B; RRID:AB_2687636

B2M purified (2M2) Biolegend Cat# 316302; RRID:AB_492835

BDCA-2 FITC (AC144) Miltenyi Cat# 130-113-197; RRID: AB_2726017

CCR7 BV785 (G043H7) Biolegend Cat# 353229; RRID: AB_2561371

CD10 158Gd (HI10a) Fluidigm Cat# 3158011B

CD107a Fitc (H4A3) BD PharMingen Cat# 555800; RRID: AB_396134

CD107a PE-Cy7 Biolegend Cat# 328618; RRID: AB_11147955

CD11b purified (ICRF44) Biolegend Cat# 301337; RRID:AB_2562811

CD11c BUV661 (B-ly6) BD Bioscience Cat# 565067; AB_2744275

CD11c PE/Cy5 (B-ly6) Becton Dickinson Cat# 551077; RRID:AB_394034

CD11c purified (Bu15) Biolegend Cat# 337221; RRID:AB_2562834

CD123 143Nd (6H6) Fluidigm Cat# 3143014B; RRID:AB_2811081

CD123 BV786 (6H6) Biolegend Cat# 306032; RRID: AB_2566448

CD137 173Yb (4B4-1) Fluidigm Cat# 3173015B

CD138 145Nd (DL101) Fluidigm Cat# 3145003B

CD14 160Gd (RMO52) Fluidigm Cat# 3160006; RRID:AB_2661801

CD14 FITC (M5E2) Biolegend Cat# 301804; RRID: AB_314186

CD14 PerCp-Cy5.5 (M4P9) Becton Dickinson Cat# 562692; RRID:AB_2737726

CD14 viogreen (REA599) Miltenyi Cat# 130-110-525; RRID: AB_2655057

CD15 144Nd (W6D3) Fluidigm Cat# 3144019B

CD155 purified (REA1081) Miltenyi Biotec Produced at request

CD16 209Bi (3G8) Fluidigm Cat# 3209002B; RRID:AB_2756431

CD16 BV605 (3G8) Biolegend Cat# 302039; RRID:AB_2561354

CD16 PerCP-e710 (3G8) Biolegend Cat# 302030; RRID: AB_94038

CD160 APC (BY55) Biolegend Cat# 341208; RRID: AB_2561435

CD161 purified (HP-3G10) Biolegend Cat# 339919; RRID:AB_2562836

CD19 142Nd (HIB-19) Fluidigm Cat# 3142001; RRID:AB_2651155

CD19 APC/Fire 750 (HIB19) Biolegend Cat# 302258; RRID:AB_2629691

CD19 BV421 (HIB19) Biolegend Cat# 302234; RRID: AB_11142678

CD19 FITC (HIB19) Biolegend Cat# 302206; RRID: AB_314236

CD19 viogreen (REA675) Miltenyi Cat# 130-113-649; RRID: AB_2726202

CD196 141Pr (G034E3) Fluidigm Cat# 3141003A; RRID:AB_2687639

CD1a FITC (HI149) Biolegend Cat# 300104; RRID: AB_314018

CD1c AlexaFluor700 (L161) Biolegend Cat# 331530; RRID:AB_2563657

CD1c purified (L161) Biolegend Cat# 331502; RRID:AB_1088995

(Continued on next page)
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CD20 FITC (2H7) Biolegend Cat# 302304; RRID: AB_314252

CD20 viogreen (LT 20) Miltenyi Cat# 130-113-379; RRID: AB_2726147

CD203c APC (NP4D6) Biolegend Cat# 324609; RRID:AB_2099774

CD206 purified (152) Biolegend Cat# 321127; RRID:AB_2563729

CD21 purified (Bu32) Biolegend Cat# 354902; RRID:AB_11219188

CD223 BV421 Biolegend Cat# 369314; RRID: AB_2629797

CD226 purified (REA1040) Miltenyi Biotec Produced at request

CD235ab Biotin (HIR2) Biolegend Cat# 306618; RRID:AB_2565773

CD24 169Tm (ML5) Fluidigm Cat# 3169004B; RRID:AB_2688021

CD24 APC (ML5) Biolegend Cat# 311118

CD25 169Tm (2A3) Fluidigm Cat# 3169003; RRID:AB_2661806

CD27 155Gd (L128) Fluidigm Cat# 3155001B; RRID:AB_2687645

CD27 PE Biolegend Cat# 356406; RRID: AB_2561825

CD28 purified (L293) BD Bioscience Cat# 348040; RRID:AB_400367

CD294 163Dy (BM16) Fluidigm Cat# 3163003B; RRID:AB_2810253

CD3 FITC (UCHT1) Biolegend Cat# 300406; RRID: AB_314060

CD3 PE/Dazzle (UCHT1) Biolegend Cat# 300450; RRID:AB_2563618

CD3 purified (UCHT1) Biolegend Cat# 300443; RRID:AB_2562808

CD3 viogreen (REA613) Miltenyi Cat# 130-113-142; RRID: AB_272597

CD33 158Gd (WM53) Fluidigm Cat# 3158001; RRID:AB_2661799

CD34 166Er (581) Fluidigm Cat# 3166012B; RRID:AB_2756424

CD34 FITC (581) Biolegend Cat# 343504; RRID: AB_1731852

CD38 167Er (HIT2) Fluidigm Cat# 3167001B; RRID:AB_2802110

CD38 AF700 (HIT2) Biolegend Cat# 303542; RRID: AB_2072781

CD38 BUV395 BD Cat# 563811; RRID: AB_2744372

CD38 PE-Cy7 (REA572) Miltenyi Cat# 130-099-158; RRID: AB_2660383

CD4 BV510 (OKT4) Biolegend Cat# 317444; RRID:AB_2561866

CD44 purified (BJ18) Biolegend Cat# 338811; RRID:AB_2562835

CD45 89Y (HI30) Fluidigm Cat# 3089003; RRID:AB_2661851

CD45 BUV395 BD Cat# 563792; RRID: AB_2869519

CD45 BV711 (HI30) Biolegend Cat# 304050; RRID:AB_2563466

CD45RO purified (4G11) DRFZ Berlin N/A

CD49a PerCP-eFluor 710 (TS2/7) Invitrogen Cat# 46-9490-42; RRID: AB_2573891

CD56 176Yb (NCAM16.2) Fluidigm Cat# 3176008; RRID:AB_2661813

CD56 BUV563 (NCAM16.2) BD Cat# 565704; RRID: AB_2744431

CD56 PE (MY31) Becton Dickinson Cat# 345810; RRID:AB_396511

CD57 APC Biolegend Cat# 359610; RRID: AB_2562757

CD57 BV421 (NK-1) BD Horizon Cat# 563869; RRID: AB_2632391

CD62L 153Eu (DREG56) Fluidigm Cat# 3153004B; RRID:AB_2810245

CD62L purified (DREG56) Biolegend Cat# 304835; RRID:AB_2563758

CD64 146Nd (10.1) Fluidigm Cat# 3146006; RRID:AB_2661790

CD66b FITC (G10F5) Biolegend Cat# 305104; RRID:AB_314496

CD69 162Dy (FN50) Fluidigm Cat# 3162001B

CD69 AF700 Biolegend Cat# 310922; RRID: AB_493775

CD69 APC (FN50) Biolegend Cat# 310910; RRID: AB_314844

CD8 BV785 (SK1) Biolegend Cat# 344740; RRID:AB_2566202

CD8A purified (GN11) DRFZ Berlin N/A

CD94 BUV737 (HP-3D9) BD Cat# 748787; RRID: AB_2873190

CD94 FITC Biolegend Cat# 305504; RRID: AB_314534

(Continued on next page)
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CD95 BV711 Cat# 305644; RRID: AB_2632623

CD95 purified (DX2) Biolegend Cat# 305631; RRID:AB_2563766

CD96 purified (REA195) Miltenyi Biotec Produced at request

CXCR3 156Gd (G025H7) Fluidigm Cat# 3156004B; RRID:AB_2687646

CXCR3 BV605 Biolegend Cat# 353728; RRID: AB_2563157

CXCR4 Dazzle Biolegend Cat# 306526; RRID: AB_2564065

CXCR5 164Dy (51505) Fluidigm Cat# 3164016B; RRID:AB_2687858

DNAM AF700 (#102511) R&D Cat# FAB666N; RRID: AB_2072626

e670 live dye ebioscience Cat# 65-0840-85

EOMES FITC ebioscience Cat# 11-4877-42; RRID: AB_2572499

FASL BV786 Cat# 744102; RRID: AB_2741996

FC Blocking Reagent Miltenyi Cat# 130-059-901

FceRI 150Nd (AER-37) Fluidigm Cat# Cat# 3150027B

FcERJa FITC (AER-37) Biolegend Cat# 334608; RRID: AB_1227653

Granzyme B Biolegend Cat# 372208; RRID: AB_2687032

Granzyme B PE (GB11) BD Cat# 561142; RRID: AB_10561690

HLA-DR BV421 (L243) Biolegend Cat# 307635; RRID:AB_10897449

HLA-DR PE-Vio770 (L243) Biolegend Cat# 307616; RRID: AB_493588

HLA-DR purified (L243) Biolegend Cat# 307602; RRID:AB_314680

ICOS 148Nd (C398.4A) Fluidigm Cat# 3148019B; RRID:AB_2756435

IFNabR1 R&D Systems Cat# AF245; RRID: AB_355270

IFNG BV421 (4S.B3) Biolegend Cat# 502532; RRID AB_2561398

IgD BV605 (IA6-2) Biolegend Cat# 348232; RRID: AB_2563337

IgD purified (IgD26) Biolegend Cat# 348235; RRID:AB_2563775

IgG1 isotype Biolegend

IgM APC fire (MHM-88) Biolegend Cat# 314546; RRID: AB_2800834

IgM purified (MHM-88) Biolegend Cat# 314502; RRID:AB_493003

IL10 Biolegend Cat# 501401; RRID: AB_315167

IL-12/IL-23 p40 Biolegend Cat# 501813; RRID: AB_315195

IL1b Novus Cat# AF-201-SP; RRID: AB_354387

IL32-Biotin Biolegend Cat# 513503; RRID: AB_2124017

IL4 Biolegend Cat# 500837; RRID: AB_2810615

IL6 Biolegend Cat# 501101; RRID: AB_315149

Ki-67 Biolegend Cat# 350506; RRID: AB_2563860

Ki67 168Er (Ki-67) Fluidigm Cat# 3168007B; RRID:AB_2800467

KLRF1 purified (REA845) Miltenyi Biotec Produced at request

KLRG1 Dazzle (14C2A07) Biolegend Cat# 368608; RRID: AB_2572135

KLRG1 purified (REA261) Miltenyi Biotec Produced at request

Lag3 purified (11C3C65) Biolegend Cat# 369302; RRID:AB_2616876

NKG2A PE Miltenyi Cat# 130-113-566; RRID: AB_2726171

NKG2c BUV650 (134591) BD OptiBuild Cat# 748165; RRID: AB_2872626

NKp30 BV711 Biolegend Cat# 325228; RRID: AB_2810488

NKp46 BV786 (9E 2) BD Bioscience Cat# 563329; RRID: AB_2738139

NKp80 APC- Vio 770 (REA845) Miltenyi Cat# 130-112-593; RRID: AB_2653031

NKp80 FITC Miltenyi Cat# 130-112-594; RRID: AB_2653020

PD-1 175Lu (EH12.2H7) Fluidigm Cat# 3175008; RRID:AB_2687629

PD-1 Pe/Cy7 (J105) eBioscience Cat# 25-2799-42; RRID: AB_10853804

PD-L1 175Lu (29.E2A3) Fluidigm Cat# 3175017B; RRID:AB_2687638

Perforin BV421 (dG9) Biolegend Cat# 308122; RRID: AB_2566204

(Continued on next page)
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RANK purified (80704) R&D Systems Cat# MAB683; RRID:AB_2205330

RANKL APC Miltenyi Biotec Cat# 130-098-511; RRID:AB_2656691

SARS Cov-2 Spike specific nanobody AF488 https://doi.org/10.1126/

science.abe6230

N/A

SARS-Cov-2 Nucleocapsid Sinobiological SIN-40588-V08B-100

Siglec 8 164Dy (7C9) Fluidigm Cat# 3164017B

Siglec8 PE/Cy7 (7C9) Biolegend Cat# 347112; RRID:AB_2629720

Streptavidin BV786 Biolegend Cat# 405249

TBET BV711 (16893) BD Cat# 563320; RRID: AB_2738136

TCR a/b viogreen (REA652) Miltenyi Cat# 130-119-709; RRID: AB_2751815

TCRa/b FITC (IP26) Biolegend Cat# 306706; RRID: AB_314644

TCRgd purified (11F2) Miltenyi Biotec Produced at request

TCRy/d FITC (B1) Biolegend Cat# 331208; RRID: AB_1575108

TIGIT 153Eu (MBSA43) Fluidigm Cat# 3153019B; RRID:AB_2756419

TIGIT Dazzle (A15153G) Biolegend Cat# 372716; RRID: AB_2632931

Tim-3 Fitc (F38-2E2) eBioscience Cat# 11-3109-42; RRID: AB_2572488

TNFa Biolegend Cat# 502805; RRID: AB_2814397

TNF-a BV785 (FN50) BD Cat# 502948; RRID: AB_2565858

Chemicals, peptides, and recombinant proteins

BD Horizon Brilliant Stain Buffer Becton Dickinson Cat# 563794

RBC lysis buffer 10X Biolegend Cat# 420301

Pierce 16% Formaldehyde (w/v), Methanol-free Thermo Fisher Cat# 28908

Fetal Bovine Serum PAN Biotec Cat# 3302

Stain Buffer (FBS) Becton Dickinson Cat# 554656

Pancoll human, Density: 1.077 g/ml Pan Biotech Cat# P04-601000

FcR Blocking Reagent, human Miltenyi Cat# 130-059-901

Cell-ID Intercalator-Ir Fluidigm Cat# 201192A

Permeabilization buffer 10X eBioscience Cat# 00-8333-56

Maxpar PBS Fluidigm Cat# 201058

Maxpar Cell Staining buffer Fluidigm Cat# 201068

Maxpar X8 Multimetal Labeling Kit Fluidigm Cat# 201300

Proteomic stabilizer Smart Tube Inc. Cat# PROT1

KAPA HiFi HotStart Ready Mix Roche Cat# KK2601

Human Tru Stain FcX Biolegend Cat# 422301

SPRIselect Beckmann Coulter Cat# B23318

MagniSort Negative Selection Beads Thermo Fisher Cat# MSNB-6002-74

Lysercell WDF Sysmex Cat# AL-337-564

Fluorocell WDF Sysmex Cat# CV-377-552

IL2(IS) Milenyi Cat# 130-097-748

IFNa Milenyi Cat# 130-095-066

IL10 Immunotools Cat# 11340103

IL6 Immunotools Cat# 11340064

Amphiregulin PeproTech Cat# 100-55B

TNFa Immunotools Cat# 11343015

Human IFN-g1b premium grade Miltenyi Biotec Cat# 130-096-481

Antibiotic-Antimyotic GIBCO Life Cat# 15240-062

Human Serum AB Plasma Sigma Cat# H3667-100ml

Fetal bovine serum low in endotoxin A.H. Sigma Aldrich Cat# F7524-500ml

(Continued on next page)
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HS-Nuclease, rec. 50.000U MoBiTec Cat# GE-NUC10700-01

20% Human-Albumin Behring, salzarm CSL Behring Cat# PZN-01468366

BD Cytofix/Cytoperm BD Cat# 51-2090KZ

BD Perm/Wash BD Cat# 51-2091KZ

Cell Fix BD Cat# 340181

Spherotech ultra Rainbow beads SpheroTech Cat# URCP01-30-10K

Critical commercial assays

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit Thermo Fisher Cat# L34967

Zombie aqua Biolegend Cat# 423102

LEGENDplex Human Inflammation Panel 1

(Mix&Match)

Biolegend Cat# 740809

Human Single-Cell Multiplexing Kit Becton Dickinson Cat# 633781

BD Rhapsody WTA Amplification Kit Becton Dickinson Cat# 633801

BD Rhapsody Cartridge Kit Becton Dickinson Cat# 633733

BD Rhapsody cDNA Kit Becton Dickinson Cat# 633773

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Qubit dsDNA HS Assay Kit ThermoFisher Cat# Q32854

Chromium Next GEM Single Cell 30 GEM,

Library & Gel Bead Kit v3.1

10x genomics Cat# 1000121

Chromium Next GEM Chip G Single Cell Kit 10x genomics Cat# 1000120

Single Index Kit T Set A 10x genomics Cat# 1000213

High Sensitivity DNA Kit Agilent Cat# 5067-4626

NovaSeq 6000 S1 Reagent Kit (100 cycle) Illumina Cat# 200012865

NovaSeq 6000 S2 Reagent Kit (100 cycle) Illumina Cat# 20012862

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NextSeq 500/550 High Output Kit v2.5

(150 Cycles)

Illumina Cat# 20024907

Pan Monocyte Isolation Kit, human Miltenyi Cat# 130-096-537

CE/IVD Phagoburst BD Biosciences Cat# 341058

CD/IVD PHAGOTEST BD Biosciences Cat# 341060

NK Cell Isolation Kit, human Miltenyi Biotec Cat# 130-092-657

Deposited data

scRNA-seq raw data This paper EGAS00001004571

Processed scRNA-seq count data and code This paper https://beta.fastgenomics.org/p/

Kraemer_2021_COVID19_NK

Tables S1, S2, S3, and S4 This paper https://data.mendeley.com/datasets/

hwxhw2sxys/1

Experimental models: Cell lines

VERO C1008 [Vero E6] ATCC Cat# CRL-1586

CaCo-2 ATCC Cat# HTB-37

Primary human lung fibroblasts PromoCell Cat# C-12360

Oligonucleotides

See Table S8 for comprehensive list of

oligonucleotides

Software and algorithms

CellRanger 10x genomics v3.1.0

Bcl2fastq2 Illumina v2.20

(Continued on next page)
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STAR (Dobin et al., 2013) v2.6.1b

Cutadapt (Martin, 2011) v1.16

Dropseq-tools https://github.com/broadinstitute/

Drop-seq/

v2.0.0

R https://www.cran.r-project.org v3.6.2

Seurat (R package) (Butler et al., 2018; Stuart et al., 2019) v3.1.4, v3.1.2 (CRAN)

Harmony (R package) (Korsunsky et al., 2019) (https://github.

com/immunogenomics/harmony)

v1.0

Destiny (R package) (Angerer et al., 2016) v 3.0.1

ClusterProfiler (R package) (Yu et al., 2012) v3.10.1 (CRAN)

SingleR (R package) (Aran et al., 2019) v1.0.5 (Bioconductor)

DirichletReg (R package) (Maier, 2021) v0.6.3.1 (CRAN)

AUCell (R package) (Aibar et al., 2017) v1.6.1 (CRAN)

Cytobank (Chen and Kotecha, 2014);

https://www.cytobank.org

https://doi.org/10.1002/0471142956.

cy1017s53

SPADE (Cytobank) (Qiu et al., 2011) Cytobank is running a version of

SPADE derived from v1.10.2

flowCore (R package) https://www.bioconductor.org/

packages/release/bioc/html/

flowCore.html

v1.48.1 (Bioconductor), 10.18129/

B9.bioc.flowCore

CytoML (R package) https://github.com/RGLab/CytoML v1.8.1 (Bioconductor), 10.18129/

B9.bioc.CytoML

CytofBatchAdjust (R package) https://github.com/CUHIMSR/

CytofBatchAdjust

https://doi.org/10.3389/fimmu.

2019.02367

uwot (R package) https://cran.r-project.org/web/

packages/uwot/index.html

v0.1.8 (CRAN)

ComplexHeatmap (R package) (Gu et al., 2016) v1.20.0 (Bioconductor)

lme4 (R package) (Nowicka et al., 2017) v1.1-21 (CRAN)

multcomp (R package) (Hothorn et al., 2008) v1.4-13 (CRAN)

lsmeans (R package) (Lenth, 2016) v2.30-0 (CRAN)

Prism (software) https://www.graphpad.com v8 and v9

FlowJo https://www.flowjo.com v10.6.1

Cytoscape https://www.cytoscape.org v3.7.1 (https://doi.org/10.1101/

gr.1239303)

iRegulon (Janky et al., 2014) v1.3

Corel Draw https://www.coreldraw.com/ v.22
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be addressed to and will be fulfilled by the Lead Contact Jacob

Nattermann (Jacob.Nattermann@ukbonn.de).

Materials availability
This study did not generate unique reagents.

Data and code availability
Single-cell RNA-seq data have been deposited at the European Genome-phenome Archive (EGA) and are publicly available as of the

date of publication. Accession numbers are listed in the Key resources table.

All original code is publicly available as of the date of publication. DOIs are listed in the Key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Samples from patients with COVID-19 were collected within four cohort studies (Kurth et al., 2020) designed to allow deep molecular

and immunological transcriptomic and proteomic profiling of COVID-19 in blood. Patients were classified according to the highest

score on the World Health Organization (WHO) Ordinal Scale for Clinical Improvement ever present ((WHO. R&D Blueprint - novel

Coronavirus - COVID-19 Therapeutic Trial Synopsis. 2020.https://www.who.int/blueprint/priority-diseases/key-action/COVID-

19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf.). Patients for which sufficient material was available

for scRNA-seq, CyTOF or flow cytometry analysis, were included in this study. This study was designed to describe immunological

deviations in COVID-19 patients without intention of the development of new treatments or new diagnostics, and therefore sample

size estimation was not included in the original study design.

Cohort 1 / Bonn cohort
This study was approved by the Institutional Review board of the University Hospital Bonn (073/19 and 134/20) and the University

Hospital Duesseldorf (#5350). After providing written informed consent, 32 control donors and 36 COVID-19 patients (Figures 1A

and 1B; Table S1) were included in the study. In patients who were not able to consent at the time of study enrollment, consent

was obtained after recovery. Information on age, sex, medication, and comorbidities are listed in Table S1. COVID-19 patients

who tested positive for SARS-CoV-2 RNA in nasopharyngeal swabs were recruited at the Department of Internal Medicine I of the

University Hospital Bonn or the Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital

D€usseldorf, between March 30 and November 11, 2020 and allocated to moderate (WHO 2-4) or severe (5-7) disease according

to the WHO clinical ordinal scale. Controls in cohort 1 were collected from healthy people or from otherwise hospitalized patients

with a wide range of diseases and comorbidities including chronic inflammatory immune responses. These individuals were either

tested negative for SARS-CoV-2, serologically negative or samples were collected before November 2019.

For validation of the findings from our prospective cohorts, data from three independent additional cohorts were analyzed:

Cohort 2 / Berlin cohort
This study includes a subset of patients enrolled betweenMarch 2 and July 02, 2020 in the Pa-COVID-19 study, a prospective obser-

vational cohort study assessing pathophysiology and clinical characteristics of patients with COVID-19 at Charité Universit€atsmedi-

zin Berlin (Kurth et al., 2020). The study is approved by the Institutional Review board of Charité (EA2/066/20). Written informed

consent was provided by all patients or legal representatives for participation in the study. The patient population included in all

analyses of cohort 1 consists of 10 control donors (samples collected in 2019 before SARS-CoV-2 outbreak), 8 patients presenting

with flu-like illness but tested SARS-CoV-2-negative, 12 moderate and 17 severe COVID-19 patients (Figures 1A and 1B; Table S1).

Information on age, sex, medication, and co-morbidities is listed in Table S1. All COVID-19 patients were tested positive for SARS-

CoV-2 RNA in nasopharyngeal swabs and allocated to mild (WHO 2-4) or severe (5-7) disease according to the WHO clinical

ordinal scale. We also included publicly available single-cell transcriptome data derived from 22 control samples into the analysis;

3 samples were derived from 10x Genomics, San Francisco, CA 94111, USA (5k_pbmc_v3: https://support.10xgenomics.

com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3, pbmc_10k_v3: https://support.10xgenomics.com/single-cell-gene-

expression/datasets/3.0.0/pbmc_10k_v3, pbmc_1k_v3: https://support.10xgenomics.com/single-cell-gene-expression/datasets/

3.0.0/pbmc_1k_v3), 19 samples derived from Reyes et al.(Reyes et al., 2020).

Cohort 3 / Kiel cohort
In cohort 3 (Bernardes et al., 2020) COVID-19 patients were sampled in two independent University hospitals (Cologne, Kiel) between

April 1, 2020, and May 20, 2020. From this study, patients were enrolled in our analyses if cell numbers were sufficient to enable

identification and in-depth analysis of NK cells. In total, 8 COVID-19 patients and 2 controls were included. Information on age,

sex, medication, and co-morbidities is listed in Table S1.

Cohort 4 / UK and US cohort
In cohort 4, we combined datasets from the UK (Stephenson et al., 2021) and the US (Su et al., 2020). For the UK, COVID-19 patients

were sampled at three different sites (Newcastle, Cambridge, London) between March 31, 2020 and July 20, 2020. For Newcastle,

the study was approved by the Newcastle Biobank (research Ethics Committee (REC) no. 17/NE/0361; Integrated Research Appli-

cation System (IRAS) no. 233551 and REC (17/YH/0021) for controls, for Cambridge, the study was approved by the East of England

Cambridge Central Research Ethics Committee (NIHR BioResource, REC no. 17/EE/0025; ‘‘Genetic variation and altered leukocyte

function in health and disease (GANDALF),’’ REC no. 08/H0308/176 and for London, the study was approved by the Living Airway

Biobank, administered through UCL Great Ormond Street Institute of Child Health (REC no. 19/NW/0171, IRAS project no.

261511) as well as by the local R&D departments at the hospital. The US data was collected in Seattle and the study was approved

by the Institutional Review Board (IRB) at Providence St. Joseph Health with IRB Study Number [STUDY2020000175] and the West-

ern Institutional Review Board (WIRB) with IRB Study Number 20170658. For the UK cohort, each patient contributed to one sample

while in the US, each patient was sampled exactly two times, therefore, the sampling strategy is rather cross-sectional. For compar-

ison reasons, samples fromCOVID-19 patients that were sampled later than 4weeks after symptomonset and samples frompatients

who received steroid treatment were removed from further analysis. After removal, a total of 30 controls with 40 samples and 110
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COVID-19 patients with 161 samples were included in cohort 4. COVID-19 patients were allocated to moderate or severe disease by

maximum WHO ordinal scale (US data) or ‘‘status_on_day_collection’’ (UK data). Information on age, sex, medication, and comor-

bidities are listed in Table S1.

Cell lines and primary human cells
Vero E6 cells, a cell line originating from Chlorocebus aethiops, were continuously maintained in complete DMEM medium at 37�C
and passaged upon reaching 80% confluence. Prior to infection experiments, cells were seeded in 96-well flat bottom plates and

cultured for 48h at 37�C.
Caco-2 cells, a cell line originating from a male human individual, were continuously maintained in EMEM medium at 37�C and

cultured upon reaching 80% confluence. Prior to infection experiments, cells were seeded in 96-well flat bottom plates and main-

tained for 48h at 37�C.
Primary human lung fibroblasts were commercially obtained (PromoCell) and cultured in fibroblast media (PromoCell) at 37�C

according to the manufacturer’s instructions. Cells were kept in culture no longer than to passage 4. For each passage, it was tested

whether the cells could still be activated with recombinant TGFb1 after 2 days incubation at 37�C (10ng/ml; Miltenyi; readout PCR,

see below). Prior to coincubation experiments, cells were seeded in 96-well flat bottom plates and maintained for 48 h at 37�C. In-
formation on the sex of primary human lung fibroblasts remained undisclosed by provider.

All cells used are also listed in the Key resource table. No additional information on cell line authentication is provided.

METHOD DETAILS

Cell isolation (cohort 1)
Peripheral blood mononuclear cells (PBMC) were isolated using Ficoll-Paque gradient centrifugation (Biochrom AG, Berlin,

Germany), washed with DPBS, and directly cryopreserved in RPMI-1640 supplemented with 10% DMSO (Sigma). The processing

of cells for scRNaseq analysis was described for the 3 cohorts here (Bernardes et al., 2020; Schulte-Schrepping et al., 2020).

Phenotypic flow cytometry analysis (cohort 1)
Phenotypic analysis of cells was performed using an LSR-Fortessa Cytometer (BD Biosciences, USA). In brief, frozen cells were

gently thawed at room temperature and transferred to a 14 mL tube. Then 2 mL of thawing medium (HBSS; 1% human serum

albumin, CSL Behring; and 25 U/ml endonuclease, MoBiTec, Germany) was added dropwise, waited for 2 min and 8 mL of thawing

medium was finally added gently. After 15 min at room temperature, cells were centrifuged at 300 g for 10 min and incubated with

viability dye (Zombie-Aqua, Biolegend, 1:500) for 10 min. After further washing with DPBS (10 min, 300 g), cells were stained with

appropriate antibody solutions in the Biolegend staining buffer. All antibodies were titrated, the panels were tested using FMO

controls, and constant conditions were ensured by plate staining to guarantee an optimal staining result. To verify consistent

fluorescence properties of the flow cytometer, calibration beads (ultra Rainbow beads, Spherotech) were applied before each mea-

surement. The antibodies and panels used in this study are compiled for each corresponding Figure in Table S5. NK cells were

defined as CD45+CD56+Lin- lymphocytes (Lin: CD3, TCRab, TCRgd, CD34, CD20, CD19, CD14) with exclusion of CD94-

NKp80- cells.

For intracellular analyses of transcription factors the Foxp3 Transcription Factor Staining Kit (eBioscience, Germany) was used for

permeabilization, fixation, and washing according to the manufacturer’s specifications. FC raw data was analyzed by FlowJo soft-

ware V10.6.1 (BD Bioscience, USA).

Detection TNF and IFN signature genes
Purified NK cells from control donors were incubated with recombinant IFN-a (Immunotools, 1 or 10ng/ml) in combination with or

without recombinant TNF (Immunotools, 10 or 25ng/ml) for 18h. Incubation was stopped with a lysis buffer from the RNA isolation

kit (New England Biolabs, Monarch total RNA Mini Prep kit). After RNA isolation according to the manufacturer’s protocol, quality

control using NanoDrop and transcription into cDNA (QuantiTect RT Kit, Quiagen) were performed. ISG (MX-1, IFI6 and ISG15)

and TNF hallmark transcripts (MAP3K, TNF1IP3, and LITAF) were analyzed by qPCR (96-well LightCycler; Roche). Relative gene

expression (duplicates) was calculated by 2-DCqmethod related to 2 housekeepers (geomean ofRPL19 andEEF1). Primer sequences

are listed in Table S7.

Functional flow cytometry analysis (cohort 1)
To assess ex vivo functionality of NK cells, PBMC from all study groups were thawed as described above and NK cells were isolated

by negative magnetic separation according to the manufacturer’s instructions (negative NK cell isolation kit, Miltenyi). After checking

purity on the flow cytometer (at least 90% CD56+CD3- of CD45+lymphocytes), NK cells (2x105 cells per ml) were seeded and incu-

bated with and without IL-2 (10ng/ml, Miltenyi), for 18h in defined DMEM/F12 media containing DMEM (GIBCO Life, USA) and F12

(2:1), 1% antibiotic and antimycotic (GIBCO Life, USA), 20 mg/mL ascorbic acid (Sigma, USA), 24 mM 2-mercaptoethanol (GIBCO

Life, USA), 0.05 mg/mL sodium selenite (Sigma, USA), and 10% heat-inactivated human AB serum (Sigma, USA) based on previous

protocols in 96-well round bottom wells. Alternatively, isolated NK cells (2x105 cells per ml) were incubated with plasma from healthy

controls, moderate and severe COVID-19 patients for 18h at a ratio of 1 to 5 in defined DMEM/F12 media. Afterward, NK cells were
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optionally co-incubated for 5h at a ratio of 1:2 with major histocompatibility complex-deficient K562 cells or co-incubated with a

cytokine cocktail consisting of IL12 (10ng/ml, Immunotools), IL-15 (50ng/ml, Immunotools) and IL18 (50ng/ml, Immunotools) in

defined DMEM/F12 media. After 1h stimulation, Brefeldin A (5 mg/ml; Enzo, Germany) was added for the remainder of the incubation.

After staining with the viability dye Zombie Aqua (Biolegend, USA) and surface antibodies (see Key resource table), cells were

permeabilized using the Cytofix/Cytoperm Kit according to the manufacturer (BD Biosciences, USA). NK cells were defined as

CD56+Lin- lymphocytes (Lin: CD3, TCRab, CD34, CD20, CD19, CD14) with exclusion of CD94(-)Nkp80(-) cells.

IFN-g and TNF were detected with specific antibodies by intracellular staining. FC raw data was analyzed by FlowJo software

V10.6.1 (BD Bioscience, USA).

Further functional assays were performed to assess the impact of cytokine and SARS-CoV-2 Nucleocapsid stimulation on NK cell

functionality. In this setting, purified NK cells (2x105 cells per ml) from controls were seeded and incubated with and without IL-2

(10ng/ml, Miltenyi), TNF (Immunotools, 10ng/ml), IFN-a (Immunotools, 10ng/ml), IL-6 (Immunotools, 10ng/ml), or IL-10 (Immunotools,

10ng/ml), or SARS-CoV-2 Nucleocapsid (Sinobiological, 20, 200, or 2000ng/ml) for 18h in defined DMEM/F12 media containing

DMEM (GIBCO Life, USA) and F12 (2:1), 1% antibiotic and antimycotic (GIBCO Life, USA), 20 mg/mL ascorbic acid (Sigma, USA),

24 mM 2-mercaptoethanol (GIBCO Life, USA), 0.05 mg/mL sodium selenite (Sigma, USA), and 10% heat-inactivated human

AB serum (Sigma, USA) based on previous protocols in 96-well round bottom wells. After pre-stimulation, NK cells were

optionally co-incubated for 5h at a ratio of 1:2 with major histocompatibility complex-deficient K562 cells or co-incubated with

phorbol-12-myristate-13-acetate (PMA, 50ng/ml; Cell Signaling Technology Europe, Netherlands) and ionomycin (1mg/ml; Cell

Signaling Technology Europe). Follow-up steps were performed as described above for detection of IFN-g and TNF-a.

Furthermore, the impact of soluble plasma-derived factors on NK cell functionality was assessed. For this purpose, purified NK

cells (2x105 cells per ml) from all study groups were seeded and optionally incubated with plasma from healthy controls, moderate

or severe COVID-19 patients or alternatively combined with specific blocking antibodies (IL-10, IL-12, IL-6, IL1b, IL-4, IFN-AR, TNF,

ISO) for 18h at a ratio of 1 to 5 in defined DMEM/F12 media.

Afterward, NK cells were co-incubated for 5h at a ratio of 1:2 withmajor histocompatibility complex-deficient K562 cells. Follow-up

steps were performed as described above for detection of IFN-g and TNF.

Fibrosis assays (cohort 1)
To test fibrotic factors in vitro, 1x104 primary human lung fibroblasts, seeded in 96-well flat bottom plates, were co-incubated with

recombinant amphiregulin at 37�C and experiment was stoppedwith lysis buffer from the RNA isolation kit after 3 days (New England

Biolabs, Monarch total RNA Mini Prep kit). After RNA isolation according to the manufacturer’s protocol, performing quality control

using NanoDrop, and transcription into cDNA (QuantiTect RT Kit, Quiagen), lung fibroblast activity was analyzed by qPCR (96-well

LightCycler; Roche) with detection of genes forCOL1A1 and ACTA-2. Relative gene expression (duplicates) was calculated by 2-DCq

method related to 2 housekeepers (geomean ofRPL19 and EEF1). 2-DCq valueswere further normalized by dividing the sample values

by the mean of the control values without NK cells. Primer sequences are listed in Table S7.

To test the impact of NK cells on the activity of primary lung fibroblasts, 2 day seeded fibroblasts were co-incubated with 2x104

isolated NK cells (pre-stimulated with or without 10ng/ml IL-2 for 18h) from controls and patients with moderate or severe COVID-19

progression for 18 hours in defined DMEM/F12 media at 37�C. Then the supernatant was discarded and co-culture was carefully

washed with PBS. Sufficient removal of NK cells was checked by light microscope (Zeiss, AxioVert 200M), the experiment was

then stopped with a lysis buffer and qPCR was performed as described above.

To test the anti-fibrotic activity of NK cells, human lung fibroblasts were labeled with live dye e670 (1mM; ebioscience; to distinguish

lung fibroblasts fromNK cells) for 10min at room temperature in the dark, washed twice with PBS, and seeded as described above in

fibroblast media at 37�C. After 2 days, 2.5x104 isolated NK cells (pre-stimulated with or without 10ng/ml IL-2 for 18h) from the subject

groups were co-incubated with the lung fibroblasts for 6h in defined DMEM/F12 media at 37�C. The supernatant was collected, re-

maining lung fibroblast were incubated with accutase (Sigma) for 5min for detaching, sufficiently washedwith PBS to remove all cells

and reunited with the collected supernatant. After staining with the viability dye Zombie Aqua (Biolegend, USA), cells were permea-

bilized using the Cytofix/Cytoperm Kit according to the manufacturer (BD Biosciences, USA) and labeled with specific antibody for

active Caspase-3 for detecting of apoptotic lung fibroblasts by flow cytometry (BD Canto 2). FC raw data was analyzed by FlowJo

software V10.6.1 (BD Bioscience, USA).

SARS-CoV-2 infection model (cohort 1)
For in vitro infection, 5x103 Vero E6 cells or 6x103 CaCo-2 cells were seeded in 96-well flat bottom plates and cultured at 37�C. After
48h cells were infected with SARS-CoV-2/human/Germany/Heinsberg-01/2020 virus at a MOI 0.1 (Vero E6 cells) or 1.0 (CaCo-2

cells). After one hour, the inoculum was removed, and cells were washed once with DPBS. Then, cells were cultured for additional

48h in the presence of increasing concentrations (0ng/ml, 1ng/ml, 10ng/ml) of recombinant human IFN-g (Immunotools) or TNF-a

(Immunotools) or a combination of both (10ng/ml each).

Alternatively, purifiedNK cells (1x104) were incubatedwith or without recombinant IL-2 (10ng/ml) for 18h andwere added 24h post-

infection and co-cultured with Vero E6 or Caco-2 cells, respectively, in defined DMEM/F12 media for another 24h.

Then, supernatant was removed and collected, the cells were washed twice with DPBS, controlled by microscope and tested for

SARS-CoV-2 RNA replication or stained for SARS-CoV-2 Spike protein using specific nanobodies (Koenig et al., 2021).
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In the supernatant, concentrations of the cytokines IFN-g and TNF were detected using the Cytometric Bead Array (CBA) from

Legendplex (Essential Immune Response Kit), and the beads were measured on the BD FACS Canto 2.

Detection of SARS-CoV-2 infection (cohort 1)
Detection of SARS-CoV-2 infection was performed via two approaches, assessing either expression of viral RNA by PCR or expres-

sion of viral proteins using fluorochrome-conjugated nanobodies.

For detection of SARS-CoV-2 specific genes, treatment of cells, RNA isolation and transcription into cDNA was performed as

described above. Primers were purchased (N1/N2 target, SARS-CoV-2 (2019-nCoV) CDC RUO Kit, (Corman et al., 2020) or se-

quences were obtained from other published work (M-gene, primer sequences in Table S7) (Toptan et al., 2020). Relative gene

expression was calculated with the use of duplicates by 2-DCq method related to 2 housekeeping genes (RPL19, EEF1A, Table S7).

For intracellular detection of SARS-CoV-2 Spike protein, in vitro infections of Vero E6 or CaCo-2 cells were performed as described

above and cells were co-cultured with recombinant cytokines or isolated NK cells accordingly. arget cells were detached with ac-

cutase (Sigma) andwashedwith DPBS. After staining with viability dye Zombie Aqua (Biolegend, USA) cells were fixed/permeabilized

using the Cytofix/Cytoperm Kit according to the manufacturer (BD Biosciences, USA) and subsequently incubated with the Spike

specific nanobody VHH E (AF488 labeled)(Koenig et al., 2021), or control nanobody LaM-4 (anti-mCherry, AF488 labeled)(Fridy

et al., 2014) for 30 min in the dark by shaking at 4�C. Analysis was performed on a flow cytometer (BD Canto-2). FC raw data was

analyzed by FlowJo software V10.6.1 (BD Bioscience, USA).

Measurement of soluble factors in plasma
Plasma concentrations of the cytokines IL-5, IL-4, IL-12p70, IL-22, IL-8, IL-10, IL-6, IFN-g, TNF-a, and IL-1b were measured with

planar-array technology on the Quanterix� SP-X Imaging and Analysis System using the Simoa� CorPlex Human Cytokine Panel

1 assay (Item 85-0329). Plasma concentrations of IFN-a were also measured on the SP-X system using an assay in development,

which will become commercially available in the future. Plasma concentrations of SARS-CoV-2 Nucleocapsid protein and SARS-

CoV-2 anti-Spike IgG were measured using digital bead-based technology on the Quanterix� HD-X Analyzer with development ver-

sions of the assays Simoa� SARS CoV-2 N Protein Advantage Kit (Item 103806) and Simoa� SARS-CoV-2 Spike IgG Advantage Kit

(Item 103769).

QUANTIFICATION AND STATISTICAL ANALYSIS

ScRNA-seq data analysis
Processed and previously published PBMC scRNA-seq datasets from Schulte-Schrepping et al. (cohort 1, Bonn data and cohort 2,

Berlin data)(Schulte-Schrepping et al., 2020) and from Bernardes et al. (cohort 3, Kiel data)(Bernardes et al., 2020) were downloaded

from FastGenomics (https://www.fastgenomics.org) as Seurat objects and datasets from Su et al. (2020) and Stephenson et al.

(2021) (cohort 4, UK and US data) were received directly by the authors and downloaded from the COVID19 cell atlas (https://

covid19cellatlas.org/), respectively and all datasets were imported to R 4.0.0. Subsequent gene expression data analysis analysis

was performed using the R/Seurat package 3.2.0 (cohorts 1, 2 and 3) and 3.9.9 (cohort 4) (Butler et al., 2018; Stuart et al., 2019).

Metadata adjustment
Cohort 3 initially used a different disease severity group annotation than the other cohorts which had to be adjusted. Patients marked

as ‘‘complicated (incremental),’’ ‘‘complicated (recovering),’’ ‘‘complicated with hyperinflammatory syndrome’’ and ‘‘critical’’ were

binned into the group ‘‘severe,’’ while ‘‘mild (recovering)’’ were annotated as ‘‘moderate.’’ Patients annotated as ‘‘recovered’’ and

‘‘recovery/asymptomatic’’ were removed from further analysis.

For cohort 4, the maximum WHO ordinal scale (US data) or ‘‘status_on_day_collection’’ (UK data) per patient was used as a

discriminator between moderate and severe diseased patients. Patients who received steroid treatment were removed from further

analysis.

Moreover, samples with more than 4 weeks after onset of symptoms were taken out of cohort 3 and 4, since the main interests of

this study are the changes in the first weeks.

For all datasets, samples with 3 and 4 weeks after onset of symptoms were annotated as week ‘‘3+’’ after symptoms.

Data integration for cohort 4
To analyze the data without having any influence of batch effects resulting from the two different studies (UK (Stephenson et al., 2021)

and US (Su et al., 2020) and their locations, the Seurat implemented integration approach based on ‘‘anchors’’ across collection sites

(Stuart et al., 2019) was used to harmonize and integrate the two datasets following the default settings but increasing the integration

features to 10,000. Subsequently, the merged dataset was scaled, PCA was performed and UMAP was calculated based on the first

30 PCs.

Data integration for cohorts 1 to 3
Data integration approaches for cohorts 2 and 3 or 1 to 3 as an alternative to using a validation cohort approach revealed similar re-

sults (data not shown). Since the validation cohort approach did not require any correction for batch effects due to the use of different
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technologies (10x Genomics versus BD Rhapsody) and since other parameters might also have been different between the three

different clinical sites, we opted for the validation cohort approach to present the data within this manuscript.

Selection of NK cells
NK cells present in each cohort were selected in a three-step process. This process is described as exemplary for cohort 1.

First, the entire T and NK lymphocyte fraction was subsetted based on the cell type label provided by Schulte-Schrepping et al.,

including all T cells, NK cells and proliferating cells. This subset was subsequently normalized, scaled and dimensional reduction was

calculated using the standard Seurat functions. For normalization, the gene expression values were normalized by total UMI counts

per cell, multiplied by 10,000 (TP10K) and then log transformed by log10(TP10k+1). Subsequently, the data was scaled, centered and

regressed against the number of detected transcripts per cell to correct for heterogeneity associated with differences in sequencing

depth. For dimensionality reduction, PCA was performed on the top 2,000 variable genes identified using the vst method. For two-

dimensional representation of the data structure, uniform manifold approximation and projection (UMAP) was calculated using the

first 30 principal components (PCs).

Next, the NK cells within this subset were identified: After UMAP calculation, cells were clustered using the Louvain algorithm

based on the first 30 PCs and a resolution of 0.2. The cluster consisting of NK cells was identified using classical NK cell marker

(KLRF1,GNLY,NKG7) and cluster-specificmarker genes calculated with theWilcoxon rank sum test using the FindAllMarkers Seurat

function (parameters: min.pct = 0.25, logFC.threshold = 0.25). This NK cell cluster was selected and subsequently normalized, scaled

and dimensionality reduction was calculated. Next, UMAP and clusters were calculated. All steps were performed with the same pa-

rameters as described above.

Lastly, the NK cell subset was cleaned from non-NK cells. For this, the cells were over-clustered using the Louvain algorithmwith a

resolution of 1. Cluster-specific marker genes calculated by theWilcoxon rank sum test (same parameters as above) and the expres-

sion ofKLRF1were used to identify NK and non-NK cells. Clusters expressing classical marker genes related to other cell types, such

as NKT cells (TRAC), CD8+ T cells (CD8A) and others, as well as clusters showing remarkably high expression of hemoglobin related

genes (HBB, HBA1, HBA2) were removed from the dataset to yield clean NK cells (Table S2). Hemoglobin-rich clusters may result

from erythrocytes which contaminate the cells during sequencing preparation.

To account for a donor-specific batch-effect in cohort 3, the first 30 PCs of the ‘‘harmony’’ algorithm (Korsunsky et al., 2019) were

used instead of the PCs calculated by PCA, all other steps remained similar.

Differential gene expression analysis
Differential expression (DE) tests were performed using FindMarkers or FindAllMarkers functions in Seurat with Wilcoxon Rank Sum

test. Geneswith a log-fold change greater than 0.2, at least 10%expressed in tested groups andwith a bonferroni-corrected p value <

0.05 were considered as DEGs. Group/subtype specificmarker genes were identified by applying the DE tests for upregulated genes

between cells in one group/subtype to all others in the dataset.

Gene set ontology enrichment analysis (GOEA)
Gene set ontology enrichment analysis using the heatmapmodules as input was performed on the gene sets from the GeneOntology

(GO) biological process (BP) database (Ashburner et al., 2000; The Gene Ontology Consortium, 2019), the Kyoto Encyclopedia of

Genes AndGenomes (KEGG) database (Kanehisa, 2019) and the Hallmark gene sets (Liberzon et al., 2015) using the R package clus-

terProfiler (version 3.16.1)(Yu et al., 2012). Ontologies with highest and statistically significant enrichment were used for presentation.

Transcription factor prediction analysis
The R package RcisTarget (version 1.8.0)(Aibar et al., 2017) was used to predict the transcription factors potentially regulating heat-

map module-specifically contained gene sets. The genomic regions of TF-motif search were limited to 10kb around the respective

transcriptional start sites by using the RcisTarget-implemented ‘‘hg19-tss-centered-10kb-7species.mc9nr.feather’’ motifRanking

file. Prediction was performed using the cisTarget function and the resulting top 3 predicted TF, according to their normalized enrich-

ment scores (NES), were selected for each heatmap module.

Upstream ligand prediction analysis
Prediction of potential upstream ligands of each heatmap module gene set was performed using the R package NicheNetR (version

1.0.0)(Bonnardel et al., 2019; Browaeys et al., 2020). For each heatmapmodule, the top 3 predicted ligands were selected according

to their Pearson correlation coefficient (PCC).

Gene signature enrichment using AUCell
Enrichment of gene signature sets was performed using the ‘‘AUCell’’ method (Aibar et al., 2017) implemented in the R package

(version 1.10.0). We set the threshold for the calculation of the AUC to the top 3% of the respective ranked genes and normalized

the maximum possible AUC to 1.

Overlay analysis of donor origin of single cells onto the violin plots displaying IFN-a response and TNF signaling enrichments

ensured that cells within NK cell clusters at defined time intervals and patient groups were not dominated by individual patients

(data not shown).
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NK subtype annotation
For NK subtype definition of cohort 1, the combined information gained from cluster-specific DE gene expression and the enrichment

of literature-based NK RNA signatures were used. Here, we evaluated sequencing-based NK annotations from the literature (Crinier

et al., 2018; Smith et al., 2020; Yang et al., 2019a) and decided to use the signatures from Smith et al. (2020). First, the entire NK

population was clustered using the Louvain algorithm based on the first 30 PCs with a resolution of 0.7, resulting in a total of 8 clus-

ters. Subsequently, DEGs for each cluster were calculated using the Wilcoxon rank sum test as described above. Due to a similar

gene expression profile and close proximity, the first 3 clusters were united into one. Based on the upregulated DEGs of these 6 clus-

ters, scRNA-seq NK signatures from Smith et al. were applied for gene set enrichment using the AUCell as described above.With the

combined results, the 6 distinct NK clusters were annotated according to their subtype as inflamedCD56dim (high IFN-related genes),

CD56bright (NCAM1), proliferating CD56dim (MKI67), cytokine CD56dim (CCL4, CCL3, IFN-g), HLAhi CD56dim (HLA-DP and HLA-DR

related genes) and CD56dim (FCGR3A) NK cells (Table S2). NK subtypes in cohorts 2, 3 and 4 were then annotated based on the

markers identified in cohort 1.

Quantification of NK subtypes in disease groups
To compare shifts in the NK subtypes stratified by disease group, the percentages of each subtype were quantified per sample and

visualized together in boxplots. For determination of statistical significant differences in the distribution per disease group, a Kruskal-

Wallis test with FDR correction was performed. Subtypes showing significant changes (FDR-corrected Kruskal-Wallis p value < 0.05)

were further testedwith a Dunn’s Post hoc test using the ‘‘dunn.test’’ R package (version 1.3.5). Resulting p values were corrected for

multiple testing using the Benjamini-Hochberg method.

Confusion matrix
For each NK subtype, the relative proportion across disease severity was visualized as a fraction of samples from the respective con-

dition contributing to the NK subtype.

Time kinetics analysis of identified NK subtypes
For each severity group, the proportional occupancy of the NK subtypes was calculated for all samples and their respective time

points (in days after onset of symptoms) and the relative proportions were subsequently visualized as a function of time.

Correlation analysis
To analyze the correlation of IFN-related genes (IFIT2, IFIH1, IFI44L, XAF1, MX1, IFI6, ISG20, ISG15) with plasma cytokine levels,

samples having both information (9 moderate, 13 severe) were selected and average gene expressions for the respective genes

were calculated per sample. Subsequently, Spearman correlation was performed and the Spearman coefficients displayed using

a heatmap. Significant correlations (p < 0.05) were indicated.

CITE-seq analysis of cohort 4
Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) information of cohort 4 fromUS data (Su et al., 2020) and

UK data (Stephenson et al., 2021) were used to strengthen the annotation of the clusters calculated for protein data based on the

previously identified scRNA-seq clusters (see below). Since both studies of cohort 4 included different antibody markers, CITE-

seq information was analyzed separately. In general, both CITE-seq datasets were first normalized using the CLR normalization

method and subsequently scaled using the ScaleData function implemented in Seurat. For the US (Su et al.) dataset, a batch-correc-

tion was performed by normalizing and scaling the major batches 6, 7, 9 and 10 individually and then merging the data again.

Flow cytometry clustering analysis (cohort 1)
After pre-processing of the data (see section above), compensated fluorescence intensities were exported from FlowJo (BD, v.

10.7.1) for all the cells in the singlets/Lineage(-)/Living/CD56(+)/NKp80(+) gate. Exported .fcs files were imported in R (v. 3.6.2, Bio-

conductor v. 3.10) with the flowCore package (Bioconductor, v. 1.52.1)(Hahne et al., 2009). Fluorescence intensity values were then

transformed with an auto-logicle transformation. Here we calculated the optimal width for the logicle transformation for each of the

fluorescence parameters using the formula w = (m-log10(t/abs(r)))/2, where r is the most negative value to be included in the display

(Chen et al., 2016). Transformed fluorescence values from each experimental batch were used for dimensionality reduction using the

UMAP algorithm (umap, CRAN, v. 0.2.6.0, n = 15, mdist = 0.2, metric = ’’euclidean’’)(McInnes et al., 2018). For each sample a

maximum of 1.000 cells were randomly selected. To account for the small differences derived from the measurement of the samples

in different experimental dates, the batch correction algorithm harmony (GitHub v. 1.0)(Korsunsky et al., 2019) was used to normalize

the data. Normalized values were now used for UMAP dimensionality reduction (umap, CRAN v. 0.2.7.0)(McInnes et al., 2018) and

Phenograph clustering (Rphenograph, GitHub v. 0.99.1, with number of nearest neighbors (k) = 60) (Levine et al., 2015). The expres-

sion of the markers CD69, CD38, CD94, KI67, CD161, CD95, FASL, NKp80, GrzB, HLA-DR, TIGIT, CD16, CD56 were used for the

calculation of the UMAP and Phenograph clustering. After this step, data were visualized according to the Phenograph clustering

after manual annotation of selected metaclusters to match the scRNA-seq annotation. Heatmaps of marker expression were

calculated as scaled mean of the transformed fluorescence intensity of each marker for each Phenograph cluster. Confusion

matrices were calculated normalizing first the cells from each condition to a total number of 1000 cells and later calculating the
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relative contribution of each condition on each cluster. Statistical testing for the difference in the frequency of each cluster was calcu-

lated with a Kruskal-Wallis test (with FDR correction, R v 3.6.2) to identify clusters where the grouping has an impact on the cluster

frequency. Clusters having significant Kruskal-Wallis test (FDR corrected p value < 0.05) were tested with a Dunn’s Post hoc test with

Benjamini-Hochberg correction for multiple testing (CRAN rstatix package v 0.7.0). All heatmaps were calculated with the pheatmap

package (CRAN, v. 1.0.12) and boxplots with the R package ggplot2 (CRAN, v. 3.3.3). The analysis was performed in a dockerized

environment (lorenzobonaguro/flowtools:R362_V2).

CyTOF analysis (cohort 2)
NK cells were identified based on exclusion of CD3+, CD19+, CD15+ and CD14+ cells and subsequent gating on all CD56+ cells.

Because leukocyte counts were not available for all control samples, we use absolute NK cell numbers from our recently published

control cohorts (Kverneland et al., 2016; Sawitzki et al., 2020)) for comparison as also described in Schulte-Schrepping et al. (Schulte-

Schrepping et al., 2020). NK cells were clustered based on the expression of 16 markers: CD16, CD56, HLA-DR, CD38, CD69, Ki67,

CXCR5, CXCR3, CCR6, PD1, TIGIT, CD226, CD62L, KLRB1, KLRG1, and KLRF1. The raw values obtained with CyTOF were first

transformed with the inverse hyperbolic sine function (asinh) and then z-score normalized per marker. We clustered NK cells using

Phenograph (Levine et al., 2015)with 100 nearest neighbors (k = 100). We found 15 clusters, which were annotated based on the

average z-score transformed CyTOF expression of the markers in each cluster. Similarly, UMAPs were calculated with the selected

markers mentioned above using the R package ‘‘uwot’’ with default parameters (Melville et al., 2020). Statistical testing for the dif-

ference in the frequency of each cluster was calculated with the same approach as described below, i.e., Dunn’s Post hoc test with

Benjamini-Hochberg correction for clusters with significant Kruskal-Wallis test (FDR corrected p value < 0.05). For the non-weekly

analysis, we considered the first sample per patient. For the weekly analysis, only the first sample per week was included and the

repeated samples in the same week were excluded from the analysis.

NK subtype annotation for FC and CyTOF data
The assignment of the FC/CyTOF sub-clusters to the 6NK cell subsets (see above ‘‘NK subtype annotation’’) was done by comparing

protein, transcriptome and CITE-seq expressions from the respective subset (cohort 1: Figures S2D and S2E; cohort 2: Figures S2F

and S2G) for inflamed CD56dim (cohort 1: CD69high, CD38; cohort 2: CD38, CD69), proliferating CD56dim(cohort 1: KI-67, HLA-DR),

CD56bright (both cohorts: high CD56 expression, no CD16), HLAhi CD56dim(cohort 1: TIGIThigh, CD95, HLA-DR ; cohort 2: HLA-DR),

and cytokine CD56dim cells (cohort 1: CD161high, CD38, CD16high cohort 2: KLRG1high, CD161high, CD16high CD226). In cohort 2, the

proliferating CD56dim subset could not be assigned. Conversely, subclusters were found that did not match the subsets. This can be

explained by missing markers, which would be necessary to uniquely assign all NK cell subsets.

Statistical analysis of flow data (cohort 1)
Data variance was determined by controlling the False Discovery Rate for multiple comparisons following one-way ANOVA in

GraphPad PRISM 9 (Graphpad software, Inc., La Jolla, CA). From a case number above 8 a normal distribution test according to

D’Àgostino-Pearsonwas applied, below 8 individuals non-parametric tests were performed. Therefore, for unpaired/normally distrib-

uted data ordinary ANOVA and for unpaired/non-normally distributed data Kruskal-Wallis test was performed. A p value below the

limit of 0.05 was considered significant, and figures were produced using GraphPad Prism.

Rank-rank analysis
To find similarly DEGs in the later stage of severe COVID-19, a rank-rank analysis for the three cohorts was performed. First, DEGs for

the comparison of severe week 3+ versus all other conditions (cohort 1, cohort 2 and cohort 3), and severe week 2+ versus all other

conditions (cohort 4) were calculated using the Seurat implemented ‘‘FindMarkers’’ function defined by an expression in at least 10%

of NK cells. Here, no fold-change cut-off was applied. Fold-changes of genes present in both cohort 1 and cohort 2, cohort 3 or

cohort 4, respectively, were subsequently visualized in a rank-rank plot. Intersection of genes which were either up- or downregu-

lated in all three cohorts were highlighted and visualized in a heatmap representing their fold-change. For the definition of intersecting

up- or downregulated genes the following log fold-change thresholds were used; cohort 1 = 0.15, cohort 2 = 0.2, cohort 3 = 0.15 and

cohort 4 = 0.15.

NK cells from bronchoalveolar lavage fluid
To obtain scRNA-seq data of NK cells from the bronchoalveolar lavage fluid (BALF) in COVID-19, the sequencing data from Liao et al.

(2020) was downloaded from GEO with the accession number GSE145926. The authors used the droplet-based 10X Genomics

technique and deposited the count matrices in h5 files. These files were imported into R 4.0.0 by using the Seurat-implemented

‘‘Read10X_h50’ function. Subsequent analysis was performed using Seurat (version 3.2.0). After removal of cells with less than

200 or more than 6,000 expressed genes andmore than 10%mitochondrial reads, a total of 66,452 BALF cells remained. In addition,

genes that were expressed in less than three cells were removed. Subsequently normalization was performed using the

LogNormalization function. The gene counts for each cell were normalized by total UMI counts, multiplied by 10,000 (TP10K) and

the log transformed by log10(TP10k+1). After normalization, the count data was scaled regressing for total UMI counts andmitochon-

drial read percentage, as described by Liao et al. and principal component analysis (PCA) was performed based on the 2,000 most

variable features identified using the vst method implemented in Seurat. Since a batch-effect was observed for the different samples,
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the data was batch-corrected using the ‘‘harmony’’ algorithm (Korsunsky et al., 2019) based on the first 50 principal components. For

two-dimensional data visualization, UMAP was performed based on the first 50 principal components of the ‘‘harmony’’ data

reduction. Subsequently, the cells were clustered using the Louvain algorithm based on the first 30 ‘‘harmony’’ dimensions with a

resolution of 0.7, resulting in 19 clusters. For NK cell selection, the cluster expressing canonical NK cell markers (GNLY, NGK7,

KLRF1) was sub-clustered. In the following analysis the NK cell population was cleaned from ambiguous cells as described for

our cohorts. Cells originating from control donors had to be removed due to very low numbers of cells. The final BALF NK cell dataset

contained 658 cells.

NK cells from lung biopsies in pulmonary fibrosis
The processed scRNA-seq dataset (n = 114,396 cells) from lung biopsies of patients with pulmonary fibrotic diseases and control by

Habermann et al. (2020) was downloaded from GEO with the accession number GSE135893 and loaded into R 4.0.0 for analysis

using Seurat. NK cell selection occurred in a similar fashion as described for our cohorts. In brief, the entire T lymphocyte and NK

cell fraction as defined by Habermann et al. was sub-clustered, next the cluster composed of NK cells was selected and finally,

NK cells were cleaned from ambiguous cells. Furthermore, cells originating from patients with unclassifiable interstitial lung disease,

sarcoidosis and chronic hypersensitivity pneumonitis were removed for further analysis. The resulting final NK cell subset comprised

1,550 cells from patients with nonspecific interstitial pneumonia (NSIP), idiopathic pulmonary fibrosis (IPF) and controls. For deter-

mination of statistical significant differences in the distribution per disease, a Kurskall Wallis test with FDR correction was performed.

Subtypes showing significant changes (FDR-corrected Kruskal-Wallis p value < 0.05) were further tested with a Dunn’s Post hoc test

using the ‘‘dunn.test’’ R package (version 1.3.5). Resulting p values were corrected formultiple testing using the Benjamini-Hochberg

method.

Data visualization
For data visualization the R packages Seurat, ggplot2 (version 3.3.2) (Wickham, 2016) (ggplot2: Elegant Graphics for Data

Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4), (https://ggplot2.tidyverse.org), pheatmap (version 1.0.12) and

ComplexHeatmap (version 2.4.3) (Gu et al., 2016) were used.
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